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Abstract 

Design of robust control system for any system requires model-driven approach. Therefore, it becomes 

imperative to develop a dynamic model suitable for controller design on safety operation of hydropower 

dam for power production in Kanji dam in Nigeria. Model for reservoir flow was developed in MATLAB 

environment using Fuzzy Based Autoregressive Moving Average Exogenous Input (FARMAX) model 

structure in this study. The data used for model development covered a period of ten years (2003-2013). It 

consists of water inflow (WI), water outflow (WO) and spillage (S). WI and S are input variables while WO 

was the output variable. The model obtained using the unsmoothed data with an outlier gave -14.115%, -

0.302 and 610.317 for fit, R2 and RMSE, respectively. Unsmoothed data with no outlier gave -13.802%, -

0.295 and 608.643 corresponding to fit, R2 and RMSE, respectively. The model obtained using the smoothed 

data in the presence of an outlier gave 80.533%, 0.962 and 104.113 for fit, R2 and RMSE, respectively. 

Smoothed data in the absence of outlier gave 81.533%, 0.962 and 99.637 for to fit, R2 and RMSE, 

respectively. FARMAX has the best fit value of 87.8774% when number of rules was equal to 3 with optima 

model order of 3 1 4 3. The model can serve as a decision support system in evaluating the optimal reservoir 

operation policies in real time. 
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Introduction 

The use of hydropower as a renewable energy resource is becoming increasingly popular because of its 

environmental adaptivity, ease of operation and cost-effectiveness for electricity generation. Its operation 

is free of greenhouse emission that causes climate change and fly-ash associated with thermal power plants  

(Salami, et al., 2012; Abdulkadir, et al., 2013; Ahmed, et al., 2014; Priyabrata, et al., 2012). It is important 

to have an effective management system for hydropower reservoirs for improved electric power supply and 

this can only be achieved when there is sufficient understanding of the existing interactions between 

reservoir variables and energy generation. Improved electric power supply to consumers can bring about an 

increase in the domestic product of the country and improved the standard of living (Nwobi-Okoye and 

Igboanugo, 2013). Abdulkadir, Salami, Anwar, and Kareem, (2013) pointed out that Nigeria is blessed with 

seventy micro dams, one hundred and twenty-six mini dams and eighty-six small sites along with numerous 

river systems that can be used to develop hydropower plants.  

Kanji hydropower station was commissioned in 1968 with the installed capacity of 320MW and by 1978; 

the station had 8 plants with a capacity of 760 MW  (Jimoh, 2008). In Kanji hydropower station, a visible 
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problem is the variability in water level and consequent variation in electric power outputs from the 

generators. According to Tangirala, (2015) the major hydropower reservoir variables affecting the energy 

generation were reservoir inflow, storage, reservoir elevation, turbine release, net generating head, tailrace 

level and losses due to evaporation. The relevance of these variables varies from month to month and during 

low flows, the variables are more significant in power generation  (Abdulkadir, et al., 2013). The reservoir 

inflow parameters which comprise of peak inflow, average inflow and minimum inflow, largely determine 

the amount of water that enters into the reservoir. The inflows in turn control the level of water in the 

reservoir, the pressure head and the reservoir storage balance. Also, the outflow parameters comprising of 

peak outflow, minimum outflow and average outflow are crucial to reservoir balance, the reservoir useful 

life and reservoir discharge  (Ifabiyi, 2011). Kanji hydropower station is characterized by seasonal and 

inter-annual variations of inflows leading to two distinct peaks called black (December or January) and 

white (August or September) floods (Nwobi-Okoye and Igboanugo, 2013). Besides, reservoir sedimentation 

of solid particles causes a reduction in capacity, false water level and aids the occurrence of flooding  

(Salami, et al., 2012).  

 

In order to provide power at rated frequency and voltage, various control systems are required by the 

hydropower generation plant. Voltage is maintained within the prescribed limit by the control of excitation 

of the generator while that of frequency is maintained by removing mismatch between generation and load 

demand due to the river flow and head through a turbine. Power can be generated at the desired rate by 

controlling flow through the turbine while dams are maintained safely through controlling spillway gates  

(Priyabrata, et al., 2012). The design of a controller for any system requires a model-driven approach which 

must be simple but adequate for the system of interest Zeigler et al., (2017). Therefore, it becomes crucial 

to develop a dynamic model that establishes an input-output relationship for the design of a robust controller 

for the safe operation of hydropower dam for power production in Kanji dam in Nigeria. 

