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Abstract 

Ordered models, such as the Ordered Logistic regression model, are used when the 

dependent variable of a model is categorical and ordinal. However, the literatures on 

Ordered models often skip the derivational steps of the model, which may make 

researchers apply the model as a dogma without knowing how the output of the model 

is expected to be. This study provides a detailed breakdown of the derivational steps 

of the model; the Proportional Odds assumption; the marginal effects and some 

practical examples, with a view to helping researchers have a better understanding of 

the output of the model when used in their studies. 
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1. Introduction 

Econometric models such as Ordered Logit and Ordered Probit models are used when 

the dependent variable is categorical (with more than two outcomes) and has ranking 

(Long & Freese, 2006). For instance, in a model whose dependent variable has three 

outcome categories, such that category   is less than category  , and category   is less 

than category  , then the parameters of such type of a model can be estimated using 

an Ordered Logit or Probit model (Long, 1997; Orme & Combs-Orme, 2009). 

Although both Ordered Logit and Probit models give similar results, some researchers 

often prefer Ordered Logit model due to the simplicity of its mathematical procedures 

(Gujarati & Porter, 2009), and hence the focus on it in this study. 

The size, not the sign, of the output of an Ordered Logit model is normally a crude 

estimate, which is not interpretable in its crude form unless it is standardized by 

transforming it into marginal effects, odd ratios, or predicted probabilities (Long & 

Freese, 2006). According to Leeper (2017), marginal effect provides the most unified 

and intuitive way of interpreting discrete outcome models, such as the Ordered Logit 

model. However, before the output of the model is accepted as being valid, the data 

must meet the Proportional Odds assumption or Parallel line regression assumption 
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(McCullaph, 1980). Therefore, in order to fulfill the conditions of the model (Ordered 

Logit), and to be able to analyze and interpret the output of the model, researchers 

need to have a clear understanding of the derivational steps of the model (Long, 

1997). They also need to have a clear understanding of the Proportional Odds 

assumption and the different standardization methods, such as the marginal effect 

(Long, 1997; McCullaph, 1980).  

In deriving Ordered Logit model, most of the literatures either skip or fail to explain 

some ancillary steps (e.g Long, 1997; Cameroon & Trivedi, 2005; Gujarati & Porter, 

2009; Long & Freese, 2006), thereby leaving some readers with no option than to 

apply the model as a dogma. However, this may not assist them in understanding the 

output of the model and in interpreting the result of their findings. In this study, effort 

is being made to break down the derivational steps of the Ordered Logit model, 

Proportional Odds assumption and marginal effects in the simplest form. This is with 

a view to assisting researchers have full understanding of the model and guide them in 

interpreting their findings. The article is presented in seven sections. Section one is the 

introduction, while literature was reviewed in section two. Section three provides the 

derivational steps of the Ordered Logit model and in section four, the derivation of the 

Proportional Odss assumption was discussed. Section five is devoted to deriving the 

marginal effects of the Ordered Logit model, while section six gives practical 

examples of the items discussed in the study. The conclusion is drawn subsequently in 

section seven. 

2. Review of the Literature 

Models are simplified algebraic representations of a scientific theory (Meyer, 1982). It 

means that models ought to represent theories in a simplified manner, given details of 

each step and how it was arrived at for a clear understanding of the theory it 

represents. However, the description of Ordered Logit models given by most 

econometric text books did not show the derivational steps. For instance, in Long and 

Freese (2006) the derivational steps of the Ordered Logit model were explained in the 

following statement: “….substituting……and using some algebra leads to the 

standard formula for the predicted probability in the Ordered Logit model”. Similarly, 

in explaining the marginal effect of the model, Long and Freese (2006) only show the 

formula for the marginal effect without detailed explanation of its derivational steps.  

In Cameron and Trivedi (2005), though the derivational steps were explained, the 

derivational steps of the extreme outcomes were not clearly explained. The 

derivational steps of the marginal effects were also lumped and not explained in 

detail. Gujarati and Porta (2009) provided only the introductory treatment of the 

model, without mathematical explanation. On the other hand, Long (1997) provided 

one of the most detailed explanations of the derivational steps of the model, however, 

effort was not made to explain clearly, how the cumulative distribution function 

(CDF) of the lowest outcome of the model was translated to zero and the highest 

outcome translated to one. Some simplifications using the lowest common multiple 
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(LCM) were also applied in the derivational process of the model, which were not 

reported in the text. Similarly, the derivational steps of the marginal effect of the 

model were not explained in detail.   

