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ABSTRACT 
This research was to investigate how the shear strength prediction of low strength reinforced 
concrete beams will improve under an ANN model. An existing database of 310 reinforced con-
crete beams without web reinforcement was divided into three sets of training, validation and 
testing. A total of 224 different architectural networks were tried, considering networks with one 
hidden layer as well as two hidden layers. Error measures of strength ratios were used to select 
the best ANN model which was then compared with 3 conventional design code equations in 
predicting the shear strength of 26 low strength RC beams. Even though the ANN was the most 
accurate, it was less conservative compared with the design code equations. A model reduction 
factor based on the characteristic strength concept is derived in this research and used to modify 
the ANN output. The modified ANN model is conservative in terms of safety and economy but 
not overly conservative as the conventional design equations. The procedure has been automated 
such that when new experimental sets are added to the database, the model can be updated and a 
new model could be developed.  

INTRODUCTION  
Structural behavior of reinforced concrete 
members in terms of bending is well under-
stood. This is because various procedures for 
design and code provisions for bending strength 
capacity are reasonably consistent. However, 
shear behavior of such concrete elements is still 
not fully explained. Provisions made by differ-
ent international building codes reveal great 
variation from code to code in the fundamental 
principles of shear prediction. This has led to 
research over the last century, with increased 

research activity over the last 20 years. The 
understanding of shear behavior in reinforced 
concrete is limited as a result of a complex 
transfer mechanism and varying influencing 
parameters. The major challenge in this re-
search area is that of an analytical direction 
which constitutes a basic approach to under-
standing shear behavior with respect to material 
properties and structural analysis (Shah and 
Ahmad, 2007, Regan, 1993, Oreta, 2004, Jung 
and Kim, 2008).Analytical models such as 
compression field models (Zsutty, 
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 dicted the ultimate shear strength based on 111 
experimental data processed by ANN. El-
Chabib et al. (2006) also developed ANN mod-
els using 398 experimental data to study the 
effect of stirrups on shear. 
 
The major contribution of coarse aggregates to 
the strength of a reinforced concrete beam is in 
shear. Therefore, reasonable predictions as well 
as conservative shear designs are necessary in 
reinforced concrete engineering. Experience 
from previous works (Adom-Asamoah and 
Afrifa, 2011; Adom-Asamoah et al., 2009, 
Kankam and Adom-Asamoah, 2002; Kankam 
and Adom-Asamoah, 2006) have shown that 
concrete beams produced in Ghana by artisans 
and small scale contractors using both conven-
tional and non-conventional aggregates result 
in low strength concrete. Shear failure is the 
most predominant failure mode even for such 
beams when designed with adequate shear rein-
forcement. The implication of this observation 
is that existing structural codes of practice may 
not be adequate in predicting the shear capacity 
of such concrete members. Work by other re-
searchers using artificial intelligence to im-
prove on theoretical shear modeling did not 
consider low strength concrete beams made 
from both conventional and non-conventional 
aggregates. Such beams are mostly slender with 
effective depths up to 600mm and percent lon-
gitudinal reinforcement up to 3%. 

This research was to investigate how the shear 
strength prediction of low strength reinforced 
concrete beams will improve under an ANN 
model. An existing database of 310 reinforced 
concrete beams without web reinforcement 
were trained, validated and tested using a wide 
range of concrete parameters including low 
strength, medium strength and high strength 
concrete. Performance evaluation of the best 
ANN model was then undertaken to obtain an 
accurate and reasonably conservative prediction 
model. The evaluation was undertaken by use 
of a novel data of 26 beams obtained from the 
laboratory tests of low strength concrete RC 
beams made from granite, phyllite, weathered 

 Afrifa et al. 120 

1968,Vecchio and Collins, 1986) have been 
corrected over the years through testing and 
have become part of structural concrete codes 
of practice. Development of theoretical models 
has seen advancement with the development of 
numerical methods (mostly finite element 
methods) and computation systems capable of 
solving a great number simultaneous equations 
derived from component testing results (Dopico 
et al., 2008). An approximation of the theoreti-
cal shear behavior of structural concrete has 
therefore been obtained through experimental 
and empirical means. It is also believed by oth-
ers (Zsutty, 1968) that regression analysis of 
database of experimental tests may not ade-
quately capture the complex interdependence 
between influencing variables and the uncer-
tainties introduced into the results.  
 