 

Different soft computing techniques have been used in recent times to model hydropower reservoir 

variables affecting energy generation such techniques include Mixed Integer Programming, Dynamic 

Programming, Stochastic Modeling, Nonlinear Approach and Successive Linear Programming. The 

nonlinear method for solving hydrogenation scheduling showed good results and is high in precision and 

execution time for large scale systems. In this work, a dynamic model for reservoir flow prediction for the 

Kanji hydroelectric station is presented. The model was developed by using Fuzzy Based Autoregressive 

Moving Average Exogenous Input (FARMAX) model structure. The data used consist of water inflow 

(WI), water outflow (WO) and spillage (S). WI and S were used as input variables while WO as the output 

variable. The model can be used to design an adaptive control scheme to regulate water outflow from the 

reservoir to the power plant in the presence of disturbance (inflow stream) by using spillage as a 

manipulated variable for safe operation and regular supply of electricity. 

 

Methodology 

The study area 

Kanji hydropower reservoir in Nigeria is located in the lower Niger basin majorly for hydroelectric power 

generation. The Niger River, in which the Kanji dam impounds, is the third-longest river in Africa after the 

Nile and Congo/Zaire Rivers with a total length of about 4200 km and an active catchment area of just 
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about 1.5 million km2. It stretches across Benin, Burkina Faso, Cameroon, Chad, Guinea, Ivory Coast, Mali, 

Niger, and Nigeria. Kanji Dam was constructed in 1969 across the River Niger on Kanji Island to impound 

water for electricity generation.  Kanji Hydro Electric Power PLC, with an installed capacity of 760 MW 

and provisions for expansion to 1156 MW, is Nigeria’s largest hydropower station  (Abdulkadir, et al., 

2013). 

 

The location is between the latitudes 9°50’ N and 10°35’N and longitudes 4°26’E and 4°40’E. The height 

of the dam from its toe to the crest is 65.5 m, its length is 135 km and the width at its widest point is 30 km. 

The maximum tail water elevation is 104m (341ft), the minimum headwater elevation at which the plant 

can operate is 132m, the reservoir surface area is about 1270 km2 and the total storage capacity is 15 billion 

cubic meters (Adebayo and Bolaji, 2014; Nwobi-Okoye and Igboanugo, 2013). In compliance with the 

international law on dams across international rivers, Kanji dam has two navigational locks (the upper and 

lower locks) opened for the passage of barges or boats from the upstream to the downstream of the dam  

(Nwobi-Okoye, et al., 2013)) in predicting water levels at Kainji dam using Artificial Neural Networks) 

 

Due to dam construction, Kanji Lake was formed to acts as a reservoir for the dam. The lake is 136 km long 

and characterized by two flooding seasons, the white flooding (around July) and black flooding (arrives in 

December). The white flooding is due to the inflow of flood into the reservoir from rains within the 

catchment areas of the river within Nigeria. The Black flooding is a result of the inflow of flood into the 

reservoir from rains in the catchment areas of the river outside Nigeria such as Guinea, Mali, Niger, etc. 

(Nwobi-Okoye, et al., 2013),2013) 

 

Ten (10) -year daily water flows data were obtained from Kanji Hydroelectric Power Company PLC, Kanji, 

New Bussa, and Niger State, Nigeria. The data were used to model the daily water outflow from given 

inflow and spillage using Takagi-Sugeno Fuzzy System. The “C-means clustering” and recursive least 

squares were used to train the premises and consequents parts of the Takagi-Sugeno fuzzy system 

respectively.  

 

Data pretreatment 

The data collected, which covered a period of 10 years (2003-2013), include reservoir inflow (m3/s), 

reservoir outflow (m3/s) and spillage (m3/s). The data were subjected to quality checks and pre-treatment 

steps before presenting it to the model estimation algorithms. Pre-treatment involves pre-filtering, removal 

of non-zero means, trends/drifts, outliers and filling of missing data and transformations of the data because 

modeling requirements demand consistent or efficient estimates (e.g., stationary).  