3. Derivation of the Ordered Logit Model 

In this section, the derivational steps of an Ordered Logit model are discussed. In 

order to understand the derivation, children’s health status will be used as an example 

throughout this study. The children’s health status is taken as the dependent variable 

of the Ordered Logit model. According to the World Health Organization [WHO] 

(O’donnell et al. 2008), children’s health status can be categorized based on their Z-

score values. Assuming that the Z-score values for some group of children were 

obtained, then WHO considers all children in the range of Z < -3 as severely 

malnourished; those in the range of -3 ≤ Z < -2 as moderately malnourished and those 

in the range of -2 ≤ Z < +2 as adequately nourished (Webb & Bhatia, 2005). However, 

in this study, let’s assume that adequately nourished children are in the range of Z ≥ 

‒2. This means that all children in the range of Z-score of -3.1 or less, are severely 

malnourished; those in the range of Z-score between -3 to -2.1 are moderately 

malnourished and those in the range of -2 or more are considered as adequately 

nourished. An example of the Z-score values for some children is shown in Example 

1. 

Example 1: -0.41, -1.31, -0.28, -0.81, -0.98, -0.45, -0.94, -0.44, -1.26, -0.72, -0.82,-

0.23,-0.34, -4.3, -3.39, -3.02, -4.08, -5.11, -3.73, -7.88, -3.05, -3.12, -4.88, -3.00, -2.51, 

-2.62, -2.3, -2.89, 1.97, 1.59. 

Assuming that the Z-score value of each child, as shown in Example 1, is represented 

by  

  , then    becomes the latent dependent variable in an Ordered Logit model. The  

   is a latent dependent variable because it would be hidden in the estimation process 

when estimating the parameters (betas) of the explanatory variables of the model.  

However, Example 2 shows the categorized version of the children’s Z-scores that 

was presented in Example 1. 

Example 2:   

                             
                              

  = Severely malnourished  = 1 

                               = Moderately malnourished = 2 

 
                             
                              
                           

  = Adequately nourished  = 3 

It is shown in Example 2 that all children with a Z-score value within the range of -3.1 

or less, are severely malnourished and are coded as  . Those in the range of Z-score 

between -3 to -2.1 are moderately malnourished and are coded as  , while those in the 

range of Z-score of -2 or more are considered as adequately nourished and are coded 

as  . Therefore, the coding of the latent dependent variable    into Z-score groups 

ranked as  ,   and  , gives a dependent variable that is actually observed (not hidden) 
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in the estimation process. This dependent variable is called the “observed dependent 

variable” and is represented by  . Consequently, the measurement equation for the 

physical health of child i (    using an Ordered Logit model is presented in Equation 

(1). 

   =   if      ≤   
 <   , for   = 1, 2, …  ………………......……………….……....1 

where   
  is the latent physical health status of child  . The latent physical health 

values are the measured Z-scores for each child, which are not observed, but are 

coded as  ,   and   in order to derive the observed physical health outcomes for each 

child (i.e   ). The  ’s are the cutoff points or the thresholds. The cutoff points define 

where each outcome begins.   is the total number of outcomes or categories of the 

dependent variable of the Ordered model. The total number of cutoff points (   ) in 

any Ordered model is always the total number of outcomes ( ) minus one (i.e   
 ).  

Figure 1 shows the probability distribution and the Cumulative Distribution Functions 

(CDF’s) of the children’s Z-scores. From the figure, it is shown that all children with 

Z-score values of less that -3 (i.e from -∞ to -3.1) are grouped under outcome  . Also, 

all children with Z-score values of -3 to -2.1 are grouped under outcome  , while all 

children with Z-score values of -2 to positive infinity (+ ∞) are grouped under 

outcome  . Therefore, since there are three outcomes ( =3), the number of cutoff 

points ( ’s) in this Ordered Logit model will be two (i.e          ). The 

cutoff points, as shown in Figure 1, are points   and   (i.e    and   ), which also 

correspond to -3 for    and -2 for   . 

