
STATIC TEST COMPACTION AS A MINIMUM COVERING PROBLEM 

K. O.Boateng 
Department of Computer Engineering,  

Kwame Nkrumah University of Science and technology,  

Kumasi, Ghana 

ABSTRACT 

Large numbers of test stimuli impact on the time and cost of test application. Hence there is the 

need to keep numbers of test stimuli low while maintaining as high fault coverage as possible. In 

this paper, static compaction of test stimuli is seen as a minimization problem. The task of static 

compaction of a set of test stimuli has been formulated as a minimum covering problem. Based 

on the concept of minimization, a method of static compaction has been developed. Results of 

experiments conducted to evaluate the method are also presented. The method achieved a sig-

nificant compaction of sets of test stimuli that had previously been compacted by means of a test 

generation algorithm that features dynamic compaction. 

Keywords: test compaction, test stimuli, minimum covering problem, essential test selection, re-

dundant test elimination  

INTRODUCTION 

Test is indispensable in the production and 

maintenance of reliable integrated circuits (IC). 

Testing is achieved by the application of a set 

of test stimuli. For a digital circuit, test stimulus 

may be a single input pattern or a sequence of 

input patterns depending on the type of circuit 

and/or kind of fault. In combinational circuits, 

for example, a test stimulus for a delay fault 

consists of a pair of input patterns. In this pa-

per, a general test stimulus (a single pattern or a 

sequence of patterns forming a single unit of a 

test set) is referred to as a test matrix. 

Memory capacity is one of the main factors that 

determine the cost of test equipment. Large 

memory means high cost. More test patterns 

than can be contained in the memory of the 

available test equipment require memory up-

date (reloading of a subset of the test patterns) 

during test application. Even a single memory 

update leads to a big leap in test application 

time (TAT) that affects the time-to-market of 

the manufactured IC products. It is evident, 

from the foregoing, that small sets of test matri-

ces are desirable. However, making test se-

quences shorter should not reduce the fault cov-

erage. This means that test compaction algo-

rithms should find ways of achieving small test 

sets without diminishing fault coverage. 

Two types of compaction techniques exist, 

namely dynamic and static compaction. Dy-

namic techniques attempt to reduce the number 

© 2009 Kwame Nkrumah University of Science and Technology (KNUST) 

Journal of Science and Technology, Vol. 29, No. 3 (2009), pp 126-135 126 

Journal of Science and Technology  © KNUST December 2009 



of test matrices while they are being generated. 

Often dynamic compaction requires the modifi-

cation of the test generator. Static techniques, 

on the other hand, seek to reduce the number of 

the already generated test matrices. Thus, static 

compaction is a post-processing step to test 

generation. Static techniques are therefore inde-

pendent of the test generation algorithms and 

do not require any modifications of the algo-

rithms. Moreover, even if dynamic compaction 

is used during test generation, static compac-

tion can further reduce the size of the generated 

test set. This suggests that static compaction is 

more effective in reducing the sizes of test sets 

and hence the subsequent cost of testing. 

Hsiao and Chakradhar (1998a, 1998b) and 

Hsiao, et al., (1997) have reported works on 

methods of test pattern compaction for sequen-

tial circuits. Pomeranz and Reddy (1998) pro-

posed a method of efficient storage of test re-

sponses but his method does not involve com-

paction of test stimuli. Kajihara and Saluja 

(1998) reported on their work on test pattern 

compaction (for combinational circuits) based 

on random pattern fault simulation. Also, 

Hamzaoglu and Patel (1997), have reported 

their work on a static compaction algorithm and 

the computation of minimum sets of test pat-

terns for combinational circuits. Each of the 

two methods of static compaction are tailor-

made to work together with a particular exist-

ing test generation algorithm. 

Since a static compaction is effective by itself 

and can also act as a supplement to dynamic 

compaction, there is the need to develop a ver-

satile test-generation-independent static com-

paction algorithm for a general digital circuit 

(which may be combinational or sequential). 

By formulating static compaction of test matri-

ces as a minimum covering problem (Boateng 

et al., 2001), the proposed method performs 

static compaction of test matrices generated by 

any generation algorithm. The method finds the 

minimum subset of the original test set that can 

detect all the faults detectable in the circuit 

under test (CUT) by the original test set without 

modifying any test matrix. Characteristics of 

the proposed method include the following: 

The method does not assume any knowl-

edge of the test generation algorithm. 