To improve on shear prediction capabilities, 
database of experimental results have been 
compiled by some researchers. Yang and 
Ashour (2008) organized a database of deep 
beams with varying parameters of length, con-
crete strength, amount of reinforcement and 
cross-sectional properties. Reinack et al. (2003) 
including others (Bohigas, 2000; Chung, 2000) 
have compiled comprehensive database of both 
slender beams and deep beams individually. To 
maximize the use of this database of experi-
mental results, researchers have recognized the 
use of computerization procedures. This has 
helped to improve efficiency, culminating in 
better models and predictions. The state of the 
art approach to computation procedures is the 
use of artificial intelligence to imitate problem-
solving strategy of humans (Cladera and Mari, 
2004, Kim et al., 2005; El-Chabbib et al., 
2006). 
 
The retrieval mechanism in this procedure is 
the Artificial Neural Networks (ANN). Shear 
behavior in concrete is an adequate field for the 
development of analysis techniques based on 
the neural networks(Nandi, 2001).Cladera and 
Mari (2004) proposed a new design equation 
for shear strength based on information re-
trieved with ANN. Sanad and Saka (2001) pre-
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granite and recycled concrete aggregates.    
 
SHEAR TRANSFER MECHANISM OF RC 
BEAMS WITHOUT WEB REINFORCE-
MENT 
The complex redistribution of stresses after 
cracking in a concrete beam without web rein-
forcement contributes to the various factors that 
affect shear transfer mechanisms. The basic 
mechanisms of shear transfer reported else-
where (ASCE, 1973, ASCE, 1998) and adopted 
by researchers involved in the investigation of 
the shear models used in ASCE-ACI codes of 
practice is simplified as presented in Fig. 1. It 
illustrates the most important contributions to 
the transfer mechanisms as shear in compres-
sion zone, Vcc interface shear transfer due to 
aggregate interlock Vca , dowel action of longi-
tudinal reinforcement, Vd and residual tensile 
stresses across the cracks, Vcr. On the advent of 
a flexural crack, tensile stresses build-up in the 
longitudinal reinforcement until dowel action 
reaches its capacity. With a further increase in 
shear load, shear cracks cause concrete in-
between the flexural cracks to isolate, leading 
to termination of the tensile flow in the longitu-
dinal reinforcement. Aggregate interlock effect 
reduces as the crack width increases with shear 

load increment. This allows a large shear force 
to be induced in the concrete compression zone 
after which an abrupt failure occurs, indicating 
shear failure. Some of the factors that influence 
shear capacity of RC beams other than com-
pressive strength are; beam depth or size 
(Bazant and Kim, 1984, Shioya et al., 1989), 
span to effective depth (Taylor, 1972, Mphone 
and Frantz, 1984), longitudinal reinforcement 
or dowel action (Collins et al., 1996) and yield 
strength (MacGregor, 1992). 
 
Cracks in concrete can transmit shear forces by 
virtue of the roughness of their interfaces. With 
regard to this roughness, the aggregate particles 
protruding from the crack faces play an impor-
tant role. Low strength concrete has much more 
micro cracking at all stress levels than high 
strength concrete (Carrasquillo et al., 1981) and 
therefore fails with more planes of failure. Fen-
wick and Paulay (1958) also found out that 
there is substantial reduction in shear transmit-
ted by aggregate interlock action in low 
strength concrete since crack widths are in-
creased. 
 