 
 
The measurement model of Equation (1) is therefore shown in Equation (2). 

   =  

             
    

                  
          

        

  ……………………………..…………………….…2 
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In other words, Equation (2) is represented as Equation (3). 

   =  

              
               
               

  …………………………………….............................…3 

However, following Long (1997), for child  , and for some set of independent 

variables, the structural Ordered Logit model is specified in Equation (4).  

  
  =      +    ………………………………………………….……………………....4 

where    is the vector of the regressors in the model,   is the vector of the parameters 

to be estimated while the Logistic random variable in the Ordered Logit model is 

represented by   . 
Therefore, the probability of observing outcome  , which is the severely malnourished 

health status of the children, is given by Equation (5). 

Pr(   = 1|   ) = Pr(        
      |  )…………...…………..…………..……..5 

Equation (5) shows that outcome 1 of the children’s health status would be observed 

when   
  is greater than or equal to    (i.e -∞) but less than    (i.e less than -3) given 

  . The    is the set of explanatory variables that affect the health status of child  . 
Assuming   

  in Equation (4) is substituted into Equation (5), Equation (6) is derived: 

Pr(  = 1|   ) = Pr(                 |  )……………..……………………….....6 

By subtracting      within the inequalities, Equations (7) and (8) are derived: 

Pr(   = 1|   ) = Pr(                                     |  )………….……..7 

Pr(   = 1|   ) = Pr(                         |  )…………………….................8 

According to Long (1997), CDF expresses the probability of a variable being less than 

some value. Therefore, from Equation (8), the CDF evaluated between −∞ and    (i.e 

between negative infinity and point b in Figure 1) yields the probability that a random 

variable    lies between the two values (−∞ and   ), as shown in Equations (9) and 

(10). Literally, this means that when all the Z-score values from negative infinity to a 

point immediately below the    threshold (i.e immediately below point   in Figure 1) 

are added together, they yield the probability that a particular explanatory variable 

(  ) would determine the likelihood of child   being in the physical health outcome   

(i.e severely malnourished health category).  

Pr(   = 1|   ) = Pr (             |  )   Pr(            )……………………….9 

Therefore, the probability that a child would fall in outcome   is the CDF of all the 

latent Z-score values of the children that are below the    threshold (i.e below point   

or -3 in Figure 1), which is shown in the first part [Φ(         )] of Equation (10). 

Where Φ is the symbol of the CDF. 

Pr(   = 1|   ) = Φ (         )   Φ (        )………………………….……….…10 

However, the second part [Φ(        )] of Equation (10) disappears in the sense 

that the CDF of a Logistic function is given as: 

Logistic CDF (Φ) = 
 

     
 …………………………………………….……........…10a 

where Z=               . In the second part of Equation (9), Z =         . 

Therefore: 
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Logistic CDF (Φ) = 
 

               
 ……………………………………..……………10b 

Logistic CDF (Φ) = 
 

           
 ……………………………………..….……........…10c 

In Equation (10c), one of the components of the divisor, that is the exponent of 

infinity (   ) alone, is sufficient enough to make the outcome of the division almost 

equal to zero. Therefore, the second part of the Equation (10) disappears, leaving only 

the first part, as shown by Equation (11). Equation (11) gives the probability that the 

physical health of child   would be in the outcome   category, and is represented by 

points   to   in Figure 1. 

Pr(   = 1|   ) = Φ (         ) …………………….…………………..…………...…11 

Similarly, the probability of selecting outcome  , which is the moderately 

malnourished health status of the children, given some set of explanatory variables 

(  ) is indicated in Equation (12): 

Pr(   = 2|   ) = Pr(      
     |  )………………………………………..............12 

Equation (12) shows that outcome 2 of the children’s health status would be observed, 

when   
  is greater than or equal to   , but less than    (i.e -3 to -2.1 in Figure 1), 

given   . Assuming   
  in Equation (4) is substituted in Equation (12), we have 

Equation (13): 

