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ABSTRACT

Within the last two decades, higher order univariate kernels haye been under focus with respect to
its importance in examining the concept of curve fitting. This paper has taken this direction by
examining some basic properties of the univariate kernels in assessing and improving the choice of
kernels. The minimum efficiency of the selected kernels is 82% at order 6. The global error dimin-
ishes as the order of h increases, and it is highest between orders 2 and 6, and beyond order 12 the
global error seems to level off. Depending on the tolerance limit specified for the MISE and the
percentage efficiency permitted, the extent of bias reduction required, can be monitored.

Keywords: Higher order kernels, bias reduc-
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INTRODUCTION

One popular nonparametric method for estimat-
ing a probability function f; is the kernel density
estimation, Parrzen (1962), Rosenblatt (1956)
and Wand and Jones (1995). Let X, Xy, ..., X,
be a random sample from a distribution with
unknown density f, for which an estimator

is to be constructed. The univariate kernel esti-
mate at x is

R x~ X,
f(x)—‘—;igk[—-—-——h ) 0

where k is usually a symmetric probability den-
sity function and the window width, 4, is a
smoothing parameter. The choice of the smooth-
ing parameter is crucial because it is a trade off
between the bias and the variance terms in the
mean integrated square error (MISE). The ker-
nel density estimation method has been studied
extensively in the last two decades and has been
found to perform very well under many circum-
stances- see for example Izenman (1991) and
Minnottee (1998).

There are several ways of improving perform-
ance of the basic kemnel estimator of (1), see
Rosenblatt  (1956), Rudemo (1982) and

Silverman (1986). There has been a wide vari-_

ety of applications of the basic kernel estimator
in (1) with many pointing to the possibility of
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harmonizing higher order kernels and bias correc-
tions and reduction approaches, see Scott (1992),
Jones and Signorini (1997) and Osemwenkhae
(2003).

This paper has the following aims:

1)  to show how bias reduction techniques can
be achieved theoretically,

i) to show the consequence of (i) above on the
mean integrated square error (MISE).

ii1) to show how (i) and (ii) would enhance our
choice of kernel via their efficiency and

iv) to show empirically how (i)-(iii) can im-
prove our choice of kernels at higher order.

If the kernel estimator defined in (1) satisfies the
second order symmetric regularity conditions:

D k@) =1 i) [tk =0

iif) jﬁk(z)dr =V, #0 2

Silverman (1986) obtained (asymptotically) for
(2) the optimal window width, /, the MISE of

j’ and the efficiency of k respectively as:

ligy = ”“?‘ {fk(z)dz }% V;_?‘ {J.fu(x-)2 i }:5]‘ 3)

4

MisE f(x)= ‘?}VZ% {J'k () ar }5 { J.,/"’(x)z dx ‘n“%} (4)

and
- S ol Hfral o

where 7 is the sample size. These fundamental
properties (3) — (5) have attracted a lot of re-
searches and modifications in recent times, sce
Polansky and Bakar (2000), Marzio and Taylor
(2004).

Generalized bias reduction in kernel density
estimation

The second order symmetric regularity condi-
tions (2) only permits the use of kernels that take
non-negative values. An earlicr argument put
forward by Parzen (1962) and Bartlett (1963)
and later introduced into higher order kernels by
Scott and Wand (1991), Jones et al (1995), Jones
and Signorini (1997), Osemwenkhae and Og-
bonmwan (2003) and Osemwenkhae (2003) al-
lows the use of kernels which take both negative
and positive values. The basic regularity condi-
tions in (2) are modified thus:

i) .[ k(@ )dt =1
i) [k == fem ey =0
iii) jﬂk(z)dt =¥y £ 0 , (6)
where m is even. But
misk 7()= [{E 767G e+ Joar 7o)
= | (Bias /}(x)z)q',x + [var Fle ()

To obtain the bias term corresponding to (6) take
the terms of the Taylor series expansion of f{x)
up to m, that is, % is of order m, and obtain

Biasf(x) = E/}(x)—f(x) ~ ;l,Th "f ('")(x)Vm (3
var f(x)z n_llflk(t)2 &)
The generalized asymptotic bias term (8) for any
given even order of the smoothing parameter /4
and the variance term (9) are substituted into

(10) and minimized over A, thus

Bt % { (’2”!)2 vt “k(t)zdt] “ f('”)(x)zdx]‘ln*‘};'m (10)

m
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The burden of obtaining the value of the optimal
window width when (6) is satisfied is greatly
simplified by (10).