 

The missing data were filled by using the approach of linear interpolation and matching patterns. Linear 

interpolation was used between the last good measurement and the next first good measurement while in 

the matching pattern approach; a similar pattern in the dataset was copied to the missing time frame. The 

data values that do not appear to be consistent with the rest of the data were removed by calculating the 

mean and the standard deviation of each data column in the matrix. In this case, an outlier was defined as a 

value that is more than three times the standard deviations. Smoothing of data was achieved by using locally 

weighted scatter plot smooth (LOWESS). In this method, each smoothed value was determined by 
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neighboring data points defined within the span. The span was determined as 10% of the total number of 

data points in the dataset. A regression weight function was defined for the data points contained within the 

span using a linear polynomial. The weights are given by the tricube function shown below. 

𝑤1 = (1 − |
𝑥−𝑥𝑖

𝑑(𝑥)
|
3
)
3

               (1) 

x is the predictor value associated with the response value smoothed, xi are the nearest neighbors of x as 

defined by the span, and d(x) is the distance along the abscissa from x to the most distant predictor value 

within the span. The characteristics of the weights are that the data point smoothed has the largest weight 

and the most influence on the fit while the data points outside the span have zero weight and no influence 

on the fit. 

Model development 

In this research, Autoregressive Moving Average Exogenous Input (ARMAX) structure was used. It has 

the following formulations: 

 

𝑦[𝑘 + 1] =  
𝐵1(𝑞

−1)

𝐴(𝑞−1)
𝑢1[𝑘] +

𝐵2(𝑞
−1)

𝐴(𝑞−1)
𝑢2[𝑘] + 

𝐶(𝑞−1)

𝐴(𝑞−1)
𝑒[𝑘]        (2) 

where 𝑢1  and 𝑢2 are input sequences that represent reservoir inflow (m3) and spillage (m3), respectively, 𝑦 

is the output sequence representing reservoir outflow (m3), 𝑒(𝑘) is white noise sequence with zero mean 

value and variance 𝜎2, i.e., 𝑒(𝑘)~𝑁(0, 𝜎2). The polynomials A, B, and C are defined in terms of the 

backward shift operator (Tangirala, 2015) as follows:-. 

𝐴(𝑞−1) = 1 + 𝑎1𝑞
−1 +⋯+ 𝑎𝑛𝑎𝑞

−𝑛𝑎

 𝐵1(𝑞
−1) = 𝑏10 + 𝑏11𝑞

−1 +⋯+ 𝑏1𝑛𝑏1𝑞
−𝑛𝑏1

𝐵2(𝑞
−1) = 𝑏20 + 𝑏21𝑞

−1 +⋯+ 𝑏2𝑛𝑏2𝑞
−𝑛𝑏1

𝐶(𝑞−1) = 𝑐0 + 𝑐1𝑞
−1 +⋯+ 𝑐𝑛𝑐𝑞

−𝑛𝑐
}
 
 

 
 

                             (3) 

Where: 

𝑎1… 𝑎𝑛𝑎 are the parameters associated with number (𝑛𝑎) of past output, y used in forming 

regressor variables 

𝑏11… 𝑏1𝑏𝑛1 are the parameters associated with number (𝑛𝑏1) of past input, 𝑢1  used in forming 

regressor variables 

𝑏21… 𝑏2𝑏𝑛2 are the parameters associated with number (𝑛𝑏2) of past input, 𝑢2 used in forming 

regressor variables 

The vector [𝑛𝑎  𝑛𝑏1  𝑛𝑏2 𝑛𝑐] defines the order of the model 

 

The nonlinear variance of Equation (2) was defined according to: 

𝑦(𝑘 + 1) =   𝐹(𝑦(𝑘)…𝑦(𝑘 − 𝑛𝑎 + 1),     𝑢1 (𝑘)…𝑢1 (𝑘 − 𝑛𝑏1 + 1), 𝑢2(𝑘)…𝑢(𝑘 − 𝑛𝑏2 +

1), 𝑒(𝑘)…𝑒(𝑘 − 𝑛𝑐 + 1))             (4) 
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The function 𝐹(. ) was accounted for by using Takagi-Sugeno (TS) fuzzy system approximated as Multi 

Input Single Output (MISO) TS fuzzy system according to: 

