
ABSTRACT

TRANSMEMBRANE ION AND WATER TRANSPORTS IN ERYTHROCYTE VOLUME 
HOMEOSTASIS: AN OVERVIEW OF THE PHYSIOLOGIC PROCESSES

Igbokwe NA

+ + - -
Background: The intraerythrocytic concentrations of ions (Na , K , Cl  and HCO ) play key roles in 3

maintaining erythrocyte volume homeostasis. Anisosmotic and isosomotic changes of these ion 

concentrations challenge erythrocyte volume to either shrink or swell, thereby sending signals to 

activate regulatory volume mechanisms that are mediated by ion transporters. Ion fluxes directed 

inwardly or outwardly with obliged water movements do restore the erythrocyte volume to its steady 

state. These physiological phenomena prevent the erythrocyte from becoming overhydrated or 

dehydrated with the consequence of intravascular haemolysis or senescent changes associated with 

eryptosis. Objectives: To review the literature on the physiological processes associated with 

transmembrane ion and water transports during erythrocyte volume homeostasis. Method: Offline 

and online libraries were searched with indexing tools using keywords derived from the subject area 

of review. Conclusions: The review has highlighted the physiological concepts involved in  

erythrocyte volume homeostasis in relation to the engaged transmembrane ion and water transport 

systems, which can influence experimental designs to study ion and water channel blockers and 

channelopathies of erythrocytes.
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5 osmotic water flow across the membrane
6

leading to changes in cell volume.  
Continuous swelling of erythrocytes leads to 

7, 8haemolysis  while dehydration causes an 
9,10 

osmotic shock associated with eryptosis
and macrophagic removal of such cells in 

11- 13
reticuloendothelial system.  The volume 
changes are resisted by physiological 
processes that produce changes in cytosolic 
ionic concentration in order to maintain a 

14 steady state in erythrocyte volume. This 
present review was aimed at identifying the 
important physiological processes involved 
in erythrocyte volume homeostasis in 
relation to transmembrane ion and water 
transports. The physiological phenomena 
were explored through extensive literature 

INTRODUCTION
Erythrocytes are produced through erythropoiesis 
whereby the erythrocyte volume is determined 

1,2 
after the nucleus and organelles are eliminated.
The erythrocyte volume estimated as the mean 

3corpuscular volume  is homeostatically guarded by 
the equilibrium of osmolarity in the intracellular 

4 and extracellular compartments. Changes in 
transmembrane osmolarity which create osmotic 
gradient across the membrane automatically causes 
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search in the internet and offline sources, with 
relevant key words, in order to articulate an 
overview of current concepts dealing with 
circumstances associated with erythrocyte 

volume alterations in clinical science. The 
definitions of some of the physiological 
principles used in this review are presented in 
Table 1.

Principle  Definition  

Active Transport  Transport of ion against concentration 

gradient requiring expenditure of 

energy  

 
Donnan Principle  There is electrochemical balance across 

the membrane irrespective of 

intracellular and extracellular ion 

concentrations  

 
Fick’s Law  Flux of ion is directly proportional to 

the concentration gradient  

 
Passive Transport  Facilitated diffusion moving ion from 

fluid of high to low concentration  

 
Osmosensing  Recognizing changes in environmental 

salinity  

 
Regulatory Volume Adjustment  Change in cell size to normalize/rectify 

transient osmotic swelling or shrinking

Table 1: The regulation of cell turgor in response to changes in the osmolarity of the external environment.

Membrane structural composition and 
transmembrane transport pathways
The cell membrane of erythrocytes is made up 
of a lipid bilayer which does not allow free 
movement of molecules and ions across it. The 
lipids in the membrane are mostly 
phospholipids. These amphiphilic (or 
amphipathic) phospholipids consist of a 
hydrophilic, or polar, phosphate-containing 
head group attached to two hydrophobic, or 
n o n p o l a r ,  f a t t y  a c i d  c h a i n s .  T h e  
phospholipids assemble into a sheet or leaflet. 
The polar head groups pack together to form 
the hydrophilic surface of the leaflet, and the 
nonpolar fatty acid chains form the 
hydrophobic surface of the leaflet. Two 
leaflets combine at their hydrophobic surfaces 

1 5  to form a lipid bilayer. The lipid 
compositions of the leaflets constituting a 
single lipid bilayer can differ. Whereas 
phosphatidyl choline is most abundant in the 
outer leaflet, phosphatidyl serine is found 

16almost exclusively in the inner leaflet.

