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A MULTI-PERIOD MARKOV MODEL FOR MONTHLY  
RAINFALL IN LAGOS, NIGERIA 

ABSTRACT 
Long periods of historical hydrological data such as rainfall and streamflow which are neces-
sary for planning and design of water resources projects, are often not available and have to be 
forecasted. Many models available for this were developed and tested in developed countries in 
temperate climates and so their application in tropical climates is questionable. A twelve-period 
Markov model has been developed for the monthly rainfall data for Lagos, along the coast of 
South Western Nigeria. The goodness of fit of the model was assessed by estimating the autocor-
relations of the residuals of the historical data (from January 1924 to December 1983) for lags 
one to sixty. A 95% confidence band was also established for the autocorrelations. The results 
show that all but two of the autocorrelations fall within the 95% confidence band confirming 
that the residuals are indeed white noise. This indicates that the model is very adequate. 

INTRODUCTION 
The problem of inadequacy or sometimes a 
total lack of stream flow data if not resolved 
would definitely lead to an underestimation of 
water resources facilities or their overestima-
tion. This is why the first attempt to solve the 
problem of short record length was as far back 
as the beginning of the 20th century. Hazen 
(1914) suggested combining records from sev-
eral stations whilst Sudler (1927) on the other 
hand wrote historic records on cards and ran-
domly picked the cards, with replacement, to 

generate 1000 years record. These approaches 
have the shortcoming of being unable to gener-
ate flows outside the actual historical range. 
This is serious because the potential for large 
and complex variation over time of hydrologi-
cal data (see Koutsoyinannis and Montanori, 
2007) may result in future flows well outside of 
the historically observed range.  
 
In reservoir size estimation, the required capac-
ity of a reservoir depends on the sequence of 
inflows into it versus the sequence of required  
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 spline model to estimate monthly evaporative 
loss; Pinto et. al (2015) compared models for 
forecasting monthly streamflows; but all of 
them were developed in a different environ-
ment from tropical Africa. 
 
Selection of a suitable model among the numer-
ous options available may not be clear but fac-
tors that will influence the suitability of a 
model are the nature of the physical processes 
involved, the quality of the data available, envi-
ronmental factors such as climate, and, the use 
to be made of the model. The aim of this work 
is to develop a multi-period Markov model for 
monthly rainfall forecasting using monthly 
rainfall data for Lagos. The model will be as-
sessed by checking if the autocorrelations at 
different lags of the residuals of the model 
when applied to the historical data are statisti-
cally insignificant. This will confirm the suit-
ability of such a model for stochastic simula-
tion of monthly rainfall data in our tropical and 
coastal environment. Monthly rainfall is well 
known to exhibit a seasonality of twelve 
months and thus twelve periods would be the 
natural choice and is adopted here.  
 
Periodic Markov Model 
The standard Markov Model is based on the 
premise that the variate at a particular time is 
linearly dependent on that at the immediately 
preceding time plus a random component as 
follows: 

withdrawals from it. In this case, it is not so 
important to know the exact sequence of future 
inflows. All that is needed is to generate future 
inflows with the same stochastic properties as 
the historical record. This is why stochastic 
models were introduced in hydrology to gener-
ate inflows that have equal probability of oc-
currence as the historical values.  
 
RELATED WORKS 
Stochastic models were pioneered by Barnes 
(1954) and Thomas and Fiering (1962). Box 
and Jenkins (1972) generalized existing models 
and further developed them. The resulting Box-
Jenkins models; namely Autoregressive (AR), 
Moving Average (MA), and their combinations 
greatly popularized stochastic modeling despite 
their shortcomings which include short range 
dependence, parsimony problems and a lack of 
physical meaning especially for the higher or-
der models. These shortcomings led to the de-
velopment of other models such as Fractional 
Gaussian Noise Processes (Mandelbrot, 1965), 
Broken Line Processes (Mejia et al., 1972), 
Disaggregation Models (Valencia and Schaake, 
1973), etc. More recently Artificial neural Net-
work (ANN) models (Abrahart et al, 2007; 
Birikundavyl et al., 2002; Corzo and Solo-
matine, 2005; De Vos and Rietjes, 2007, Kant 
et al. 2013, Borga et al., 2011, Chen et al., 
2015) which are connectionist in nature, have 
been developed. Also, advances in non-linear 
dynamical systems (Langousis and Koutsoyi-
nannis, 2006, Leedal et al., 2013) have led to 
the development of models which possess a 
deterministic basis. These latest models are 
however data driven and of a black box nature 
thus providing no process insight. Worse still, 
they do not provide tools for Monte Carlo 
simulation which is a serious problem as the 
whole point of stochastic simulation is to ex-
tend the record. Several other authors focused 
on the effect of uncertainty on the predictions 
of hydrological phenomena e.g. Weerts et al. 
(2011) and Zappa et al. (2011). More recently, 
Ursu and Pereau (2015) utilized a periodic 
autoregressive process to model river flow; Deo 
et al. (2015) utilized an adaptive regression  

 iii arXX += −1        (1) 

where Xi is the variate value at time i, ai is ran-
dom deviate at time i and r is the lag one auto-
correlation coefficient for series Xi. Taking the 
expectation and variance of Equation (1) im-
plies 
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Assuming stationarity, then   
Xii XEXE µ== − )()( 1
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Note above, r j is the autocorrelation of the nor-
malized variates belonging to period j to those 
immediately preceding them (period j-1). Index 
i is consecutively numbered from 1 to total no 
of data whilst index j will vary from 1 to num-
ber of periods, which is twelve here. For exam-
ple, j for all January values will be 1 whilst that 
for all December values will be 12. µj and σj are 
ideally the population mean and standard devia-
tion respectively for period j values. Let  i ϵ j 
represent only i values belonging to period j, 
the sample estimates used were as follows  