Pr(   = 2|   ) = Pr(                 |  )……………...........................………...13 

By subtracting     , within the inequalities Equations (14) and (15) are obtained: 

Pr(   = 2|   ) = Pr(                                      |  )..........................14 

Pr(   = 2|   ) = Pr(                         |  )…….…………………..……...15 

Thus, the CDF evaluated between    and    gives the probability that a random 

variable    lies between the two values as shown in Equation (16) and (17): 

Pr(   = 2|   ) = Pr (             |  )   Pr(            )…..….……………..….16 

Pr(   = 2|   ) = Φ(         )   Φ(         )……………………………………..…17 

Equation (17) gives the probability that the physical health of child   would be in the 

outcome   category. The first part [Φ(         )] of Equation (17) is represented by 

points   to   of Figure 1. The second part [Φ(         )] of Equation (17) is 

represented by points   to  . Therefore, when   to   is subtracted from   to  , the 

balance is   to  , which is the outcome   of the children’s health status as shown by 

Figure 1. 

Moreover, the probability of observing outcome  , which is the adequately nourished 

health status, given some set of explanatory variables (  ), is shown by Equation (18): 

Pr(   =   |   ) = Pr(       
     |  )………………........................................…….18 

when Equation (4) is substituted into Equation (18), we have Equation (19): 

Pr(   =   |   ) = Pr(                  |  )………………………………........…19 

By subtracting     , within the inequality and simplifying, we have Equation (20) and 

(21): 

Pr(   =   |   ) = Pr(                                 |  )……………..….20 

Pr(   =   |   ) = Pr(                      |  )………..................................…21 
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Since the probability that a random variable is between two values is the difference 

between the CDF evaluated at the two values (Long, 1997), Equation (22) is derived 

from Equation (21), and Equation (23) is obtained by simplifying Equation (22): 

Pr(   =   |   ) = Pr (             |  )   Pr(            |  )……….………..….22 

Pr(   =   |   ) = Φ(         )   Φ(         )……………...…………..….……..….23 

Equation (23) gives the probability that the physical health of child   would be in the 

outcome   category. The first part [Φ(         )] of Equation (23) is represented by 

points   to   in Figure 1, which is the probability distribution of the three outcomes. 

Therefore, the first part of Equation (23) is equal to   since the sum of probabilities in 

a probability distribution is equal to  . The second part [− Φ(         )] of Equation 

(23) is represented by points   to  . Therefore, when   to   is subtracted from   to , 

the balance is   to  , which is the outcome   of the children’s health status. By 

simplifying Equation (23), we have Equation (24), which gives the probability that the 

physical health of child   would be in the outcome   category. 

Pr(   =   |   ) =     Φ(         )……………...………………….……..….…….24 

Consequently, in order to estimate the effect of some set of explanatory variables (  ) 
on the the probability of child   being in severely malnourished health category 

(outcome 1), moderately malnourished health category (outcome 2) or adequately 

nourished health status (outcome 3), Equations (11), (17) and (24) can be estimated. 

Generally, therefore, Equation (1) can be applied to any   number of Ordered Logit 

outcome model. However, the lowest category [Pr(   = 1|   )] is always the CDF from 

negative infinity to a value immediately before the first threshold [i.e Φ (         )]. 

Also, the highest category is always the CDF of the entire probability distribution less 

the CDF from negative infinity to a value immediately before the     threshold [i.e 

   Φ(           )]. 

4. The Proportional Odds Assumption of the Ordered Models 

The parameters,    , as well as the threshold parameters,  ’s in Equations (11), (17) 

and (24) can only be estimated using an Ordered Logit model when the data meet the 

parallel line assumption or proportional odds assumptions (McCullaph, 1980). The 

parallel line regression assumption states that given a particular set of probabilities of 

the outcome categories, then the log of the odds must form an arithmetic series for it 

to be estimated using an Ordered Logit model. According to Fullerton (2009), the first 

step is that the dependent variable with   categories is split into     binary Logit 

equations of log odds ratios, and then estimate simultaneously using the higher 

outcomes as the reference category.  