13

(m!)2

To obtain the efficiency of any symmetric kernel
corresponding to (6), adopt the ratio defined in
Silverman (1986). For the Epanechnikov kernel

K.()= Z-f—/—g_-(l—;mtz), [{ERA

. (6iil) becomes

5 m . 3<\/§)
fggf ke = T (12
and ,[\,/j;ke )?ar = 3(65) (13)

25

therefore (12) and (13), the efficiencies of any
m™ order symmetric kernel is

2041
. 2 Im 2m
IS S S R W P
(m + IXm + 3) 545

- g{(m +1)(;n_:55

Eﬂ (kln )R‘/ 1
v Jk (¢)* ar

3(l+m)

};;{Jtm/c(t)dt}_%~{J-k(t)2dt} (14)

! +m ;}; 1 -
e e G O R A S liﬁ(/c)zl{@%]%%g)} e m{fetorarf " 1)

5

A close look at (3) and (10) reveal that the order

of smoothing parameter h has reduced from
1

nA% o o amel Also, (4) and (11) reveal

that the order of the MISE reduced from
n‘% to  n 2mtl

In (5) and (14), a definite improvement and gen-
eralization of the efficiency is revealed. The
results of (8) — (14) have generalized the values

hopt h

of , MISE for any even order and the
efficiency of any symmetric kernel. The equa-
tion for the generalized bias (7) reduces the size
of the global error (MISE) at any given even
order of the smoothing parameter 4. For proofs
of (8) — (14) see Osemwenkhae (2003).

Empirical implementation of (11) and (14) to
depict the relevance of higher order kernels is
achieved by examining the Rectangular, Bi-

Table 1: Values of MISE and Efficiencies at higher order of &

Efficiencies

MISE f(x)
. Selected Kernels Selected Kernels
Order (/) Rectangular Biweight Gaussian Rectangular Biweight Gaussian

2 6.022770 E-03 5.708567 E-03 5.911735 E-03 0.9295 0.9939 0.9512
4 - 3.336485 E-03 3.330274 E-03 3.601083 E-03 0.9709 0.9730 0.8745
6 2.519964 E-03 2.619974 E-03 3.039569 E-03 0.9992 0.9580 0.8174
8 . 2.108022 E-03 2261830 E-03 2.753537 E-03 1.0201 0.9466 G.7679
10 1.851571 E~03 2.036930 E-03 2.589845 E-03 1.0362 0.9315 0.7284
12 1.672666 E-03 1.877929 E-03 2.484019 E-03 1.0492 . 0.9251 0.6949

1.757027 E-03 2410043 E-03 1.0601 0.9198 0.6660

14 1.538710 E-03
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weight and Gaussian kernels. The data generat-
ing the results of Table 1 is the call duration in
seconds of 100 independent GSM calls from a
business centre in an urban city in Nigeria.
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Fig. 1: Graph of the MISE of the 3 selected kernels
Jor higher h.
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Fig. 2: Graph of the Efficiencies of the 3 selected
kernels for higher h.

CONCLUSION

The MISE and the efficiencies of three selected
kernels were obtained using the call duration of
100 independent calls from a commercial phone
booth up to the order of the smoothing parame-
ters, h = 14. The graphs in Figure 1 fall sharply
when A increases from 2 to 6 and beyond this
there is a gradual leveling off with no apprecia-

ble decrease after order 12. This reduction is
caused by the reduction in the bias term (11).
Bias measures the rapidity of fluctuations of the
fitted curve from one caller to another and one
way of reducing this fluctuation is to fit the
curve using the order of the smoothing parame-
ter greater than 4. However, beyond order 8, the
decrease in MISE is negligible.

In the same vein, from Table 1, the efficiency of
the selected kernels showed a minimum of 82%
at order 6 with the efficiency of the Gaussian
kernel becoming poor at 2 > 6. Modelling call
time with the Gaussian kernel may not be the
best, especially at higher order values of 4, as its
efficiency cannot be guaranteed. Nevertheless,
the fact that the Gaussian kernel is differentiable
to any order is an advantage. So, depending on
the tolerance limit specified for the MISE and
the percentage efficiency admitted, the extent of
bias reduction can be predetermined.

Higher order univariate Kernel Density Estima-
tor is important in the continuous reduction in
the size of the global error propagated as the
order of 4 increases. However, the extent of the
relevance of higher order univariate kernel den-
sity estimation is dependent upon a specified
allowable tolerance limit and the percentage
efficiency so desired.
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