
INTRODUCTION 
The objective of this work was to demonstrate 
the feasibility of solving biharmonic equation 
using off-the-shelf general application tools such 
as MATLAB. Most often, researchers and engi-
neers in poor developing countries such as 
Ghana do not have access to dedicated and pow-
erful application tools such as ANSYS to per-
form detailed engineering analysis. However, 
understanding the mathematical formulations of 
the required partial differential equation (PDE) 
and plate theory, researchers and engineers can 

use general application tools such as MATLAB 
to solve common engineering problems. 

The three important steps taken to model the 
plate were (i) problem definition, (ii) mathemati-
cal model, and (iii) computer simulation (Peiro 
and Sherwin, 2005). In developing a mathemati-
cal model of the plate under investigation, a fi-
nite difference formulation was favoured be-
cause the PDE can easily be obtained in the 
strong form (Peiro and Sherwin, 2005). Also, 
because a simple rectangular geometry of the 
plate was considered, a finite difference formu-
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lation was favoured over a finite element formu-
lation (Kelkar, 2006). 

(Lau, 1978) has presented a method of using 
finite difference formulation for treating curvi-
linear boundary (Henwood et al., 1980) also 
presented a method of using FD formulation in 
predicting the elastic behaviour of rectangular 
plate on an elastic foundation. These approaches 
demonstrate the effectiveness of FD method in 
solving engineering problems. 
 
PROBLEM DEFINITION 
The problem under consideration was a plate of 
thickness t supported by a column and fixed at 
the sides labelled A, while sides labelled B were 
free as shown in Figure 1. It is assumed that a 
load of Pz N/m2 acted uniformly on the surface 
of the plate. The objective was to find the re-
quired thickness of the plate such that the plate 
did not fail by stresses exceeding the allowable 
stress or by yielding. 

The physical dimensions of the problem were: 
L  = 60 m x 60 m; 
Lc = 30 m x 30 m; (dimensions of the column) 

Material yield stress = 310 MPa 
Allowable deflection = 2% of hanging length 
(15 m), i.e. 0.30 m. 

The objective was to optimise the thickness t for 
stress and deflection. In figure 2, the relevant 
boundary conditions of the problem were de-
fined. 
 

MATHEMATICAL MODEL 
For plates of linearly elastic isotropic material, 
the deflection is described by the biharmonic 
PDE: 

E is the Young’s modulus of elasticity of the 
material 

v is the Poisson’s ratio of the material 
t is the plate thickness 
 
Using classical plate and shell theory (Ugural, 
1999), the following formulae for the bending, 
twisting moments and shear force were obtained: 
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Where: 
 w is the deflection 
 Pz is the applied load per unit area 
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Eq. 1 can be written as (Ugural, 1999): 
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Using Eqs. 2, 3 and 4, Eq. 6 could also be re-
written as: 
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Because of equal mesh along x- and y-axes, i.e., 

hyx =∂=∂ Eqs. 7, 2, 3, and 4 could be written 

respectively as (after using the relevant stencils): 

4h
D

P
wA z ⋅=⋅ (8)  
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COMPUTER SIMULATION 
Discretisation of Problem Domain 
Using equal meshes along the x- and y-axes, the 
mesh size h is given by: 

Data stored in a matrix will be represented in n2 
x n2 matrix. To facilitate numerical modelling of 
the problem, uniform meshing was used. 
 
Eq.s 2, 3, 4 and 7 were modelled using FD 
method. Stencils were developed for each PDE. 
Equation 5 was used in reducing the boundary 
conditions along the free-ends. However, be-
cause of space requirements, only the moment 
PDE along the x-axis will be used to illustrate 
the method. 
 
Flow Chart of Program Events 
Figure 3 showed how the various program 
events were connected together. The coefficients 
for deflection and moments were calculated only 
once based on the relevant stencils. 
 
Finite Element Modelling 
The plate was modelled in ANSYS using 
SHELL63 rectangular element. This model acted 
as the baseline against which the FD method was 
evaluated. 
 
RESULTS AND DISCUSSION 
The results of the simulations were presented in 
Table 1. 

By decreasing the mesh size from 3 m to 1 m, 
the percentage error improved from 2.59% to 
0.37%. 

For a mesh size of 3 m, the errors in stress val-
ues were consistent and approached an average 
value of 34%, also the errors in the deflection 
values were consistent and approached an aver-
aged value of 5.4%. 

Where: 
 A is the deflection coefficient matrix 
 w is the deflection vector 
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Where: 
C, E, and F are the moments’ coefficient matri-
ces along the x-, y- and xy-axes respectively 
w is the deflection vector. 

The principal moments and the maximum twist-
ing moments (Ugural, 1999) are also given as: 
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The principal stress matrices can be evaluated as 
(Ugural, 1999): 
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be calculated as: 
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For a mesh size of 1 m, the errors in stress val-
ues were consistent and approached an average 
value of 8.8%, also the errors in the deflection 
values were consistent and approached an aver-
age value of 0.58%. From figures 6 and 7, it can 
be seen that the finer mesh size (1 m) is superior 
to the coarse mesh size (3 m) results showed in 
figures 4 and 5. 

For proper engineering design, the maximum 
plate thickness will have to vary across different 
cross-sections of the plate depending on the 
stresses on the plate. Using the stress matrices 
(equations 12, 13 and 14), the principal stresses 
at pre-determined locations were calculated us-
ing finite difference method. A 3 m mesh size 
was used; that is, node distribution of 21 x 21 on 
the plate (including area of supporting column). 
A MATLAB code was developed to do the nec-
essary calculations. Figure 9 showed a 3-D plot 
of the maximum principal stresses across the 
surface of the plate. The critical points were at 
the fixed edges of the plate as expected, espe-
cially at the supporting column (edge A, see 
Figure 2), and the four corners of the plate. The 
maximum principal stress at the column support 
was 208.2 MPa and that at the corner of the plate 
was 187.8 MPa. The least maximum principal 
stress was 0.16 MPa, recorded three (3) meters 
from the fixed edge (edge A, see Figure 2). Ap-
propriate minimum thicknesses that could sup-

port the plate were found using finite difference 
method. Figure 10 showed a 3-D plot of the 
minimum thicknesses across the surface of the 
plate. This could be the optimum values of the 
thickness of the plate, but it would not be practi-
cal to manufacture and use it, since there will be 
the introduction of stress concentration on the 
plate. The minimum thickness of the plate 
needed to support the plate were as follows: 
0.243 m at the column support, 0.221 m at the 
corner of the plate and 0.053 m at the free edge. 

Optimisation of the thickness of the plate would 
result in savings in terms of material used as 
well as in the use of lighter weight structure re-
sulting in improved deflections at the free ends. 
Figure 8 showed the deflection of plate at the 
selected nodes. For ease of manufacture, the 
thicknesses at the various nodes could be ad-
justed upward to give a linear relationship and 
also to avoid the unwanted introduction of stress 
concentration spots on the plate. Figure 11 
showed the improved plate thickness. The use of 
fillets at edges with sudden change in thickness 
could further improve the design.  Figure 12 
showed how a section through the centre line of 
the side with the free edges would look like. 
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