𝑅𝑖:    𝐼𝐹    𝑍𝑖 𝑖𝑠 𝐹
𝑖
1 𝐴𝑁𝐷…  𝐴𝑁𝐷 𝑍𝑣 𝑖𝑠  𝐹

𝑖
𝑣 

𝑇𝐻𝐸𝑁  𝑦𝑖(𝑘 + 1) =  𝑎𝑖1 𝑦(𝑘) + ⋯+ 𝑎𝑖𝑛𝑎 𝑦(𝑘 − 𝑛𝑎 + 1) + 𝑏𝑖11𝑢1(𝑘)…+ 𝑏𝑖1𝑛𝑏1𝑢1(𝑘 − 𝑛𝑏1 +

1),+𝑏𝑖21 𝑢(𝑘) + ⋯+ 𝑏𝑖2𝑛𝑏2𝑢2(𝑘 − 𝑛𝑏2 + 1) + 𝑐𝑖1 𝑒(𝑘)…+ 𝑐𝑖𝑛𝑐 𝑒(𝑘 − 𝑛𝑐 + 1)        (5) 

 

Where: 

𝑅𝑖 is the 𝑖𝑡ℎ fuzzy inference rule, 

𝑎𝑖1 , … , 𝑎𝑖𝑛𝑎 , 𝑏𝑖11, … , 𝑏𝑖1𝑛𝑏1, 𝑏𝑖21 , … , 𝑏𝑖2𝑛𝑏2, 𝑐𝑖1 , … , 𝑐𝑖𝑛𝑐  are the consequent parameters associated with 

the model, and 𝒛(𝒌) is regressor vector which is given as: 

𝒛(𝑘) = [𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛𝑎 + 1), 𝑢1(𝑘 − 1),… , 𝑢1(𝑘 − 𝑛𝑏1 + 1), 𝑢2(𝑘 − 1),… , 𝑢2(𝑘 − 𝑛𝑏2 +

1), 𝑒(𝑘),… , 𝑒(𝑘 − 𝑛𝑐 + 1)].  

         

𝐹𝑖𝑗  (𝑗 = 1,2, … , 𝑛) is the fuzzy set which was represented by a membership function, 𝜇𝑗
𝑖 and n defines the 

overall order of the model and equals to the sum of the elements in vector[𝑛𝑎  𝑛𝑏1  𝑛𝑏2 𝑛𝑐].The 

membership functions used in the characterization of each fuzzy set were Gaussian membership functions. 

Gaussian membership function was adopted to reduce the effect of noise in the signal. It has low sensitivity 

to small changes in input parameters than the singleton membership function (Nafisi, Eghbal, Motlagh and 

Yavari, 2011). The two parameters that characterized Gaussian membership functions as shown in Equation 

6 are the center, 𝑐 and the width, 𝜎 

 

𝜇𝑗
𝑖 = exp [−

1

2
(
𝑢𝑗−𝑐𝑗

𝑖

𝜎𝑗
𝑖
)
2

]        (6) 

The parameters of the premise part of the fuzzy rules and the number of the rules were determined by fuzzy 

C- mean clustering whiles the parameters of the consequent part were determined by the recursive least 

square (RLS) technique. A crisp output was chosen using the center of each of the output membership 

functions.  

 

The Defuzzification strategy employed to provide a means to choose a single output is the center of gravity 

(COG) given in Equation (7).  COG was chosen as a defuzzifier to allow smooth and continuous changes 

in the output parameters ( Karray and De Silva, 2004).  

 

𝑦 =

∑ ∏ exp (−
1

2
𝑛
𝑗=1 (

𝑧𝑗(𝑘)−𝑐𝑗
𝑖

𝜎𝑗
𝑖 )

2

𝑔𝑖(𝑍(𝑘))
𝑅
𝑖=1

∑ ∏ exp (−
1

2
𝑛
𝑗=1 (

𝑧𝑗(𝑘)−𝑐𝑗
𝑖

𝜎𝑗
𝑖 )

2

𝑅
𝑖=1

                           (7)  

Where: 

𝑔𝑖(𝑧(𝑘)) = 𝑎𝑖1 𝑦(𝑘) + ⋯+ 𝑎𝑖𝑛𝑎 𝑦(𝑘 − 𝑛𝑎 + 1) + 𝑏𝑖11𝑢1(𝑘) + ⋯+ 𝑏𝑖1𝑛𝑏1𝑢1(𝑘 − 𝑛𝑏1 + 1) +