ARTIFICIAL NEURAL NETWORK  
The Artificial Neural Networks (ANNs) appro– 
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Fig.1: Shear transfer mechanism 
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ach is used to predict the shear stress of the 
concrete in this study. An ANN is a mathemati-
cal model that emulates biological neural net-
works. It consists of interconnected groups of 
artificial neurons that process information using 
connectionist approach to computation (Singh 
and Chauhan, 2005). It has the ability to learn 
relationship between input and output provided 
that sufficient data are available for its training. 
It does not require an explicit understanding of 
the mechanism underlying the process, which is 
the main advantage. 
 
The ANN makes use of simple processing units 
connected by links. The processing unit may be 
grouped into three main layers namely input 
layer, hidden layer(s) and output layer. A gen-
eral Topology or Architecture is presented 
schematically in Fig.2. 
 
There may be one or more hidden layers before 
the output layer. Each hidden layer will possess 
an activation function to compute output to the 
proceeding layer. 
 
The strength of any connection between any 
two nodes or neurons is provided by weights. 
Each hidden and output layer processes its in-
put by multiplying each input by its weight and 
sum the product. Weight may be negative im-
plying that the signal is inhibited by the weight. 
The sum is further processed using a non-linear 
transfer function to produce results. The output 
of each intermediate hidden layer turns to be 
input to the following layer. Each processing 
unit can send out only one output although it 
normally receives various inputs. The final out-
put produced is compared to the target (actual 
or desired) output. 
 
The weights used for the feed-forward process 
are adjusted by training the network through 
data set of inputs and outputs. Training the neu-
ral involves an iterative adjustment of the con-
nection weights so that the network produces 
the desired output in response to every input 
signal. Back-propagation network is the most 
common and powerful technique for training 

(Howard, 2002, Sarle, 1994), the error pro-
duced is systematically distributed backwards 
into the network. Figure 3 illustrate summary of 
the forward-feed and back-propagation tech-
nique of learning /training. 
 
EXPERIMENTAL DATABASE 
Existing database that is easily accessible is 
very limited even though many researchers 
have compiled a number of them. This study 
made use of 310 shear test results from differ-
ent sources (Shah and Ahmad, 2007, Hassan et 
al., 2008, Angelakos, 1999, Kwak et al., 2002, 
Cladera and Mari, 2007, Imram and Saeed, 
2007, Russo et al., 2004). Most of the beams 
were rectangular and loading was simply sup-
ported, under four-point and three-point bend-
ing systems. All the beams did not have web 
reinforcement. The major parameters that were 
considered in selecting these beams included 
concrete strength, span to effective depth ratio, 
beam width and depth and amount of longitudi-
nal reinforcement. Moreover, the database of 
test results available provides mainly these five 
parameters. The statistical distributions of these 
influencing parameters are shown in Table1. 
The total number of data was grouped into 
three subsets; a training set of 250 data, a vali-
dation set of 15 data and a testing set of 45 rep-
resenting approximately 80%, 5% and 15% of 
data respectively. The statistics of training, 
validation and testing sets are in good agree-
ment meaning they represent almost the same 
population and influencing parameters are well 
distributed among the three data sets. The train-
ing set captures the extreme values of the pa-
rameter since it has the least minimum value 
and the largest maximum value for each pa-
rameter. 
 
BUILDING THE ARTIFICIAL NEURAL 
NETWORK 
The ANN for this study contained 5 input vari-
ables of concrete compressive strength, fcu(N/
mm2), beam depth, d(mm), beam width b(mm), 
span to depth ratio, a/d and amount of rein-
forcement  p(%). One (1) output of shear stress, 
vu (N/mm2)was desired. A neural network dev- 
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Fig. 2: Schematic drawing of the topology of ANN 
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Fig. 3: Summary of the training of data set 

eloping software called NeuroSolutions (2009) 
was used as the core computational tool for the 
ANN. A multilayer neural network having a 
back-propagation algorithm with a nonlinear 
function was employed. Since nonlinear trans-
form functions can result in a well-trained proc-
ess with back-propagation algorithms, the log-
sigmoid function was used in both hidden and  

output layers. The activation function of the log
-sigmoid and its derivative are asymptotic to 
value 0 and 1.Therefore each input for the 
ANN was divided by a scalar that is slightly 
larger than the largest component in the data-
base so that a normalized input is smaller than 
1.0.This is very important since the ANN is 
very sensitive to absolute magnitudes (Oreta,  

 



Journal of Science and Technology  © KNUST August 2012 

124 

  

 Afrifa et al. 

