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ABSTRACT 
Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to 
pay their electricity bills and also draw the attention of management and stakeholders to electric-
ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this 
paper, a wavelet transform and radial basis function neural network based energy forecast 
model is developed to predict monthly energy consumption. The model was developed using the 
monthly energy consumption of Kwame Nkrumah University of Science and Technology 
(KNUST), Kumasi, Ghana for a 9-year period. A mean absolute percentage error of 7.94% was 
achieved when the forecast model was tested over a 60-month period. 
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INTRODUCTION 
Monthly energy forecasts help heavy consum-
ers of electric power such as manufacturing 
industries, universities, mining companies and 
hospitals to predict their monthly energy con-
sumption. Such consumption forecasts help 
them to prepare adequate budget to pay their 
electricity bills and also draw the attention of 
management and stakeholders to electricity 
consumption levels so that energy efficiency 
measures are put in place to reduce cost. They 
can also use the forecast output to cross check 
if they are being correctly billed. 
 
Energy cost and environmental concerns have 
created the need to minimise power generation. 
One of the methods used to keep power genera-

tion low while meeting demand is Demand 
Side Management. For DSM to be effective, it 
is imperative that forecast of electricity con-
sumption is not left to the electric utility pro-
vider alone but must also be encouraged among 
heavy consumers of electric power such as 
manufacturing industries, universities, mining 
companies and  hospitals. 
 
Load forecasts can be divided into three catego-
ries: short-term forecasts which are usually 
from one hour to one week, medium-term fore-
casts which are usually from one week to one 
year and long-term forecasts which are longer 
than one year. A number of methods have been 
used for electric energy forecasting. These in-
clude statistical methods such as time series, 
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econometric modeling, regression and similar-
day approach as well as artificial intelligence 
techniques such as fuzzy logic, expert systems 
and artificial neural networks. Artificial intelli-
gence algorithms based on artificial neural net-
works have however proven more accurate 
(Feinberg et al., 2005). 
 
This paper proposes a combination of radial 
basis function neural network (RBFNN) and 
wavelet transform as a tool to forecast monthly 
energy consumption. 

METHODOLOGY 
Wavelet Analysis 
Wavelet analysis was considered for the model 
because it is capable of revealing aspects of 
data that other signal analysis techniques miss. 
These aspects include trends, breakdown 
points, discontinuities in higher derivatives, and 
self-similarity.  Wavelet analysis has additional 
advantages of compressing and de-noising a 
signal without appreciable degradation (El-
Keib et al., 1995).  There are essentially two 
types of wavelet decomposition: Continuous 
Wavelet Transform (CWT) and Discrete Wave-
let Transform (DWT) (Lee et al., 2000). CWT 
is mainly used for theoretical research, but 
DWT is more popular in the field of engineer-
ing, because the observed time series are dis-
crete in real world, including short-term load 
series.  
 
DWT uses mother wavelets such as Haar, 
Daubechies and Coefiman in its analysis (Zun-
Xiong, 2005). With DWT, a signal is analysed 
at different frequency bands with different reso-
lutions by decomposing the signal into high-
scale, low-frequency components called ap-
proximate coefficients and low-scale, high-
frequency components called detailed coeffi-
cients (Misiti et al., 2004). Thus, the wavelet 
transform is an implementation of a bank of 
filters that decompose a signal into multiple 
signal bands. It separates or retains the signal 
features in one or few levels or scales as shown 
in Fig. 1 (Akujuobi et al., 2007).  
 

DWT employs two sets of functions called 
scaling functions and wavelet functions, which 
are associated with lowpass and highpass fil-
ters, respectively. The filters are employed for 
down sampling (decomposing) or up-sampling 
(reconstruction) of the signal. Separately, the 
lowpass and the highpass filters are not invert-
ible. 
 
The decomposition of the signal into different 
frequency bands is simply obtained by succes-
sive highpass and lowpass filtering of the time 
domain signal.  The original signal x(n) is first 
passed through a halfband highpass filter g(n) 
and a lowpass filter h(n) After the filtering, half 
of the sam-ples can be eliminated according to 
the Nyquist’s rule, since the signal now has a 
highest frequency of half the frequency of the 
original signal. The signal can therefore be sub-
sampled by 2, by discarding every other sam-
ple. This constitutes one level of decomposition 
and can mathematically be expressed as fol-
lows:  
 
yhigh [k] = Σn x (n)g (2k - n) 
ylow [k] = Σn x (n)h (2k - n) 
 
where  yhigh [k] and ylow [k] are the outputs of 
the highpass and lowpass filters, respectively, 
after subsampling by 2. Fig. 2 illustrates a two-
level decomposition of a signal. 
 