𝑏𝑖21 𝑢2(𝑘) + ⋯+ 𝑏𝑖2𝑛𝑏2𝑢2(𝑘 − 𝑛𝑏2 + 1) + 𝑐𝑖1 𝑒(𝑘)…+ 𝑐𝑖𝑛𝑐 𝑒(𝑘 − 𝑛𝑐 + 1)                (8) 



Development of Fuzzy Based Autoregressive Moving Average Exogenous Input Model for Water Flow  

in Nigerian Kanji Hydro-Power Dam 

The normalized membership function𝜉 is determined according to 

𝜉𝑖(𝑧(𝑘)) =

∏ exp (−
1

2
𝑛
𝑗=1 (

𝑧𝑗(𝑘)−𝑐𝑗
𝑖

𝜎𝑗
𝑖

)

2

∑ ∏ exp (−
1

2
𝑛
𝑗=1 (

𝑧𝑗(𝑘)−𝑐𝑗
𝑖

𝜎𝑗
𝑖

)

2

𝑅
𝑖=1

               (9) 

Equations (8) and (9) were combined to obtain 

𝑦 = ∑ 𝑎𝑖1 𝜉𝑖(𝑧(𝑘))𝑦(𝑘)
𝑅
𝑖=1 +⋯+ ∑ 𝑎𝑖𝑛𝑎 𝜉𝑖(𝑧(𝑘))𝑦(𝑘 − 𝑛𝑎 + 1)

𝑅
𝑖=1 +

∑ 𝑏𝑖11𝜉𝑖(𝑧(𝑘))
𝑅
𝑖=1 𝑢1(𝑘) + ⋯+ ∑ 𝑏𝑖1𝑛𝑏1𝜉𝑖(𝑧(𝑘))𝑢1(𝑘 − 𝑛𝑏1 + 1)

𝑅
𝑖=1 +

∑ 𝑏𝑖21𝜉𝑖(𝑧(𝑘))𝑢2(𝑘)
𝑅
𝑖=1 +⋯+∑ 𝑏𝑖2𝑛𝑏1𝜉𝑖(𝑧(𝑘))

𝑅
𝑖=1 𝑢2(𝑘 − 𝑛𝑏2 + 1) + ∑ 𝑐𝑖1𝜉𝑖(𝑧(𝑘))𝑒(𝑘)

𝑅
𝑖=1 +

⋯+ ∑ 𝑐𝑖𝑛𝑐𝜉𝑖(𝑧(𝑘))𝑒(𝑘 − 𝑛𝑐 + 1)
𝑅
𝑖=1                   (10) 

   

Equation (10) in compact form gives: 

 

𝑦̂(𝑘) = 𝜽𝑻(𝑘)𝝃(𝑧(𝑘))                     (11) 

 

in which 𝝃(𝑧) is a vector containing convolution regressor variables and normalized membership function 

as given in Equation (9) and 𝜽 is a vector of unknown parameters. 

 

Parameter estimation 

Recursive least squares (RLS) algorithm was employed to determine unknown parameters of the model 

(parameters of the consequent part). This is because it gives faster convergence and smaller errors 

(Paleologu, Benesty, and Silviu, 2008).  It also offers a variation profile for the adaptation gain and saves 

the computation time by using the results obtained at a time (𝑘 − 1) to get the estimates at time𝑘. Recursive 

version of the least square method where the vector of parameters was updated in each step is given 

according to general formula (Landau et al., 2011) 

 

[
𝑁𝑒𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑣𝑒𝑐𝑡𝑜𝑟)
] = [

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑣𝑒𝑐𝑡𝑜𝑟)

] + [
𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑔𝑎𝑖𝑛
(𝑚𝑎𝑡𝑟𝑖𝑥)

] × [
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣𝑒𝑐𝑡𝑜𝑟)
] ×

[
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑐𝑎𝑙𝑎𝑟)

]            (12) 

 

The unknown parameters of the model were determined by minimizing the sum of the square of the 

difference between the actual and predicted output values with possible weighting that measures the degree 

of precision presented in Equation (13). Z 
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𝐽𝑁 = 𝑧   ∑ [𝑦(𝑘) − 𝜽𝑻(𝑘)𝝃(𝒛(𝑘))]𝑁
𝑖=1

2
         (13) 

Where: 

𝑦(𝑘)is the process output in  𝑘‐ 𝑡ℎ step (outflow stream), 𝜽𝑻(𝑘)𝝃(𝒛(𝑘)) is the predicted process output. 