The method finds a minimum-sized subset 

of a given test set that covers all the faults 

detectable by the original set without 

modifying any of the test matrices. 

The method is applicable to both combina-

tional and sequential circuits. 

The method applies a method of simulation 

(Boateng et al.,1998, 1999), that facilitates 

the extraction of faults (Boateng et al., 

1998, 1999), (Yanagida et al., 1995) cov-

ered by the original test set without con-

ducting repetitive fault simulation. 

The method uses a data structure that en-

sures efficient run-time data storage. 
Even though only the stuck-at fault model has 

been used in some examples in this paper, the 

proposed method can be applied to other fault 

models. 

Fault / 

Test 
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 

t1 x x   x     x           

t2 x   x x       x         

t3   x     x   x     x     

t4     x     x             

t5         x       x       

t6       x     x x     x   

t7           x x         x 

Table 1: The cover table for T with respect to circuit C 

Journal of Science and Technology  © KNUST December 2009 

Static test compaction as a minimum covering problem 127 



The rest of the paper is organized as follows. 

Section 2 presents the basic concept of the 

minimum covering problem as applied to the 

problem of the compaction of test matrices. The 

compaction strategy is presented in Section 3, 

the formal statement of the compaction method 

in Section 4, and experimental results in Sec-

tion 5. Section 6 concludes the paper. 

 

THE BASIC CONCEPT 

Definition 1: The set of all faults, Fset, detect-

able in the circuit, C, by a set, Tset, of test matri-

ces forms the cover of Tset.  

 

Definition 2: Let the fault f in circuit C be de-

tectable by a test matrix tep of a test set Tset. If 

no other test matrix of Tset detects f, then tep is 

an essential matrix of Tset, and the fault f is a 

critical fault of C with respect to Tset. 

Consider that the set T = {t1, t2, t3, t4, t5, t6, t7} 

of test matrices covers all the stuck-at faults on 

lines L1, L2, L3, L4, L5, L6 which form part of a 

circuit, C. Let the corresponding fault set be F 

= {f1, f2, f3, f4, …, f11, f12}. In Table 1, a × in the 

intersection of row ti and column fj indicates 

that matrix ti detects fault fj under the single 

fault assumption. From the table, it can be seen 

that t3; t5; t6; t7 are essential matrices of T cor-

responding to the critical faults f9; f10; f11; f12. 

When t3; t5; t6; t7 are removed from T and all 

the faults they cover are removed from the 

original cover F, we have the situation depicted 

in Table 2. None of the faults (f1 and f3) remain-

ing in F is critical with respect to the updated 

test set T = {t1, t2, t4}.  

When the remaining test matrices t1, t2, t4 (in T) 

are checked (in that order) for their coverage of 

the remaining faults, t4 is found to be redun-

dant. When the identified redundant test matrix 

Fault Test f1 f3 

t1 x   

t2 x x 

t4   x 

Table 2: The cover table after first iteration 

t4 is discarded, f3 becomes a critical fault with 

respect to T = {t1, t2} (the corresponding essen-

tial matrix being t2). Selecting the essential 

matrix t2 from T and removing the faults detect-

able by it (t2) from the set F = {f1, f3}, leave no 

more faults (undetected) in the original fault set 

F. So, the remaining test matrix t1 in T is also 

discarded. Thus the compacted test set, CT = 

{t2, t3, t5, t6, t7}, is now without the matrices t1, 

t4. 
 

The Static Compaction Strategy 

Redundant Test Matrix Removal 

The strategy is to effect static compaction by a 

few repetitions of the selection of essential ma-

trices and discarding of identified redundant 

matrices. 

Lemma 1: With reference to a given set of 

faults in a circuit C, any test set T without es-

sential matrices has at least one test matrix t 

that is redundant with respect to the set T = T\ 

{t}. 

Proof: Suppose that at a cycle of the repetition, 

the test matrices rt1, rt2, …, rti, …, rtN are re-

maining. Assume there are no essential matri-

ces in the remaining subset of test matrices. 