Radial Basis Function Neural Network       
Artificial Neural Networks (ANNs) are mathe-
matical tools originally inspired by how the hu-  
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Fig. 1: Wavelet decomposition and reconstruction 
of a signal 
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man brain processes information. ANNs are 
composed of simple elements or neurons oper-
ating in parallel with connections or weights 
between them. The network function is deter-
mined largely by the weights between neurons. 
ANNs can be trained to perform a particular 
function by adjusting the values of the weights 
between neurons. Fig. 3 illustrates the ANN 
training concept. 

 
Typically, a number of input/target pairs are 
needed to train a network. A neuron receives 
numerical information through a number of 
input nodes, processes it internally, and puts 
out a response. The processing is usually done 
in two stages: first, the input values are linearly 
combined, and then the result is used as the 
argument of a nonlinear activation function. 
The combination uses the weights attributed to 
each connection, and a constant bias term. Fig. 

4 shows one of the most used schemes for a 
neuron.  

 
The neuron output y is given by: 

 

   
where xi is the neuron input; wi is the weight, θ 
is the characteristic neuron offset (bias) and f is 
the activation function (Al-Shareef et al., 
2008). 
 
Neural networks are able to derive meaning 
from complicated or imprecise data and can be 
used to extract patterns and detect trends that 
are too complex to be noticed by either humans 
or other computer techniques (Gershenson, 
2001). 
 
Among the many types of neural networks is 
the radial basis function (RBF) which is em-
ployed in this paper. RBFs are able to model 
complex mappings which perceptron neural 
networks can only model by means of multiple 
layers. They also have non-linear approxima-
tion properties. RBFs also have advantages 
such as interpolation, functional approximation, 
localization and cluster modeling. These prop-
erties lead to quicker learning in comparison to 
multilayer perceptrons trained by back propa-
gation (Topchy et al., 1998; Bors, 2001). 
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Fig. 2: A two-level discrete wavelet transforma-
tion of a signal 

Fig. 3:  ANN training concept 
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Fig. 5 shows a radial basis network. The ex-
pression for the net input of a radial basis 
(radbas) neuron a=radbas(||w-p||b) is different 
from that of other neurons. The net input to the 
radial basis transfer function is the vector dis-
tance between its weight vector w and the input 
vector p, multiplied by the bias b. The || dist || 
box in the figure accepts the input vector p and 
the single row input weight matrix, and pro-
duces the dot product of the two. The transfer 
function f for a radial basis neuron is e-n2 

(Demuth et al., 2006).  
 

 
Input Data to Model   
For the RBFNN to be able to approximate the 
energy consumption function and make mean-
ingful predictions, the input data must take into 
consideration a set of inputs which have signifi-
cant effects on the consumption values to be 
predicted. The input parameters if well chosen 
improve the performance of the network.  
 
A study of the energy data collected showed 
that the energy consumed in a particular month 
depended on the specific month whose con-
sumption was to be predicted and other pa-
rameters such as the previous year’s consump-
tion of the target month and the consumption of 
the month proceeding the target month. Hence 
for any month whose consumption is to be pre-
dicted, the following will be the input data re-
quired: 
1. The target month 
2. Previous month’s energy consumption 

3. The target month’s previous year’s energy                   
consumption 

4. The previous month’s, previous year’s 
energy consumption 

 
Pre processing of Input Data 
Since using the raw data will reduce the accu-
racy of the forecasting model, pre-processing of 
the data into refined form was done. The pre-
processing stages were; 
1. Smoothing of historical monthly consump-

tion curve 
2. Wavelet decomposition of data 

3. Normalization of the decomposed values 
between zero and one. 

 
Smoothing of consumption Curve 
A graph of the historical energy consumption 
against the months of the year revealed a lot of 
data inconsistencies which could be due to load 
shedding programmes, frequent power outages 
and instrumentation errors. The existence of 
such bad data in the historical data has signifi-
cant effect on the accuracy of the forecasting 
results. It can be thought that the energy curve 
is the sum of two energy curves: an essential 
energy curve, representing the basic consump-
tion requirement, and a vibrating curve show-
ing the sudden change in a large consumer’s 
state. Hence in smoothing the energy curve, the 
vibrating curve is removed from the essential 
curve by replacing sections that showed severe 
irregularities with the average of their preced-
ing and succeeding energy values (Gross et al., 
1987). This stage is only required during the 
development of a forecast model.  
 
Wavelet Decomposition 
The decomposition of the raw energy data 
makes it possible to extract essential compo-
nents of the input data, thus improving the fore-
cast output. Using the Daubechies db3 mother 
wavelet, the raw data was decomposed into 
approximate and detailed coefficients using a 
two level decomposition. The coefficients were 
then added to obtain coefficients that describe 
the original signal more accurately.  
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Fig. 5: A radial basis network 
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Fig. 6: Flow chart of proposed load forecast 
model 

Fig. 7: Monthly energy consumption of KNUST 
for year 2006 

Normalization 
After the energy data had been decomposed, 
they were normalized so that their values 
ranged between 0 and 1. This was achieved by 
using the square two norm implemented in 
MATLAB. The effect of this was to avoid the 
saturation of the neural network. For this same 
purpose the months of the year which were 
given indexes from 1 to 12 were each converted 
to binary.  
 