Therefore, Egquation (12) is translated to Equation (14) as follow: 

𝜽̂ (𝑘) = 𝜽̂(𝑘 − 1) + 𝑷(𝑘)𝝃(𝑘)𝜀(𝑘)         (14) 

In Equation (14), 

𝜀(𝑘) = [𝑦(𝑘) − 𝜽̂(𝑘 − 1)𝝃(𝑘)]; 

𝑷(k) is the covariance matrix or adaptation gain matrix defined according to  

𝑷(𝑘) =
1

𝜆
((𝑰 − 𝑷(𝑘 − 1)𝝃(𝑘)(𝑘)(𝜆𝑰 + 𝝃(𝑘)(𝑘)𝑷(𝑘 − 1)𝝃(𝑘)−1(𝑘))𝝃(𝑘)𝑇(𝑘))𝑷(𝑘 − 1) (15) 

  𝐼 is the identity matrix and𝜆 is the forgetting factor. 

Model order selection 

The selection of orders of the model is essential whenever a data-driven model is being developed. Model 

order was selected by starting with a low order of vector [1, 1, 1, 1]. The equal increments were made on 

each element of the vector until the best fit was obtained. To avoid overfitting and large modeling error, the 

appropriate model order was determined by the factorial method. 

Model assessment and validation 

Goodness-of-predictions were measured using the normalized root mean square (NRMS) expressed in a 

percentage called fit, root mean square error (RMSE) and the coefficient of determination denoted by R2 

defined according to 

 

               fit = 100 (1 −
‖𝒚̂−𝒚‖2

‖𝒚−𝒚̅‖2
)         (16) 

 

RMSE =
‖𝒚−𝒚̂‖2

√𝑵
          (17) 

 

𝑅2 = 1 −
‖𝒚̂−𝒚‖2

2

‖𝒚−𝒚̅‖𝟐
𝟐         (18) 

Results and Discussion  

The proposed inflow and spillage prediction, Fuzzy-ARMAX (FARMAX) model was developed 

according to the procedure shown in sub-section 2.2-2.6.  All the development made in this study was 

implemented with the aid of the Fuzzy logic toolbox in MATLAB. 
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 Data pretreatment  

Figure 1 showed the plot of the segment of the raw data used for the modeling, the gap on the profile 

indicates that some data were missing. Figure 2 shows the same segment of raw data when the data were 

filled up. Figure 3 shows the profile of smoothed data and the original data. The smoothed data represent 

the original data without process noise and as seen in the figure, the two curves follow the same pattern 

indicating that smoothened data is closer to the given data. The impact of smoothing and outlier removal 

on the fitness of data is presented in Table 1. Root mean square error (RMSE), correlation coefficient 

(R2) and fit were used as performance measures. The worst fit was obtained when the data was not 

smoothed in the presence of an outlier as indicated by negative values of performance measures. No 

significant improvement was observed when the outlier was removed without data smoothing as 

indicated by negative values of performance measures. Tremendous improvement was achieved when 

the data was smoothed with no removal of outliers. The result gave an RMSE value of 104.1127, R2 

value of 0.9621 and a fit value of 80.5333%. There was further improvement when outliers were 

removed and data were smoothed.  The result gave an RMSE value of 99.6368, R2 value of 0.9621 and 

a fit value of 81.5333%. The result showed that the best fit was obtained when data were smoothed with 

no outlier.  

 

Figure 1: Raw data showing some missing data                        Figure 2: Profile of completely filled data 
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       Figure 3: Profile of smooth data and original data 

Table 1: Impact of smoothing and outlier on the fitness of data 

RMSE R2 Fit Remark 

610.3174 -0.3022 -14.115 Outlier and no smoothing 

608.6432 -0.2951 -13.802 No outlier and no smoothing 

104.1127 0.9621 80.5333  Outliers with data smoothed 

99.6368 0.9621 81.5333 No Outlier with data smoothed 

 

Identification of time lag  

Cross-correlation plots between output reservoir flow and the inputs (reservoir inflow and spillage) were 

shown in Figures 4 and 5 respectively.  The peaks were obtained at 𝑘 = 0 on both plots meaning that there 

was no estimated time lag between the process input and the corresponding output. The horizontal dotted 

lines are confidence intervals with a probability of 0.99 (99%) corresponds to a 2.58 standard deviation. 