Large integral or transmembrane 
macromolecular proteins consisting of 
many peptide subunits, either singly or in 
groups, form water-filled pores that 
extend across the lipid bilayer of the 
membrane. They create transport 
pathways for molecules and ions across 
the lipid membrane (Figure 1). These 
proteins involved in transmembrane 
transport are either carriers or channels 
having physiological peculiarities. They 
conduct passive or active ion transport.
The passive transport is a facilitated diffusion 

which occurs when ions move from a fluid 

compartment of high ion concentration to 

another having a lower ion concentration 

without expenditure of energy. The inward 

(influx) and outward movements (efflux) of 

ions across the membrane depends on the 

concentration gradient of the ions which can 

be predicted under Fick's law of diffusion 

which states that the flux of an ion across a 

membrane is directly proportional to the 



17 
concentration gradient. The facilitated 

diffusion may occur through ion transport 

systems that are either gated or ungated as 

means of regulation of the transport. The 

gating may be achieved by internal or external 

ligands, mechanosenitive proteins or voltage 

changes in membrane potential (Figure 2).
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Active transport of ions across a membrane 

requires expending energy to drive the ion. There 

are primary, secondary and tertiary active 

transports as well as direct and indirect active 

transports. A direct (primary) active transport 

occurs against the concentration gradient of ions 

where a driven ion is moved from a fluid 

compartment of lower concentration to another of 

higher concentration using energy from the 

dephosphorylation of adenosine triposphate 

(ATP). Indirect active transport of ions takes place 

by transmembrane proteins using energy stored in 

the gradient of a directly-pumped ion. The 

concentration gradient of an ion is established by 

direct active transport and the energy released 

is used to transport another ion. Two types of 

indirect active transports are co-transports 

(secondary active transport) and exchangers 

(tertiary active transport). In co-transport 

(symport), the driving ion and another 

pumped ion or molecule passes through the 

transmembrane protein in the same direction. 

In exchanger (antiport) system, the driving 

ion diffuses through the pump in one 

direction providing the energy for the active 

transport of another ion or molecule in the 

opposite direction (Figure 2).
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Principle  of  ce l lular  osmoregulatory  

balance	
Changes in concentration of solutes either in 
intracellular or extracellular fluid due to 
anisosmotic or isosmotic factors would cause an 
osmotic flow of water to the side of the membrane 

18 with a greater osmotic pressure. Swelling of the 
erythrocyte occurs if the diffusion of water is 
inward while shrinkage results from an outward 

6 diffusion of water. Ionic fluxes associated with 
these water movements are guided by Donnan 
principle to ensure that there is an electrochemical 
balance despite the irregularities in ion 

18 concentrations across the membrane and cell 
volume is maintained at a steady state. 

Osmosensing by erythrocytes
Rapid changes of cell volume are usually caused 
by movement of water across the cell membrane, 
which is driven by hydrostatic and osmotic 
pressure gradients across the cell membrane. 
Erythrocyte swelling and shrinkage exert 
profound effects on intracellular signalling 
mechanisms, which in turn modify a multitude of 
cellular functions including the volume 
regulatory mechanisms. Erythrocytes exposed to 
hypotonic or hypertonic extracellular fluid, 
initially swell or shrink, after which they tend to  
adjust to the original cell volume by regulatory cell 
volume decrease (RVD) or regulatory cell volume 

6increase (RVI), respectively.

Erythrocytes are able to detect volume changes by 
signals picked by sensors that transmit to and 

19
activate various ion regulatory transporters.  The 
signals could be as a result of dilution or macro-

14, 20
molecular crowding of the intracellular mileu,  
changes in ionic strength or concentrations of 
specific ions, and mechanical or chemical changes 

21in the lipid bilayer.

Alteration of steady state volume causes the 
activation of Band 3 protein, an anion exchanger 
(AE ) which activates volume regulatory ion 1

22, 23 channels. Stretching of the membrane also 
activates a mechanosensitive non-selective cation 

24channel, Piezo 1  that is involved in erythrocyte 
25

volume homeostasis.  Piezo 1 is a stretch activated 
cation channel that opens and ultimately 

counteracts the increase in water influx to 
avoid erythrocyte lysis during swelling by 

26 
allowing the influx of calcium which would 

2+ +influence Ca -activated-K  channels (Gardos 
+ 27 - 32channels) to open for efflux of K .