Thus, any fault in the cover of the subset of the 

remaining test matrices that is detectable by the 

matrix rtj is also detectable by another matrix 

rtk (where k ≠ j) in the same subset. Thus, at 

least, rtj is redundant. Q.E.D. 

Lemma 1 shows that in the process of repeated 

application of essential matrix removal and the 

discarding of redundant matrices, a deadlock 

situation where there are neither essential ma-

trices nor redundant matrices, does not occur. 

This means algorithm of repeated selection of 

essential matrices and elimination of redundant 

matrices will always converge. 

Processing the remaining data as explained in 

the last paragraph of Section 2 may lead to a 

non-minimal solution. For example, if t2 hap-

pened to detect only f3 and t4 happened to de-

tect f1 in addition to f3, then t1 and t2 would be 

selected leaving t4 as redundant. Evidently, this 

way of dominance checking is not effective. In 

view of this, the following iterative processing 

Journal of Science and Technology  © KNUST December 2009 

Boateng 128 



is performed to ensure an effective dominance 

checking that leads to a minimal solution to the 

static compaction problem. The process of re-

dundant fault elimination is carried out by iden-

tifying the best set of test matrices to retain for 

the next cycle of the selection of essential test 

matrices. After selecting the current set of es-

sential matrices, dropping the faults they cover 

from the fault set and updating F, a heuristic, 

weight, is assigned to each of the remaining n 

test matrices. The test matrix with the greatest 

weight is separated as rt1 (with cover C1). 

weight is re-calculated for the remaining n-1 

test matrices as follows. 

weightk = |Sk|, where Sk = Fk \ ℱ and ℱ = C1, 

where Fk is the subset of faults in F that the k-th 

remaining test matrix detects. 

The next greatest weight determines rt2 (with its 

cover C2) to be separated. Next the weights are 

re-evaluated with ℱ = C1⋃C2. Thus, generally, 

for the i-th iteration,  

First, each fault has a detection counter associ-

ated with it. Any time the fault is detected by a 

test matrix the counter associated with the fault 

is incremented. Also, a mapping of test matri-

ces to faults is established. All faults with 

counter = 1 are critical faults and the respective 

faults that map onto them constitute the essen-

tial matrices. An essential test matrix identified 

at the i-th selection of essential matrices is 

called an i-nary essential matrix. 

 

Simulation 

To establish the matrix-to-fault mapping, simu-

lations are performed. If the faults are injected 

one after another and all test matrices are used 

to simulate each injected fault in order to deter-

mine which matrix detects which fault, then the 

process will consume much time. To cut down 

on simulation time the following fault-tracing 

approach (similar to the back-tracing process in 

(Boateng et al., 1998, 1999), (Yanagida et al., 

1995)) is used. 

1. Test matrices are applied one-by-one to 

CUT. 

2. At the application of each test matrix, the 

rules for fault tracing are used to trace the 

faults detectable under single fault assump-

tion  

 

Rules for fault tracing 

Definition 3: The logic value c of multiple-

input gate G which when applied to any of the 

inputs of G will force the output of G to a given 

logic level cv, is called the controlling value of 

G. cv is the controlled value of G. The comple-

ments of c and cv are called the non-controlling 

respective non-controlled logic values of G. 

Table 3 gives the controlling and controlled 

logic values of some common gates. For the 

exclusive-OR gate, both logic values 1 and 0 

are non-controlling logic values (and hence non

-controlled logic values). After the test matrix 

has been applied to the primary inputs and val-

ues have been propagated to the primary out-

puts of CUT, fault tracing proceeds backward 

from the observed primary outputs to the pri-

mary inputs. This fault tracing is carried out 

j
i
j CF 1

1

This is repeated until ℱ = F after separating rtl. 

At this stage, the remaining (n-l) test matrices 

are identified as redundant and hence are dis-

carded. Another cycle of the compaction algo-

rithm then begins with the selection of the next 

hierarchy of essential test matrices. This contin-

ues until no more redundant test matrices are 

identified. Using the heuristic ensures effective 

algorithmic dominance checking. 