In our own example, let us assume that the probability of severely malnourished 

health status is denoted by   , moderately malnourished health status is denoted by 

  , and adequately nourished health status is denoted by   . Therefore, since there are 

three outcomes (   ), the will be two Logit equations (     ) of log odds 

ratios. These two Logit equations, according to Fullerton (2009), will be obtained by 
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finding the ratio of outcome   versus   and  , then outcome   and   versus  . 

However, before getting the log odds ratios, there is need to find the odd ratios. The 

first Logit equation of the odds ratio is shown by Equation (25).  

Odds of severely malnourished health: 
  

     
 …………………………..……………25 

The odds (probability) of severely malnourished health (  ), is the ratio of    to the 

rest outcomes (i.e   +   ). In a binary Logit, assuming the probability of     , then 

the probability of the rest outcomes will be      +    . However, the probability of 

observing outcome  (i.e     ), is a function of the distribution of the error term. 

According to Gujarati and Porter (2009), the distribution of the error term in a 

Logitistic model is given by the function shown in Equation (25a):  

Pr(      = f( 
 

     
) = 

 

     
 = 

ze

1
1

1



………………...………………...……….25a 

Since the LCM of 
ze

1
1 = 

z

z

e

e1
, therefore, by substituting the denominator of 

Equation (25a) with 
z

z

e

e1
and operationalizing, we have Equation (25b): 

Pr(       =

z

z

e

e1

1
= f(

z

z

e

e

1
)………..……..……………………………….…..25b 

Consequently, by substituting    in Equation (25) with 
z

z

e

e

1
, the denominator of 

Equation (25) will be 
z

z

e

e




1
1 . But the LCM of 

z

z

e

e




1
1  is 

ze1

1
. Therefore, 

the odds of severely malnourished health (  ) is computed as shown by Equation (26): 

Odds of severely malnourished health: 

z

z

z

e

e

e





1

1

1
 = 

z

z

e

e

1
x 

1

1 ze
= 

ze …………....26 

where   =       .  

Similarly, the second Logit equation of the odds ratio is given by Equation (27): 

Odds of severely and moderately malnourished health: 
     

  
 ………………………27 
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In a binary Logit, assuming the probability of         , then the probability of the 

rest outcomes will be     . However, the probability of observing outcome  

(i.e         ), is a function of the distribution of the error term, which is given by 

Equation (28) [the steps were skipped since have already been discussed]: 

Pr(          = f (
z

z

e

e

1
)………………………….…..………………..…….. 27a 

Consequently, by substituting       in Equation (27) with 
z

z

e

e

1
, the denominator 

of Equation (27) will be 
z

z

e

e




1
1 . But the LCM of 

z

z

e

e




1
1  is 

ze1

1
. Therefore, 

the odds of severely and moderately malnourished health (  +  ) is computed as 

shown by Equation (29): 

Odds of severely and moderately malnourished health: 

z

z

z

e

e

e





1

1

1
=

z

z

e

e

1
x

1

1 ze
=

ze …...……………………………..……………………..28 

where   =       .  

The log odds ratios are therefore given in Equation (30) and (31): 

log(
  

     
) = log( 

 1 ) =   =           =                              …30 

log(
     

  
) = log( 

 2   =   =           =                              ..31 

where    and    are the logistic CDF’s, while   <   .  

When the parallel line regression assumption holds, therefore,     =    ,     = 

     ……   =    . This means that the value of the coefficient of a particular 

explanatory variable, say     (i.e    ) in Equation (30) should be almost the same 

with the value of the coefficient of the same explanatory variable (i.e    ) in Equation 

(31). Therefore, what should differentiate Equation (30) and (31) should be the   . The 

size of the    in Equation (31), which represents higher order category of the physical 

health (moderately malnourished), should be bigger than the size of    in equation 

(30), which represents the lower order category of the physical health status (severely 

malnourished). Hence, the log odds ratio forms a sequence, from lower order 

categories (outcome 1 versus outcome 2 and 3) to higher order category (outcome 1 

and 2 versus outcome 3).  
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5. Derivation of the Marginal Effects in an Ordered Logit Model 
Like other nonlinear models, the magnitude of the coefficients of an Ordered Logit 

model cannot be interpreted in its crude form, unless it is standardized. This is 

because it expresses the influence of each of the explanatory variable on the latent 

variable,   , not the observed discrete outcome variable (Long & Freese, 2006). 