Table 1: Statistical distribution of influencing parameters 

   (ρ)% a/d fcu d b vu 
  %   (Mpa) (mm) (mm) (N/mm2) 
Training set       
No. of data 250 250 250 250 250 250 
Mean 1.19 3.00 49.95 269.73 206.30 1.84 
Stdv 0.60 1.44 9.03 77.33 134.12 1.24 
Cov 0.50 0.43 0.18 0.29 0.65 0.68 
Min. V 0.35 1.00 22.50 51.00 90.00 0.21 
Max.V 3.06 6.95 74.80 667.50 839.00 9.66 
Validation set       
No. of data 15 15 15 15 15 15 
Mean 1.29 2.64 26.18 261.00 215.00 2.31 
Stdv 0.60 1.20 4.42 111.45 288.96 0.61 
Cov 0.47 0.45 0.17 0.43 1.34 0.26 
Min. V 0.44 1.90 23.00 126.00 90.00 1.43 
Max.V 2.00 2.48 38.00 460.00 839.00 3.53 
Testing set       
No. of data 45 45 45 45 45 45 
Mean 1.23 3.06 39.55 236.40 174.41 1.90 
Stdv 0.58 1.29 15.01 48.88 89.84 1.12 
Cov 0.47 0.42 0.38 0.21 0.52 0.59 
Min. V 0.35 1.00 19.80 126.00 90.00 0.32 
Max.V 2.74 6.90 66.10 307.00 466.00 4.89 

2005).  
 
Training of ANN 
To prevent over-fitting (Sarle, 1994), ANN 
architecture of 1 hidden layer and 2 hidden 
layers are investigated in this study. The num-
ber of nodes/neurons for each layer is varied 
from 2 to 15. Through trial and error, 14 differ-
ent models are created for ANN with 1 hidden 
layer and 210 different models for 2 hidden 
layers. The different ANN topologies or archi-
tectures are identified as ANN followed by the 
number of neurons in each layer. The first and 
last figures of each ANN indicate the number 
of neurons in input and output layers respec-
tively, and others refer to the number of neu-
rons in hidden layers. Each network is trained 
and validated using 10,000 iterations while 
saving the network architecture every100 iter-  

ations. The networks at various iterations are 
evaluated for testing cases.  
 
Selection of best ANN Model 
In determining the best ANN model, error 
measure of the strength ratios (ratio of experi-
mental to predicted shear) of all the models 
were monitored at each stage of training, vali-
dation and testing. Initial selection is made with 
the mean measure that was close to 1.0. Five of 
these models that showed the smallest maxi-
mum error are selected, based on the testing 
data sets. Since error measures of standard de-
viation and the minimum error for the selected 
models were very similar, the criterion of maxi-
mum error measure was employed as it showed 
notable scatter. The five best models selected 
with their corresponding error measures are 
shown in Table 2. The strength of the overall  
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best model, ANN (5791) was measured using 
the least mean and the Pearson product moment 
correlation (R). An R measure of 0.92 indicates 
that the model can explain about 92% of the 
variability in the prediction capability. This 
shows a good generalization of the ANN model 
to predict concrete shear strength.  
 
COMPARISON OF THE ANN SHEAR 
MODEL WITH CONVENTIONAL CODE 
EQUATIONS 
The mechanisms of shear transfer in concrete 
are complex and difficult to model. Therefore 
different researchers employ varying levels of 
modeling ranging from simple empirical equa-

tions to complex nonlinear finite element con-
siderations. The three most common design 
code approaches used by designers in Ghana 
for shear strength of reinforced concrete mem- 
bers and adopted for this research are shown in 
Table 3.  
 