The vertical lines represent the magnitude of correlation at different time lags. The time lag of a system 

corresponds to the time where there is the longest vertical line  (Brian, et al., 2006). As can be observed in 

Figures 5 and 6, the longest vertical line is at k =0 for both inputs, implying that there was no estimated 

time lag between both inputs and the output. 
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Figure 4: Cross-correlation for process output            

 

  Figure 5: Cross-correlation for reservoir inflow and spillage 

Effect of cluster centre or number of rule 

The relationship between the fit and numbers of clustering was shown in Figure 6. The clustering was varied 

between 2 and 10. One clustering was avoided because there was a loss in the rank of the working matrix 

when one clustering was used. The value of fit increased when the clustering number was increased from 2 

to 3. There was a drop in the value of fit with further increase clustering number with some undulating 

moves. The best fit was obtained when the number of clustering was equal to 3. This value was used as the 

number of rules in the fuzzy system for modeling.  
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Figure 6: Effect of number of clustering on model performance 

Order of the model 

The numbers of past output, past input 1, past input 2 and past error represented by 𝑛𝑎, 𝑛𝑏1, 𝑛𝑏2and 𝑛𝑐, 

respectively form regressor variable constituted the ARMAX model order. The noise e(t) used throughout 

the identification process is Gaussian white with zero mean and variance σ2 = 0.0001. When these numbers 

were varied equally from (1 1 1 1) to (4 4 4 4) and model performance was measured in terms of fit, the 

results obtained are presented in Figure 8.  Model structure (1 1 1 1) gave very poor model fitting as 

indicated by a negative value of fit. There was an improvement in fitting with variation between (2 2 2 2) 

and (3 3 3 3) and between (3 3 3 3) and (4 4 4 4) there was a drop in the fit value indicating that increasing 

some value beyond 3 led to poor model performance. It is pertinent to note that increasing model order will 

increase the complexity of the model which may lead to a model with high demand for computational 

resources and over fitting.  When final model order selection was selected with the help of factorial design 

implemented inexpert design software, the results obtained are shown in Figure 7. The best fit (87.8774 %) 

was obtained for model order structure (3 1 4 3). This means that three (3) pasts outflow, one (1) past inflow, 

four (4) past spillage and three (3) past error values (residual) will be needed in predicting the current 

outflow. This observation may not be out of place considering the natural occurrence of the system under 

consideration. The model will be good for scheduling policy in the power generation to plan ahead of 

shortfall in water volume and for dam diagnosis and retrofitting to avoid flooding during the period of heavy 

rain. However, model order reduction may need to be carried out on the model before it is suitable for real-

time applications like control, fault detection systems and online optimization to reduce computational 

resources. 
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Figure 7: Effect of model order on model performance 

Fuzzy Based Autoregressive Moving Average Exogenous Input (FARMAX) Model 

The FARMAX model obtained consists of three rules (R=3). The entire set of fuzzy rules for the FARMAX 

model with 𝑖 = 1,2,3 is of the form: 