 
2

1)()( Xii XVarXVar σ== − and let  aiaE µ=)(

and  
2)( aiaVar σ=

Then from Equations (2) and (3) 

 )1( rXa −= µµ          (4) 

 222 )1( Xa r σσ −=       (5) 

Assuming our variates are normally distributed 
and if ti represents a standard normal random 
deviate at time i, then 

 )1()1( 2rtrta XiXaiai −+−=+= σµσµ             (6) 

Dropping the subscript X, Equation (1) can be 
written in terms of the parameters of the origi-
nal variate X as 

    (7) )1()1( 2
1 rtrrXX iii −+−+= − σµ

which can be written as 

   (8) )1( 21 rt
X

r
X

i
ii −+−=− −

σ
µ

σ
µ

Equation (8) in effect shows that prior normali-
zation of the deviates simplifies the model.  
 
Hydrological data however exhibit an annual 
period. Thus for monthly rainfall that is of in-
terest here, this translates to a period of twelve 
months. In Equation (8), the variate for a time i 
depends on only the variate for the previous 
time i-1 and a random component. However, 
seasonality implies that the dependence of the 
variates belonging to period j+1 on their imme-
diately preceding values (period j) is different 
from the dependence of the variates belonging 
to period j on their immediately preceding val-
ues (period j-1). Let j(i) be the period to which 
time i belongs, a multi-period Markov model 
can thus be written as 
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or 
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where xi  is the normalized Xi as follows 

 

  (10) 

)(

)(

ij

iji
i

X
x

σ
µ−

=

 

j

ji
i

j T

X∑
∈=µ

 

j

ji
ji

j T

X∑
∈

−
=

2)( µ
σ  (11) 

 

1

11 ))((
1

−

∈
−−∑ −−

=
jj

ji
jiji

j
j

XX
T

r
σσ

µµ  (12a) 

or 

 

j

ji
ii

j T

xx

r
∑
∈

−

=
1

   (12b) 

where Tj is the number of values in the summa-
tion belonging to period j. Equations (10), (11) 
and (12a) are used to estimate the parameters of 
the model. 
 
GOODNESS OF FIT MODEL 
After the parameters of the model have been 
determined, application of the model to the  
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historical data will not show a perfect fit. The 
resulting errors are termed as residuals and they 
represent the random components correspond-
ing to the historical data. For a good model, the 
residuals should be white noise in which case, 
their autocorrelation ρj at any lag j should be 
zero. However, since only a sample is available 
here, the 100(1-α) % confidence interval for the 
sample autocorrelation ρj  at any lag j, is 
(Yevjevich, 1972) 
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where T is the sample size and t(N, α) is a stu-
dent-t random deviate with N degrees of free-
dom and a probability of exceedance of α. The  
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RESULTS AND DISCUSSION 
Monthly rainfall data from January 1924 to  

South Western Nigeria (Table 1) were ob-
tained, making a total of 720 data points. The  
parameters of the model estimated from the 
historical data using Equations (10), (11) and 
(12a) are as shown in Table 2. To test the good-
ness of fit, the residuals (model errors) for  the 
historical data were obtained using Equation 
(14a). The autocorrelation values of these re-
siduals for lags one to sixty are plotted in Fig. 
1. The 95% confidence band for these from 
Equation (13) is also plotted. This shows that 
all but two fall within the 95% confidence band 
which is very good. Furthermore, 1000 years of 
data were generated with the model (using 
Equation (9a)). The parameters obtained for 
them are shown in Table 3 and they compare 
very well with Table 2, further validating the 
model. 
 

CONCLUSION 
A twelve-period Markov stochastic model has 
been developed for the monthly rainfall data for 
Lagos along the coast of South Western Nige-
ria. The goodness of fit of the model was as-
sessed by estimating the autocorrelations of the 
residuals of the historical data (from January 
1924 to December 1983) for lags one to sixty. 
A 95% confidence band was also established 
for the autocorrelations. The results show that 
all but two of the autocorrelations fall within 
the 95% confidence band, confirming that the 
residuals are indeed white noise. This indicates 
that the model is very adequate. This confirms 
the suitability of such a model for stochastic 
simulation of monthly rainfall data in our tropi-
cal and coastal environment. An important 
limitation of the model is the fact that theoreti-
cally, negative values are possible which is 
practically meaningless. Thus in practice, nega-
tive values are treated as zeros. 

residuals  it̂ of the historical data are obtained

by simply replacing the random component in 
Equation (9a) or (9b) with the residual  

 it̂ to give 
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