The concrete shear strength obtained from the 3 
conventional code equations are compared with 
that of the best ANN model using some error 
measures. Table 4 provides the mean, standard 
deviation (Stdev), coefficient of variation (cov), 
maximum and minimum strength ratio for the 
experimental to theoretical shear strengths 
(Vexp/Vcode) for the 4 different approaches to 

125 Artificial neural network model...  

                                                       MIN MEAN MAX     STD        R 
 
                  (1)ANN (551)           0.52          1.006 1.82       0.28    0.88 
                 (2)ANN (571)           0.54          0.989 1.61       0.27    0.90 
                  (3)ANN (5651)           0.43          0.999 2.39       0.32    0.91 
                  (4)ANN (5531)           0.42          0.987 1.70       0.30    0.89 
                          (5)ANN (5791)           0.45          0.995 1.90       0.34    0.92 

Table 2: Error measures of five best models 

Table 3: Summary of some current codes of practice 

 

vc: Shear strength provided by concrete; fcu: Concrete compressive strength; d: Effective depth;  
a: Shear span; ρ: Longitudinal reinforcement ratio (As/bwd); As: Amount of longitudinal reinforcement; bw: Web width,  
Vu: Shear force; Mu: External moment; Nu: Axial force; Ac: Cross section of concrete 
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shear prediction using 310 tests results in the 
database. As reported by others (Dopico et al., 
2008, Yang et al., 2008, Russo et al., 2004), the 
mean can be used as a rough measure of con-
servative or unconservative bias of the ap-
proaches on the safety, and the cov can be used 
as an indication of accuracy. The simplified 
ACI 318-05 shear formula gives a mean of 1.51 
and cov of 0.34. ACI which considers only the 
effect of concrete strength on shear strength 
tends to be unconservative as percent longitudi-
nal reinforcement decrease but underestimates 
the shear strength as percent longitudinal rein-
forcement increase as shown in Fig 2a. ACI 
generally provides conservative estimates of 
concrete shear strength for beam depths less 
than 700mm (Fig 2b).  
 
Earlier work (Jung and Kim, 2008) on ACI 
shear prediction of deep beams of depths rang-
ing from 1000-2000mm indicated overesti-
mated predictions. BS 8110 (1997) provides 
slightly better predictions than ACI in terms of 
accuracy of strength ratio with a mean of 1.51 
and cov of 0.23. Figs 2c and 2d indicate that BS 
8110 is conservative in the prediction of con-
crete shear strength for percent longitudinal 
reinforcements up to 2.5 and effective beam 
depths up to 700mm.  EC 2 (2003) prediction 
(Table 4) which has a mean of 1.36 and cov of 
0.31 is generally less biased as compared to 
ACI and BS 8110. Figs 2e and 2f show very 
conservative results in percent longitudinal 
reinforcements less than 2.5 and beam depths 
up to 300mm. In the best ANN model, a 
strength ratio mean of 1.15 and a cov of 0.18 
obtained indicate the best performance of shear 
strength. Contrary to the conventional code 
expressions (BS8110, ACI and EC 2), the ANN 
model leads to a point distribution almost hori-
zontal, close to the ordinate value 1, and within 
a very narrow band (Figs 2g and 2h). Therefore 
the prediction of the experimental shear 
strength value is almost uniformly approximate 
for the 310 beam specimens and quantitatively 
accurate for the ANN code. It can clearly be 
seen from Fig 2g-h that there is no biased trend 
in strength ratios as compared to other appro-   

aches in Fig 2a-f.  
 