The electrochemical concentration and 
osmotic gradient across the membrane 
activates swelling-sensitive osmolyte 

33 channels and volume sensitive outwardly 
34, 35, 36 

rectifying anion channels (VSOACs) that 
+determine its permeability to and efflux of K  

- 37and Cl .  Kinases act as sensors for 
38

transmitting signals of cell volume change.  
Kinases are inactivated by protein dilution 

+ during cell swelling to facilitate influx of K
-and Cl  and activated by protein crowding 

14 + -during cell shrinkage  to inhibit K Cl  efflux. 
The presence of kinases ensures that effective 
RVI occurs while the presence of kinase 

39-41inhibitors reduces RVI.  Kinases also 
 

mediate phosphorylation of proteinswhich is 
37, 42 ,  43important for ion transport.

Protein phosphatase has been reported to 
44 

activate and also regulate KCl cotransport.
Inhibition of protein phosphatase abolished 

+ swelling activated K transport in human 
44 

erythrocytes. The concentration of oxygen in 
red cells has been reported to affect KCl 

37 , 45cotransport. At low oxygen levels, cells had 
a deactivated KCl co- transporter that was 
observed by cell swelling due to accumulation 

+ + + - 
of K  via the Na /K , Cl cotransporter and 

37 
osmotically obliged water. An increase in 
temperature of the erythrocyte can activate 

46, 47
KCl cotransport.  Changes in intracellular 
pH can also alter ion fluxes and affect KCl 

37 ,  48
cotransport.

Intraerythrocytic ion composition controlled 
by transmembrane ion transport 

+ + - -Na , K , Cl  and HCO  are intra-erythrocytic 3

ions that are osmotically relevant and their 
concentrations maintain volume homeostasis. 
Interspecies and intraspecies differences 
occur in cation transport and in intracellular 

+ +  49, 50 concentrations of Na and K . Erythrocytes 
- + +possess a Cl -dependent, Na -independent K  
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+ -
transport system cotransporting K  and Cl  in a 1:1 
stoichiometry that is independent of membrane 

51 + - 19 + +potential. K -Cl  cotransporters (KCCs), Na -K -
- 52 2+ + 53 

Cl  cotransporter and Ca activated K  channel
+

are present in erythrocytes for transporting K .  
+ +

The coupled movements of Na  and K  across 
erythrocyte membranes are accomplished by a 
membrane-bound enzyme which demonstrates 

+ +
ATPase activity when incubated with Na  and K  

+ + 54-56 
transporting 3Na  and 2K  for each ATP split.
Maintenance of a low intracellular calcium 
concentration is necessary for preserving the 
integrity of erythrocytes. This is achieved by low 
membrane permeability to calcium in the inward 
direction and by an active efflux mechanism by the 

2+ 2+ 57membrane bound enzyme Ca  -Mg -ATPase.  
2+Erythrocytes actively extrude Ca  using a calcium 

2+ 2+pump having Ca  activated Mg  dependent 
ATPase activity. The calcium pump is activated by 

58a calcium binding protein called calmodulin.

Transmembrane water transport through water 
channels
Aquaporin proteins are made up of six 
transmembrane α-helices arranged in a right-
handed bundle with the amino and the carboxyl 
terminal located on the cytoplasmic surface of the 

68-73membrane.  The architecture of the aquaporin 
channel allows water molecules to pass only in 
single file while electrostatic tuning of the channel 
interior controls aquaporin selectivity against any 

74-81
charged species  implying that only water 
molecules pass through the aquaporin water pore 
and transport of any ion as well as protons and 

82- 86
hydroxyl ions is abolished.

Estimation and variation of erythrocyte volume
The erythrocyte volume is assessed by the 
estimation of mean corpuscular volume (MCV) 
which is calculated with packed cell volume and 

87
erythrocyte count.  The MCV can also be 
estimated by the use of volume-sensitive 
automated blood cell counters like the electronic 

88Coulter counter.

During erythrocyte maturation, the size of the cell 
decreases and ratio of cytoplasm to nucleus 
increases with the size of the nucleus diminishing 

89 until it completely disappears at maturation.