Logic optimization is often expressed as a 

minimum-covering problem to enhance algo-

rithmic solution. A direct application of the 

concept of minimum-covering problem to static 

compaction of test stimuli for practical circuits 

will require a large amount of memory, which 

may not be available. Thus this situation will 

impose a limitation on the applicability of the 

method to practical circuits. To go around this 

problem, the two-dimensional data space is 

reduced to the more manageable one-

dimensional data space. This is achieved as 

follows. 

ℱ 

Journal of Science and Technology  © KNUST December 2009 

Static test compaction as a minimum covering problem 129 



under the single fault assumption. Different 

tracing criteria are used under different fault 

models. Under the stuck-at fault model, the 

fault detectable at an on-path line L with logic 

value v is L-stuck-at-⊽ 

Figures 1, 2 and 3 illustrate Rules 2, 3 and 4 

respectively. Let us take the stuck-at fault for 

an example. In Figure 1, the single fault whose 

effect is observable/deductible at the output of 

G may be a stuck-at-0 fault located at the out-

put itself or at any one of the inputs (under the 

stuck-at fault model, they are all on sensitized 

paths). 

Gate 
Logic Value 

Controlling Controlled 

OR 1 1 

NOR 1 0 

AND 0 0 

NAND 0 1 

Table 3: Controlling and controlled logic 

values 

For gate G whose output fault has been cur-

rently traced, the following are the rules used in 

deciding the inputs (of G) along which fault 

tracing continues. 

Rule 1: For a one-input gate G, fault tracing 

along current path continues along the input. 

Rule 2: For a multiple-input gate G with a non-

controlled output value, fault tracing along cur-

rent path continues along all inputs that are on 

sensitized paths. 

Rule 3: For a multiple-input gate G with a con-

trolled output value, a controlling value at only 

one input i and non-controlling value at all 

other inputs, fault tracing along current path 

continues along i. 

Rule 4: For a multiple-input gate G with a con-

trolled output value and a controlling value at 

multiple inputs i that are on sensitized paths, if 

there exist a re-convergence between a stem s 

and G, and if the logic values at all i are simul-

taneously controllable from s, then fault tracing 

along current path skips the re-convergent loop 

and continues along s. Otherwise fault tracing 

along current path terminates at G. 

Rule 5: Fault tracing continues on a fan-out 

stem if it is identified as s in Rule 4, or if the 

fault at one or more of its branches has been 

currently traced. 

: Site of a traced fault 

1 

 

1 

1 
G 

Fig. 1: An illustration of Rule 2  

: Site of a traced fault 

0 

 

1 
0 

G 

Fig. 2: An illustration of Rule 3  

In other words, a single stuck-at-0 fault located 

at the output or any one of the inputs is detect-

able by the input vector < 1; 1 >. In the case of 

Figure 2, apart from stuck-at-1 fault at the out-

put itself, the only other possible single fault on 

a sensitized path is a stuck-at-1 fault located at 

the single input with a controlling logic value 

of G. In Figure 3, if the fault whose effect is 

observable/deductible at the output of G4 is not 

located at the very output, then the effect must 

be on the two inputs of G4 simultaneously. The 

single fault whose effect can be propagated to 

the two inputs of G4, must be located at either 

the output of G1 (Rule 4: the stem of a re-

convergent loop) or the single input of G1 hav-

ing the controlling value of G1 (by subsequent 

application of Rule 3). 

Journal of Science and Technology  © KNUST December 2009 

Boateng 130 



When tracing faults detectable by a multi-

vector test matrix, the rules of this subsection 

are applied as follows. 

1. In the case of a combinational circuit, the 

last (propagation) vector is used. 

2. In the case of a sequential circuit, use is 

made of the time-frame expansion model 

as an equivalent circuit from the point of 

view of testing. This way the combina-

tional replica of the circuit corresponding 

to each time frame has only one vector of 

the test matrix applied to it. 
 

THE METHOD 

This method has two phases. In the first phase, 

simulations are performed and fault tracing is 

carried out to establish the matrix-to-fault map-

ping. Initially each detection counter is set to 0. 

During fault tracing, detection counter incre-

menting is performed. In the second phase, the 

process of essential matrix identification and 

selection, and the process of identifying and 

discarding redundant matrices are performed. 
 

Phase One 

Step 1: Perform simulations to: (1) establish 

the matrix-to-fault mapping, and (2) increment 

detection counters as the faults to which they 

are associated are traced. 