EVALUATION OF SHEAR MODELS US-
ING EXPERIMENTAL RESULTS OF 
LOW STRENGTH CONCRETE BEAMS 
In order to evaluate the implications of the vari-
ous models on the prediction of shear strength 
of low strength class concrete, a different data 
set of 26 reinforced concrete beams was used. 
Beams made from different coarse aggregate 
types were selected to cover the various aggre-
gates that may contribute to low shear capacity 
of concrete beams in developing countries. All 
the beams were without web reinforcement 
selected from previous research works (Afrifa, 
2011, Adom-Asamoah et al., 2009) conducted 
at the Department of Civil Engineering, Uni-
versity of Science and Technology, Ghana. Ten 
(10) of the beams were made from phyllite ag-
gregates (P1-P10), twelve (12) of the beams 
were made from normal granite aggregates (G1
-G10, B1-B2), two (2) beams were made from 
weathered granite aggregates (W1-W2) and 
two (2) beams made from recycled concrete 
aggregates (R1-R2) to make up the novel data 
set. The beam design values of the variables 
used to generate the novel data (case study 
beams) cover a reasonable domain of rein-
forced concrete beams span, dimensions, com-
pressive strength, reinforcing steel ratio and 
span to depth ratios. Table 5 presents the de-
scription of beam geometrical properties, mate-
rial properties and experimental failure shear 
strengths. All the beams failed in shear under 
four point bending test. 
 
A comparison of the experimental shear 
strengths of the beams has been made with that 
of the predictions by the 4 models (ANN, ACI 
318-05, BS 8110, 1997 and EC 2, 2003) as 
shown in Fig 3. The ACI shear predictions of 
all the beams were the most conservative of all 
the codes. This is because the ACI shear for-
mula is dependent mainly on concrete compres-
sive strength and therefore tends to produce 
fairly constant shear strength so long as com-
pressive strength remained constant as ob-
served in beams P1-P10 and G1-G10. 
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(a)  ACI code strength ratio vs reinforcement ratio          (b)  ACI code strength ratio vs beam depth          

(c) BS8110 code strength ratio vs reinforcement ratio   (d) BS8110  code strength ratio vs beam depth  

(e) EC2 code strength ratio vs reinforcement ratio   (f) EC2  code strength ratio vs beam depth  

(g) ANN  code strength ratio vs reinforcement ratio   (h) ANN  code strength ratio vs beam depth  

Fig. 2: Strength ratios of 4 code approaches using 310 beams 
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Table 4: Error measures of strength ratios  

   Max Min Mean StDev Cov 

BS8110 2.75 0.85 1.40 0.31 0.23 

ACI 3.88 0.59 1.50 0.51 0.34 

EC2 2.86 0.47 1.36 0.43 0.31 
ANN 1.50 0.80 1.03 0.11 0.11 

Table 5: Description of Beams of Novel data 

 

BEAM 
No. 

BXD          
(mm xmm) 

Length    
(mm) 

Shear span/
eff.depth          

(av/d) 

Long. 
Reinf.       
ρ (%) 

Concrete 
comp.       
fcu (N/
mm2) 

Concrete 
tensile.           
fcr (N/
mm2) 

Exptal 
Shear 

Strength 
(N/mm2) 

P1 140 X 310 2400 2.45 1 23.5 3.4 1.70 
P2 140 X 310 2400 2.45 2 23.5 3.4 1.95 
P3 140 X 265 2000 2.45 1 23.5 3.4 1.96 
P4 140 X 265 2000 2.45 2 23.5 3.4 2.37 
P5 110 X 225 1700 2.48 1 23 3.38 2.26 
P6 110 X 225 1700 2.48 2 23 3.38 2.26 
P7 110 X 184 1500 2.46 1 23 3.38 2.27 
P8 110 X 184 1500 2.46 2 23 3.38 2.61 
P9 90 X 150 1000 2.35 1 23 3.38 2.47 
P10 90 X 150 1000 2.35 2 23 3.38 3.53 
G1 140 X 310 2400 2.45 1 27.1 2.7 1.85 
G2 140 X 310 2400 2.45 2 27.1 2.7 2.15 
G3 140 X 265 2000 2.45 1 27.1 2.7 1.96 
G4 140 X 265 2000 2.45 2 27.1 2.7 2.90 
G5 110 X 225 1700 2.48 1 26.4 3.4 2.35 
G6 110 X 225 1700 2.48 2 26.4 3.4 2.35 
G7 110 X 184 1500 2.46 1 26.4 3.4 2.61 
G8 110 X 184 1500 2.46 2 26.4 3.4 3.07 
G9 90 X 150 1000 2.35 1 26.4 3.4 3.70 
G10 90 X 150 1000 2.35 2 26.4 3.4 4.23 
W1 140 X 230 2000 2.5 1.2 14 3 1.19 
W2 140 X 230 2000 2.5 1.2 14 3 1.75 
B1 140 X 230 2000 2.5 1.2 19.8 3.75 1.75 
B2 140 X 230 2000 2.5 1.2 19.8 3.75 1.82 
R1 140 X 230 2000 2.5 1.2 14.6 3 1.19 