𝑅𝑢𝑙𝑒𝑖: 𝐼𝐹 𝑦(𝑘 − 1) 𝑖𝑠 µ𝑦1
𝑖  𝑎𝑛𝑑 𝑦(𝑘 − 2) 𝑖𝑠 µ𝑦2

𝑖  𝑎𝑛𝑑 𝑦(𝑘 − 3) 𝑖𝑠 µ𝑦3
𝑖  𝑎𝑛𝑑 𝑢1 𝑖𝑠 µ𝑢11

𝑖  𝑎𝑛𝑑 𝑢2(𝑘 −

1) 𝑖𝑠 µ𝑢21
𝑖 𝑎𝑛𝑑 𝑢2(𝑘 − 2) 𝑖𝑠 µ𝑢22

𝑖  𝑎𝑛𝑑 𝑢2(𝑘 − 3) 𝑖𝑠 µ𝑢23
𝑖  𝑎𝑛𝑑 𝑢2(𝑘 − 4) 𝑖𝑠 µ𝑢24

𝑖  𝑎𝑛𝑑 𝑒(𝑘 −

1)𝑖𝑠 µ𝑒1
𝑖  𝑎𝑛𝑑 𝑒(𝑘 − 2) 𝑖𝑠 µ𝑒2

𝑖  𝑎𝑛𝑑 𝑒(𝑘 − 3) 𝑖𝑠 µ𝑒3
𝑖   Then 𝑓 = 𝑎𝑜𝑖 + 𝑎1𝑖𝑦(𝑘 − 1) + 𝑎21𝑦(𝑘 − 2) +

𝑎31𝑦(𝑘 − 3) + 𝑏11𝑢1(𝑘 − 1) + 𝑏21𝑢2(𝑘 − 1) + 𝑏22𝑢2(𝑘 − 2) + 𝑏23𝑢2(𝑘 − 3) + 𝑏24𝑢2(𝑘 − 4) +

𝑐1𝑒(𝑘 − 1) + 𝑐2𝑒(𝑘 − 2) + 𝑐3𝑒(𝑘 − 3)  

The membership function used in the premise part of the rule 𝑅𝑢𝑙𝑒𝑖 is given 

𝜇𝑖(𝑥, 𝑘) = exp (−
1

2
(
𝑥(𝑘)−𝑐𝑖

𝜎𝑖
)
2
)              (19) 

The values of parameters, sigma (𝜎𝑖) and cluster center (𝑐𝑖)with𝑖 = 1,2,3, of the membership 

function given by Equation (19) are presented in Table 2.  Variations are observed for all the parameters at 

the earlier time but with time progression the value of some parameters level out to remain constant while 

other parameters maintain their variation trends. Variations are more pronounced in rule 1 and rule 2 than 

in rule 3. The variations in parameters in the time evolution have established that the dam is characterized 

by complex and uncertain dynamics  (Abdulkadir, et al., 2013). 

Model validation 

The developed model was validated using a dataset different from the one used in developing the model to 

give proper calibration to the model. Out of 4000 datasets collected, 2500 dataset was used for training 

while the rest was used for validation of the model. Visual assessment from Figure 8 indicated that there is 

a close match between reservoir outflow and predicted outflow. This also indicated the good predictive 

power of the model. The RMSE (81.3432), fit (87.8774%) and correlation coefficient (0.9901) were 

obtained in the model validation task and all these indicate good predictive power of the model.  
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Table 2: Parameters of membership functions 

Width of the membership function (𝜎) Cluster Center (C) 

  Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3 

y(k-1) 3035.320 18587.604 5393.599 1387.979 4113.550 1348.439 

y(k-2) 3031.980 18562.970 5392.696 1392.196 4107.217 1349.782 

y(k-3) 3052.686 18386.769 5374.071 1429.791 4066.721 1396.333 

u1(k-1) 135.259 140.763 139.419 6.029 1.048 3.739 

u2(k-1) 207.977 2599.599 330.097 114.221 668.598 146.258 

u2(k-2) 207.787 2590.302 329.782 114.307 666.453 146.099 

u2(k-3) 209.207 2555.999 328.988 116.286 658.721 147.518 

u2(k-4) 211.928 2506.110 327.875 120.975 648.653 150.888 

e(k-1) 66.545 54.986 67.385 33.310 6.795 37.853 

e(k-2) 66.530 55.051 67.581 33.154 6.795 37.559 

e(k-3) 66.331 55.968 67.820 33.368 6.657 37.821 

 

 

 Figure 8: Reservoir flow model 

 

Conclusion 

A model for reservoir flow prediction for the Kanji hydroelectric station was developed using the ARMAX 

model structure. A fuzzy inference system paradigm in a recursive least square manner was adopted to 

accommodate uncertainty in the data used for the model development. Forgetting factor, the number of 

fuzzy rules were found to play a major effect in arriving at a good predictive model. The model structure 

that gave the best performance metrics (RMSE=81.3432, fit=87.8774% and correlation coefficient=0.9901) 

has a model order structure (3 1 4 3).  The high order justified the complex nature of the dam. The model 

will be good for scheduling policy in the power generation to plan ahead of shortfall in water volume and 
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for dam diagnosis and retrofitting to avoid flooding during the period of heavy rain. The model will 

consequently serve as a decision support tool to enhance the quality and quantity of power being generated 

and in the process of planning and management of a water resources system. However, the model will not 

be useful in its present form for a real-time operation like water flow control and real-time fault detection 

systems due to its high model order. The future work will target model order reduction. 
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