Step 2: Put all the test matrices in set T_set, 

and all the traced faults in F_set. 

Step 3: Set each of the sets CT_set, T1_set, and 

F1_set to the empty set { }. 

 

Phase Two 

Compaction is carried out in this phase as fol-

lows. 

Step 1: Find all current critical faults and iden-

tify their corresponding essential test matrices. 

Drop all faults detectable by the identified es-

sential test matrices from F_set. Transfer the 

identified essential test matrices from T_set 

into CT_set. 

Step 2: If F_set is empty, discard any test ma-

trices in T set and end compaction. 

Step 3: Find in T_set the test matrix, rt, with 

the greatest weight. Put rt into T1_set. Transfer 

all faults in F_set that are covered by rt into F1 

set. 

Step 4: If F_set is not empty, go to Step 3. 

Step 5: For each test matrix in T_set, decre-

ment the detection counter of each fault (in 

F1_set) it detects. Discard all the remaining test 

matrices in T_set. Empty the sets T1_set and 

F1_set into the sets T_set respective F_set, and 

go to Step 1. 

At the end of compaction, the compacted test 

set is the set CT_set. Figure 4 shows the algo-

rithmic flow of the method of static compaction 

of test matrices. 

 

1 

 

0 

1 

1 

0 

0 

0 

1 

1 

: Site of a traced fault 

G1 

G2 

G3 

G4 

Fig. 3: An illustration of Rule 4 

Journal of Science and Technology  © KNUST December 2009 

Static test compaction as a minimum covering problem 131 



    Start 

End 

         Phase One 

1. Find the current critical faults 
2. Identify corresponding essential test 

matrices, et 

3. Drop all faults in F_set detectable by 
et 

4. Transfer et from T_set to CT_set 

1. Find t in T_set with the greatest weight 
2. Transfer all faults detectable by t into F1_set 

3. Transfer t into T1_set 

2. Discard contents of T_set 
3. Empty F1_set into F_set 

4. Empty T1_set into T_set 

Is 
F_set 

empty? 

Is 
F_set 

empty? 

no 

  no 

 yes 

 yes 

Fig. 4: Flow of the method of compaction 

An Illustration 

After Phase One, the proposed method will 

organize the data in Table 1 as shown in Figure 

5. T_set = {t1, t2, t3, t4, t5, t6, t7}; F_set = { f1, f2, 

f3, f4, f5, f6, f7, f8, f9, f10, f1i, f12}; CT_set = T1_set 

= F1_set = { }. Note that counter=1 is the crite-

rion for the identification of critical faults and 

hence essential matrices. In Figure 5, arrows 

from the primary essential test matrices are 

bold. 

After selecting the primary essential matrices, 

CT_set = {t3, t5, t6, t7}; T_set = {t1, t2, t4}; F_set 

= {f1, f3}. The updated and re-ordered mapping 

is shown in Figure 6a. weight1 (for t1) is 1, 

weight2 (for t2) is 2 and weight3 (for t4) = 1, thus 

T_set = {t1, t4}; rt1=t2; T1_set = {t2}; F1_set = 

{f1, f3}; F_set = { }. Since F_set is empty the 

counters of f1, and f3 are each decremented once 

(see Fig.6b), as they are detected by test matri-

ces t1 and t4 respectively, and t1 and t4 are dis-

carded. 

Next F_set and T_set are updated with the con-

tents of F1_set and T1_set thus F_set = {f1, f3} 

and T_set = {t2}. From Figure 6b the counters 

of f1, and f3 are each equal to one, thus they are 

both secondary critical faults. This implies that 

setTt _1 decrement counter of 

each detectable fault in F_set 

Journal of Science and Technology  © KNUST December 2009 

Boateng 132 



t2, which detects them, is a secondary essential 

test matrix and hence it is appended to CT_set 

and the two faults (secondary critical faults) it 

detects dropped. Now F_set is empty and the 

test compaction algorithm terminates with 

CT_set = {t2, t3, t5, t6, t7}. 

f1 

 

f2 

 

f3 

 

f4 

 

f5 

 

 

f6 

 

f7 

 

f8 

 

f9 

 

f10 

 

f11 

2 

 