R2 140 X 230 2000 2.5 1.2 14.6 3 1.26 
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As the number of dependent variables increased 
from BS 8110 (3 variables) to EC 2 (4 vari-
ables), the provision of a larger margin of 
safety reduced as shown in Fig 3. The ANN 
model which is the least conservative of all the 
models however gives the most accurate esti-
mate of shear strength. As a result of the high 
uncertainty in concrete shear strength predic-
tion, it is advisable to obtain a conservative 
prediction rather than an accurate but less- con-
servative prediction. The non-conservative na-
ture of the ANN model prediction implies that 
it may not be suitable for conventional design. 
This observation has also been made by other 
researchers (Jung et al., 2008) on ANN shear 
prediction who employed a reduction factor to 
correct the error of non-conservative prediction. 
In that research, the reduction factor was ob-
tained by randomly dividing the non-
conservative prediction into testing and training 
sets via the ANN building procedure.  
 
In this research work, a conservative ANN 
model adequate for design is obtained by im-
posing that the probability of the computed 
strength (ANN model) to exceed the test results 
(provided in Table 4) must be less than 5% (ie 
deriving a characteristic expression).  Therefore 
the design (characteristic) shear strengths are 

obtained by multiplying the ANN results by a 
reduction coefficient r, which is the 0.05 frac-
tile of the corresponding statistical distribution. 
The r coefficient is computed as: 
 
r = AVG-αSTD                 (1) 
 
where AVG = mean strength ratio, 
STD=standard deviation of strength ratio and 
the acceptance constant α=1.645 for a normally 
distributed population of more than 30. Substi-
tuting AVG=1.03 and STD=0.11 from Table 4 
into equation 1, a reduction coefficient r=0.85 
was used to multiply the ANN values. This 
resulted in a conservative ANN curve which 
shows a great improvement in the conservatism 
as compared to the ANN, ACI 318-05, BS 8110 
(1997) and EC 2 (2003) as shown in Fig 3. 
Therefore subsequent predictions of concrete 
shear strength must be made using the ANN 
model multiplied by the reduction coefficient to 
obtain the conservative ANN model. 
 
CONCLUSION 
This paper employs artificial neural networks 
which emulates biological neural networks. A 
database of concrete shear strength for beams is 
used to generate ANN models that predict con-
crete shear strength. Error measures of strength  
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Fig. 3: Evaluation of shear codes using novel data of low strength RC beams 



Journal of Science and Technology  © KNUST August 2012 

ratios were used to select the best ANN model 
which is then compared with 3 conventional 
code expressions. The best ANN model pro-
duced the lowest mean, standard deviation and 
coefficient of variation for test/computed 
strength ratios for 310 beam shear failures im-
plying high accuracy and precision in predic-
tion. When the 4 models were evaluated using 
low strength RC beam data, although the ANN 
was the most accurate, it was less conservative 
compared with the design code equations. 
When conservative prediction is preferred as is 
a requirement for safety in design, the existing 
code equations outperform the ANN model. A 
model reduction factor based on the character-
istic strength concept was used to modify the 
ANN output. The modified ANN model is con-
servative in terms of safety and economy but 
not overly conservative as the conventional 
design equations. The procedure has been auto-
mated such that when new experimental sets 
are added to the database, the model can be 
updated and a new model could be developed. 
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