Variation in erythrocyte volume could be 
observed when the cell  is  reduced 
(dehydrated) or increased (over hydrated) in 
size probably due to anisosmotic or isosmotic 

6
changes.  The variations could also be caused 

90, 91by membrane ion channel disorders  
leading to an abnormally increased efflux or 
influx of cations and water.

Regulatory volume adjustments in 
erythrocytes
Regulatory volume decrease (RVD): A 
regulatory volume decrease (RVD) of cells is 
brought about by a net loss of cell solute 
together with osmotically obliged water. The 
RVD is achieved by increasing membrane 
permeability to solutes with an outwardly 

+directed electrochemical gradient such as K . 
The RVD occurs with the progressive net loss 

+ -
of cellular K , Cl  and amino acids until the 
reduced cell volume has been attained and net 

92
fluxes cease.

In many cells, swelling leads to the activation 
93

of non-selective cation channels.  These 
channels do not directly serve cell volume 

2+
regulation but allow the passage of Ca , 

2+
which then enters the cells and activates Ca -

+ 93
sensitive K  channels.

+ 2+Stimulation of Na -Ca  exchanger due to 
2+ 2+

parallel extrusion of Ca  by the Ca -ATPase 
28 

was reported in swollen erythrocytes.

Regulatory volume increase (RVI):
+ -Cell shrinkage inhibits K  and Cl  channels, 

93 
preventing cellular electrolyte loss. The 
major ion transport systems accomplishing 
electrolyte accumulation in shrunken cells are 

+ + - 95
the Na -K -2Cl  cotransporter  and the 

+ +Na /H  exchanger. The latter alkalinizes the 
-cell leading to parallel activation of the Cl -

- + -HCO exchanger. The H  and HCO  3 3
+ +exchanged for NaCl by the Na -H  exchanger 

- -
and the Cl -HCO  exchanger are replenished 3

+ +
within the cell from CO . Na -K -ATPase is 2

also activated in RVI to replace accumulated 
+ +  94Na  with K .
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Some cells have been reported not to undergo RVI 
when exposed to hypertonic extracellular fluid. 
But the same cells will show RVD if exposed to 
hypotonic extracellular fluid; and if re-exposed to 
isotonic fluid, they will first shrink and then 
display RVI (secondary RVI or RVI on RVD). The 
inability of these cells to undergo primary RVI 

-
could be due to increased intracellular Cl  

94activity.

Implications in pathophysiology 
Under normal circumstances, erythrocyte volume 
is always homeostatic but certain disorders 
(inherited or acquired) can alter the volume by 
either increasing (overhydrating) or decreasing 
(dehydrating) it resulting in haemolysis or 
eryptosis, respectively.  This may be due to 

96 disorder during erythropoiesis, increased 
97 

concentration of intracellular calcium,  absence of 
98 membrane proteins and mutations of membrane 

99, 100 proteins or alterations in the activities of 
92 , 23

channels that are necessary for RVD and RVI.  

Overhydrated hereditary stomacytoses are caused 
by inherited autosomal genes that trigger an 

+ abnormal increase in Na influx making the 
erythrocyte to be overhydrated. Dehydrated 
hereditary stomacytoses cause an excessive efflux 

+of K . Sickle cell disease, thalassemia, and 
hereditary spherocytosis are genetic disorders 

8, 98 
that cause erythrocytes to be dehydrated. Some 
heavy metals like lead have been reported to alter 

101  
erythrocyte volume. Aquaporins have been 
r e p o r t e d  t o  b e  i n v o l v e d  i n  t h e  

102-
pathophysiology of inflammatory diseases
105 by influencing movement of water alone or 
with either  cerebrospinal fluid or glycerol 

105,106
across membranes  in the gastrointestinal 

107 108 109tract , salivary glands , skin , renal system 
106,110,111 112 

and brain  and altering erythrocyte 
volumes.

Conclusions
Erythrocyte volume is maintained at steady 
state not only by effective fluxes of ions via ion 
channels and carriers, but also by the presence 
of adequate aquaporins that facilitate obliged 
water movement across the membrane. A 
good knowledge of the types and functions of 
transport pathways available for ions and 
water across membranes can influence how 
researchers will design experiments.
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