2 

 

2 

 

3 

 

2 

 

 

2 

 

4 

 

2 

 

1 

 

1 

 

1 

t1 

 

t2 

 

t3 

 

t4 

 

t5 

 

t6 

 

Tests                   Faults       counters 

Fig. 5: Initial matrix-to-fault mapping 

f1 

 

f3 

2 

 

2 

t2 

 

t1 

 

t4 

f1 

 

f3 

1 

 

1 

t2 

(a)  

(b)  

Fig. 6: Reduced matrix-to-fault mappings 

Circuit n(T) n(T′) r %r cpu 

c432 39 37 2 5.13 0.05 

c499 88 56 32 36.36 0.20 

c880 43 35 8 18.60 0.07 
c1355 155 115 40 25.81 0.65 

c1908 176 131 45 25.57 0.77 

c2670 89 82 7 7.87 0.57 
c3540 172 133 39 22.67 1.02 

c5315 111 95 16 14.41 1.22 

c6288 65 32 33 50.77 1.87 

c7552 140 120 20 14.29 2.37 

cs386 77 68 9 11.69 0.05 
cs510 67 58 9 13.43 0.07 

cs526 69 59 10 14.49 0.07 

cs820 115 104 11 9.57 0.13 
cs832 115 105 10 8.70 0.12 

cs838 87 83 4 4.60 0.18 

cs953 105 30 75 71.43 0.32 
cs1196 170 116 54 31.76 0.37 

cs1238 176 113 63 35.80 0.47 

cs5378 144 129 4 3.01 1.70 

Average     24.55 21.17   

EXPERIMENTAL RESULTS 

Table 4: Results for some ISCAS benchmark circuits 

Journal of Science and Technology  © KNUST December 2009 

Static test compaction as a minimum covering problem 133 



The proposed method has been developed and 

implemented in the C language in an experi-

mental setup. Experiments have been con-

ducted on a SunOS 5.6 workstation. First, test 

sets targeting stuck-at faults were generated for 

some ISCAS benchmark combinational and full

-scan sequential circuits ((Brglez and Fujiwara 

1985), (Brglez, Bryan and Kozminski 1989)). 

The test generation algorithm used incorporates 

a dynamic compaction feature which was active 

during the generation of the test sets. Experi-

ments were then conducted on the generated 

test sets. 

Results obtained for the benchmark circuits are 

shown in Table 4. In the table, n(T) and n(T′) 

signify the number of test matrices in the sets T 

and T′, respectively. T is the original test set, T′ 

is the final compacted test set. r is the reduction 

(n(T) - n(T′)) in the number of test matrices as a 

result of compaction. %r is r expressed as a 

percentage of n(T). cpu is the CPU time (in 

seconds) consumed by the compaction process. 

Table 4 shows that, on the average, the pro-

posed method achieved more than a further 

21% reduction in the number of test matrices in 

a dynamically compacted test set. 

Table 5 shows data on sets of primary essential 

matrices that were identified in the course of 

test compaction. n(T′′) is the number of test 

matrices in the set T′′ of primary essential ma-

trices. %m is percentage of the number of test 

matrices in the final compacted test set that are 

primary essential matrices. %f is the percentage 

of the number of faults in the cover of the final 

compacted test set (and hence that of the origi-

nal test set) that are covered by primary essen-

tial matrices. 

 

CONCLUSION 

In this method static compaction of test stimuli 

has been structured as a minimum covering 

problem. A proposed method based on this 

minimization concept has been developed. The 

method is general, easy to implement, and does 

not assume any knowledge of the test genera-

tion algorithm. It employs simulation and fault 

tracing procedures that render repeated and 

time-consuming fault simulation unnecessary. 