Neural Network Architecture 
A radial basis function neural network 
(RBFNN) was adopted for the development of 
the model. The four raw input data chosen were 
pretreated, resulting in eight input parameters. 
The RBFNN thus had eight input neurons. The 
monthly energy consumptions of 2000, 2001, 
2005 and 2006 were used to train the network 
while the testing data were those for the years 
2002, 2003, 2004, 2007 and 2008.  
 
PROPOSED LOAD FORECAST MODEL 
A flow chart of the proposed forecast model is 
shown in Fig. 6. The input energy data is de-
composed into two levels using db3 mother 
wavelet giving rise to three coefficients vectors. 
The three coefficient vectors are then added to 
obtain a single vector. The resulting vector is 
normalised. The target month is converted into 
binary and fed into the RBFNN together with 
the normalised vector. The output of the 
RBFNN is reconstructed using wavelet analysis 
to obtain an energy forecast. 

RESULTS AND DISCUSSIONS 
The load of KNUST is basically domestic loads 
which increase gradually with increasing stu-
dent and worker population. The loads consist 
mainly of lighting loads, heating loads and air-
conditioning loads. The energy consumption 
increases in the months when students are on 
campus and is low when students are on vaca-
tion. Thus the monthly peak occurs during 
months when students are on campus. That is 
between February and April and between Sep-
tember and November of every year. The peak-
ing is as a result of a rise in learning and other 

student activities which involve the use of elec-
tricity. The daily consumption peaks early in 

the morning around 6am to 8am when students 
are preparing for lectures and in the evening 
between 6pm and 10pm. Other seasonal varia-
tions such as pertain to weather conditions have 
little effect on the composite KNUST consump-
tion. Fig. 7 shows the energy consumption of 
KNUST for the year 2006. 
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Table 1 shows the actual monthly energy con-
sumption and forecasted monthly energy con-
sumption for the year 2008. Figures 8, 9, 10, 11 
and 12 show respectively the graphs of monthly 
energy forecasts using the proposed model 
against actual monthly consumptions for years 
2002, 2003, 2004, 2007 and 2008. Table 2 also 
shows the mean absolute percentage errors 
(MAPEs) for the testing years. The MAPEs 
were determined using the following formula: 
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Fig. 8:  Actual and forecasted energy consump-
tion for 2002 

Fig. 9:  Actual and forecasted energy consump-
tion for 2003 

Fig. 10:  Actual and forecasted energy consump-
tion for 2004 

Month Actual   
energy 

(MWh) 

Fore-
casted  
Energy 

(MWh) 

Percen- 
tage 

Error(%) 

 
January 345.84 233.5 32.4832 
 
February 964.564 965.4 0.0867 
 
March 1118.847 1210.7 8.2096 
 
April 985.318 976.1 0.9355 
 
May 901.512 880.5 2.3308 
 
June 732.032 776 6.0063 
 
July 580.041 517.8 10.7304 
 
August 694.563 700.7 0.8836 
 
September 851.23 723.6 14.9936 
 
October 950.169 854.9 10.0265 
 
November 1235.07 1296.7 4.9900 
 
December 840.01 837.3 0.3226 

Table 1: Actual and forecasted energy for 2008  
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Table 1 typifies how well the forecasted ener-
gies match the actual energies. The major ex-
ception to this close matching is in January 

2008. The 32.5% percentage error for this 
month is due to the uncharacteristically low 
value of energy consumed in this month due to 
power outage. Figures 8, 9, 10, 11 and 12 also 
show that the forecasted monthly energy con-
sumptions closely follow the actual. In 2002 
and 2003, May recorded the highest energy 
consumption. November recorded the highest 
energy use in 2004 and 2008 while in 2007; the 
highest energy consumption was recorded in 
April. The best model performance was re-
corded in February 2008. The average percent-
age error for this month was 0.09%. The MAPE 
for the twelve months of the year 2002 was 
6.19%, which was the least, and the highest 
MAPE of 10.94% was recorded in 2007 as 
shown in Table 2.  
 
CONCLUSION 
A wavelet transform and radial basis function 
neural network based monthly energy forecast 
model has been developed in respect of the 
Electrical Energy consumption time series data 
of KNUST. The model used the approximate 
and detailed coefficients obtained from a two 
level decomposition using the Daubechies db3 
mother wavelet. A mean absolute percentage 
error of 7.94% was obtained when the model 
was tested over a 5-year period, which is good. 
Only the historical load of KNUST was used 
for the forecast model, demonstrating that the 
composite KNUST load does not depend on 
seasonal variations. 
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