Therefore, in order to get the effect of each one of the explanatory variables on the 

probability of a child being in any one of the physical health outcomes (outcomes 1, 2 

and 3), the marginal effects is obtained as shown in Equations (11), (17) and (24). 

However, getting the marginal effects of Equations (11), (17) and (24) means that we 

obtain the first derivatives of the equations with respect to   . Recall that: 

Equation (11) = Pr(   = 1|   ) = Φ (         ). 

Equation (17) = Pr(   = 2|   ) = Φ(         )   Φ(         ) 

Equation (24) = Pr(   = 3|   ) =     Φ(         ) 

By inspection, Equation (11) is a product function. The first function is Φ(), and the 

second is          . Therefore, the derivative of Equation (11) with respect to    
(marginal effect) can be obtained using the Chain rule. The Chain rule requires that: 

The derivative of outside function be obtained, leaving the inside 

function alone and then multiply by the derivative of the inside 

function. 

The derivative of the outside function in Equation (11) is Φ()
1-1 

= Φ()
0 

= Φ(1) = Φ. 

According to the rule, we leave the inside function alone, which means that we have 

Φ(         ) after differentiating the outside function, then we multiply by the 

derivative of the inside function again. The derivative of the inside function with 

respect to    is   . Therefore, the derivative of Equation (11) with respect to    is 

given by Equation (32): 

               

    
 = ϕ (         ) x ‒   = ‒  [ϕ (        )]…………..………..………...32 

Similarly, Equations (17) and (24) are also product functions. Therefore, in order to 

get the marginal effects of outcome 2 and 3, the derivatives of Equations (17) and (24) 

with respect to    were obtained, using Chain rule, as shown by Equations (33) 

through (36): 
               

    
 = [ϕ (         ) x –  ]   [ϕ (         )x–  ] …………………….........33 

               

    
 =   [ϕ (         ) ‒ ϕ (         )]…………………………...………...34 

               

  
 =   ϕ(         )x    ..……………………………….....…..............…35 

               

  
 =   ϕ(         )..………………………………………...…..............…36 
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It is noticed that in Equation (32), which is the marginal effect of each explanatory 

variable on the probability of a child being severely malnourished (          ), the 

sign of the beta outside the bracket (–  ) is opposite to the sign of the coefficient of    
(i.e  ). The negative sign of the marginal effect of the lowest category also implies 

that a unit increase in the explanatory variable decreases the probability of a child 

belonging to the lower outcome (outcome 1) of the physical health. On the other hand, 

in Equation (36), which is the marginal effect of each explanatory variable on the 

probability of a child being adequately nourished (         ), it is observed that the 

sign of the beta outside the bracket ( ) is the same with the sign of the coefficient of 

   (i.e  ). This implies that a unit increase in the explanatory variable increases the 

probability of a child being in the highest category of the physical health. However, 

the signs of the betas of other outcomes, such as outcome 2 are ambiguous. 

6. Practical Examples 

Assuming that there is a model whose dependent variable is the children’s physical 

health status (phealth), which has three categories that are ordered as 1, 2 and 3 for the 

severely malnourished, moderately malnourished and adequately nourished health, as 

in our previous example. Assuming also that the model has some set of predictors, 

which are: cagiver2, cagiver3, ecgiver, lrem, phelthe, clction, age, gender. Assuming 

we are to estimate this model using an Ordered Logit model in STATA, then the 

following command is typed in the command window: 

ologit phealth cagiver2 cagiver3 ecgiver lrem phelthe clction age gender 

The result in Table 1 is the output of the model (ologit phealth cagiver2 cagiver3 

ecgiver lrem phelthe clction age gender). The output in Table 1 is a crude estimate of 

the model in the sense that it indicates the effects of each of the explanatory variables 

on the latent physical health of the children (as shown by Equation 4), not the 

observed physical health [i.e not the ones represented by Equations (11), (17) and 