Circuit n(T) n(T′′) n(T′) %m %f % cpu 

c432 39 37 37 100.00 100.00 100.00 

c499 88 45 56 80.36 95.96 90.00 

c880 43 33 35 94.29 99.55 100.00 

c1355 155 113 115 98.26 98.89 96.92 

c1908 176 127 131 96.95 99.24 97.40 

c2670 89 80 82 97.56 99.95 100.00 

c3540 172 123 133 92.48 99.02 90.20 

c5315 111 90 95 94.74 99.67 92.62 

c6288 65 16 32 50.00 97.33 65.78 

c7552 140 118 120 98.33 99.85 98.31 

cs386 77 67 68 98.53 99.87 100.00 

cs510 67 55 58 94.83 98.82 100.00 

cs526 69 57 59 96.61 99.43 100.00 

cs820 115 103 104 99.04 99.94 100.00 

cs832 115 104 105 99.05 99.94 100.00 

cs838 87 82 83 98.80 99.94 100.00 

cs953 105 17 30 56.67 93.37 78.13 

cs1196 170 108 116 93.10 99.08 89.19 

cs1238 176 95 113 84.07 96.78 70.21 

cs5378 144 128 129 99.22 99.99 97.06 

Average       91.14 99.99 93.29 

Table 5: Data on first set of essential test matrices (patterns) selected 

Journal of Science and Technology  © KNUST December 2009 

Boateng 134 



A data structure that ensures efficient run-time 

storage is used. Experimental results show that, 

for the circuit used, an average further reduc-

tion of the size of a dynamically compacted test 

set by over 21% is achievable by the proposed 

method. 

 

REFERENCES 

Boateng, K. O., Konishi, H. and Nakata, T. 

(2001). “A Method of Static Compaction 

of Test Stimuli”, Proc. IEEE 10th Asian 

Test Symposium, pp.137-142, November, 

2001. 

Boateng, K. O., Takahashi, H. and Takamatsu, 

Y. (1998). “Multiple gate delay fault diag-

nosis using test-pairs for marginal delays," 

IEICE Transaction on Information and 

Systems, Vol.E81-D, No.7, pp.706-715, 

July 1998. 

Boateng, K. O., Takahashi, H. and Takamatsu, 

Y. (1999) “Diagnosing delay faults in com-

binational circuits under the ambiguous 

delay model," IEICE Transaction on Infor-

mation and Systems, Vol.E82-D, No.12, 

pp. 1563-1571, Dec. 1999. 

Brglez, F., Bryan, D. and Kozminski, K. 

(1989). “Combinational Profiles of Se-

quential Benchmark Circuits," Proc. of the 

Int. Symp. on Circuits and Systems, 

pp.1929-1934, May 1989. 

Brglez, F. and Fujiwara, H. (1985). “A Neutral 

Netlist of 10 Combinational Benchmark 

Designs and a Special Translator in For-

tran," Proc. of the Int. Symp. on Circuits 

and Systems, June 1985. 

Hamzaoglu, I. and Patel, J. H. (1997). “Test set 

compaction algorithms for combinational 

circuits," Proc. of ACM International Con-

ference on CAD, pp.283-289, 1997. 

Hsiao, M. S. and Chakradhar, S. T. (1998a), 

“Partitioning and reordering techniques for 

static test compaction of sequential cir-

cuits," Proc. of the 7th IEEE Asian Test 

Symposium, pp.452-457, 1998. 

Hsiao, M. S. and Chakradhar, S. T. (1998b),. 

“State relaxation based subsequence re-

moval for fast static compaction in sequen-

tial circuits," Proc. of Design Automation 

and Test in Europe Conf., pp.577-582, 

1998. 

Hsiao, M. S., Rudnick, E. M. and Patel, J. H. 

(1997). “Fast algorithms for static compac-

tion of sequential circuit test vectors," 

Proc. of IEEE VLSI Test Symposium, 

pp.188-195, 1997. 

Kajihara, S. and Saluja, K. (1998). “On test 

pattern compaction using random pattern 

fault simulation," Proc. of IEEE Interna-

tional Conference on VLSI Design, pp.464

-469, 1998. 

Pomeranz, I. and Reddy, S. M. (1998). “On test 

pattern compaction objectives for combi-

national and sequential circuits," Proc. of 

IEEE International Conference on VLSI 

Design, pp.279-284, 1998. 

Yanagida, N., Takahashi, H. and Takamatsu, Y. 

(1995). “Multiple fault diagnosis by sensi-

tizing input pairs," IEEE Design & Test of 

Computers, Vol.12, No.3, pp.44-52, Sept. 

1995. 

 

Journal of Science and Technology  © KNUST December 2009 

Static test compaction as a minimum covering problem 135 