(24)]. From the result in Table 1, it could be seen that since the dependent variable of 

the model has three outcomes (   ), only two cutoff points (cut1 and cut2) were 

estimated as shown by point (A) in Table 1. Therefore, the rule that      , is 

observed.  
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It is also shown in Table 1 that although the dependent variable of the model has three 

outcomes, each of the predictors has only one coefficient (e.g the coefficient of 

cagiver2 is only -4.639935; cagiver3 is only 0.3898169 and ecgiver is only 

0.2099331). This implies that the coefficient of each of the predictors in the model is 

assumed to have the same effect on each of the three outcomes of the dependent 

variable of the model (Proportional Odds Assumption). The effects should only differ 

across the ranks of the outcomes by the magnitude of the size of the coefficient of the 

threshold parameters (i.e cutoff points), not by the size of the coefficients of the 

predictors themselves. However, in order to investigate whether this assumption 

holds, “brant” test is normally conducted (Brant, 1990). In order to carry out this test, 

“brant” command is typed in the command window of STATA immediately after 

ologit command, as follows: 

ologit phealth cagiver2 cagiver3 ecgiver lrem phelthe clction age gender 

brant 

The result in Table 2 shows that the p-value of “All” (point D in Table 2) is not 

statistically significant (0.616), which implies that all the variables in the model are 

jointly not statistically significant. Therefore, it means that there is NO evidence of 

violation of the Proportional Odds assumption (Brant, 1990).  
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Haven confirmed that the Proportional Odds assumption is not violated, it is ideal to 

estimate the marginal effect and find out the size of the effect of each of the predictors 

on the probability of having outcome 1, 2 and 3 of the children’s physical health 

statuses by typing “margins, dydx(_all)” command after ologit command in STATA 

command window, as follows: 

ologit phealth cagiver2 cagiver3 ecgiver lrem phelthe clction fincom age gender 

margins, dydx(_all) 

The output of the above command is presented in Table 3. The coefficient of cagiver2 

for example, is 0.0432 under outcome 1 (severely malnourished); 0.09 under outcome 

2 (moderately malnourished) and 0.133 under outcome 3 (adequately nourished). This 

means that, a one unit increase in cagiver2 increases the probability of a child being in 

the severely malnourished health status by 4.32 percentage points (i.e 0.0432*100 = 

4.32%); increases the child’s likelihood of being in the moderately malnourished 

health by 9 percentage points (i.e 0.09*100 = 9%) and decrease their probability of 

being in the adequately nourished health category by 13.3 percentage points (i.e -

0.133*100 = 13.3%), all things being equal.  
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One thing that is worthy of note is that the sign of a particular coefficient under 

outcome 1 of the marginal effect (Column 1 of Table 3) is always opposite to the sign 

of the same coefficient of the crude estimate in Table 1, while the sign of the highest 

outcome (for instance, outcome 3 in Column 3 of Table 3) is always the same with the 

sign of the same coefficient in the crude estimate in Table 1. For example, the sign of 

cagiver2 in Table 1 is negative (cagiver2 = -4.639935) as shown by point (B) of Table 

1, but in Column 1 of Table 3, the sign of cagiver2 is positive (0.0432) as shown by 

point (E) of Table 3. However the sign of the same variable (cagiver2) is negative (-

0.133) in the highest outcome (outcome 3 in Column 3 of Table 3) as shown by point 

(G) of Table 3. Similarly, the sign of ecgiver in Table 1 is positive (ecgiver = 

0.2099331) as shown by point (C) of Table 1, but in Column 1 of Table 3, the sign of 

ecgiver is negative (-0.00195) as shown by point (F) of Table 3. However the sign of 

the same variable (ecgiver) is positive (0.00603) in the highest outcome (outcome 3 in 

Column 3 of Table 3) as shown by point (H) of Table 3. These examples correspond 

to Equations (32) and (36) as explained in the derivation section.  

7. Conclusion 

This study has provided a detailed explanation and the derivational steps of the 

Ordered Logistic regression model, Proportional Odds assumption and the marginal 

effects in Ordered models. Practical example has also been provided in order to 

discern how the output of the model from STATA software tallies with the 

derivational steps discussed. The study thus sheds light on how the model works, 

thereby helping researches have better understanding of the output of the model when 

used in their studies. 
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