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ABSTRACT 
Post-operative hyperglycaemia is important with regard to outcomes of surgical operations. It affects 
post-operative morbidity, length of hospital stay, and mortality. Poor peri-operative blood glucose 
control leads to a higher risk of post-operative complication. Insulin resistance as a cause of post-
operative hyperglycaemia has been blamed for some time. Nitric Oxide (NO) is produced by nitric 
oxide synthase (NOS) isoenzymes. Inducible nitric oxide synthase (iNOS) is not a normal cellular 
constitute. It is expressed by cytokines and non-cytokines e.g. fasting, trauma, intravenous glucose, 
and lipid infusion, which are encountered in surgical operations.  Review of current published data on 
postoperative hyperglycaemia was completed. Our studies and others were explored for the possible 
role of NO in this scenario. Induction and expression of iNOS enzyme in pancreatic islet cells is 
included in the chaotic postoperative blood glucose control. The high concentrations of iNOS derived 
NO are toxic to pancreatic β-cells and may inhibit insulin secretion postoperatively. Hence, current 
peri-operative management is questionable regarding post-operative hyperglycaemia and 
necessitates development of a new strategy. 

 
  
 
Post-operative hyperglycaemia:  A real 
problem 
Post-traumatic hyperglycaemia is commonly 
encountered after surgery and in patients 
treated in intensive care units (ICU). It carries 
a higher risk for post-operative complications, 
prolonged recovery periods, and increased 
length of stay (LOS) [1,2].  
 
Poor post-operative blood glucose control in 
diabetic [1] and non-diabetic patients [2] leads 
to a higher risk of complications. Many studies 
(3, 4) blame insulin resistance as a cause for 
post-operative hyperglycaemia. Cytokines 
[5,6], fasting [7,8], peri-operative feeding [9,10] 
and immobilization were reported to lead to 
insulin resistance. Different regimens 
postulated to overcome the outcome of 
elective operations [11,12]. Emergency 
traumatic surgery in conditions e.g. high 
velocity missile injury and traffic accidents 
carry an additional risk for post-operative 
hyperglycaemia because of double trauma. 

To decrease post-operative morbidity and 
mortality, it is essential to explore the 
molecular mechanism of post-operative 
hyperglycaemia and its relation to trauma.  
Pancreatic function during trauma has not 
been thoroughly studied. It is very important to 
comprehend post-operative hyperglycaemia 
and evaluate peri-operative management to 
improve surgical outcomes. 
 
Review of currently published data on post-
operative hyperglycaemia was conducted and 
the role of nitric oxide in this scenario was 
investigated. 
 
Nitric oxide and nitric oxide synthase 
system 
Nitric oxide (NO) was described in 1989. NO is 
the smallest synthetic molecule. It is produced 
by a family of enzymes known as nitric oxide 
synthase (NOS) in almost all mammalian cells 
e.g. vascular endothelium, neurons of the 
central and enteric nervous system, and cells 
of the immune system [13,14]. NO is a free 
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radical and an extremely reactive gas [15]. It 
has a short half life of about 10 seconds. It 
acts as a signalling molecule, 
neurotransmitter, and macrophage mediated 
immunity that can heal or kill. Under conditions 
of high NO production, a number of enzymes 
can be inhibited by NO-enzyme interaction 
[16-18].  
According to their expression, activity, and 
dependence on calcium, NOS isoenzymes are 
divided into 2 major functional classes: 

• Constitutive nitric oxide synthase 
(cNOS); ncNOS, ecNOS 

• Inducible nitric oxide synthase (iNOS). 
 
Nitric oxide and insulin secretion 
cNOS and iNOS can be expressed and/or 
induced by different stimuli in various tissue 

including pancreatic β-cell [17,19-24]. ncNOS 
derived NO is recognized as an important 
signalling molecule in a variety of cellular 
processes e.g. insulin secretion [19,21,22,24].  
 
Our laboratory [23,27,29-30] and others 
[25,31-33] presented biochemical and 
immuno-cytochemical evidence for occurrence 
of ncNOS in mouse and rat pancreatic β-cells. 
When cNOS is activated, it produces a 
pulsatile low amount of NO for a short period 
of time [29,31,34]. Although the effect of 
ncNOS derived NO on insulin secretion is 
highly controversial, the results from rat and 
mouse pancreatic islets suggests that it acts 
as a negative modulator for glucose-stimulated 
insulin secretion (GSIS) [27,29].  
 

 
iNOS is not a normal cellular constituent and 
can only be expressed in  pathophysiological 
conditions in a response to inflammatory 
cytokines e.g. IL-1β, TNF-α, and 
lipopolysaccharide. Under such conditions, 
pancreatic β-cells produce huge amounts of 
NO in a more sustained manner [27,34-36] 
through induction of iNOS, comparing to the 
cNOS isoforms [15,37-38]. Non-cytokine 
induction of iNOS in pancreatic islets has also 
been reported. One hour in vitro incubation of 
healthy rat and mouse islets with high glucose 
concentrations [10-20 mmol/L) induced iNOS 

and ncNOS [27,30,34]. However, the 
activation of ncNOS was rapid, within minutes. 
It is at least in part, associated with the 
glucose-stimulated influx of extracellular Ca2+ 

into β-cells [27,33]. Glucose activation of iNOS 
was slower and detectable after approximately 
60 minutes [27]. The mechanism behind 
glucose-stimulated iNOS expression and 
activity is poorly understood. It has been 
suggested that glucose metabolism generates 
NADPH through the pentose shunt, which is 
an important stimulus in IL-1β induction of 
iNOS [39,40]. NADPH is an obligatory 
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substrate for iNOS synthesis of NO [20-21]. 
This is of great interest since high amounts of 
iNOS derived NO is detrimental to β-cells [38-
39]. Moreover, we showed that 24 hour 
intravenous (IV) glucose administration 
induced marked expression and activity of 
islets iNOS [41].  
 
The inhibitory effect of increased NO 
production on insulin secretion, due to either 
enhanced activity of cNOS (physiological) or 
induction of iNOS (inflammatory condition) 
[29,38,42]. NO is widely accepted as a 
mediator of β-cell dysfunction and apoptosis 
[29,30,34,43-45]. A clear role of iNOS in the 
pathogenethesis of type 1 diabetes mellitus   
has been reported [38-39].  
 
In addition, the extremely low level of NO 
metabolizing enzymes, e.g. catalase and 
glutathione peroxidase, makes pancreatic β-
cells extremely susceptible to high levels of 
intracellular NO (46). High concentration of NO 
may interact with vital sites in the β-cell such 
as Kreb’s cycle enzyme aconitase [47], ion 
channels [48], or other enzymes of importance 
for β-cell function [30,34,43,48] (Figure 1). 
Indeed, several studies demonstrated that 
inhibition of NOS isoenzymes activity by 
specific inhibitors was accompanied by 
enhanced GSIS, both in vitro and in vivo 
[27,29,30,34].  
 
Initial inhibition of insulin release is exerted by 
ncNOS-derived NO, when the islets are 
exposed to high glucose concentration [26-27]. 
 
Glucotoxicity 
Chronic hyperglycaemia is detrimental to 
pancreatic β-cells. It could be implicated in the 
pathogenesis of type 2 diabetes mellitus (DM) 
in a process called glucotoxicity [50-51].  
We showed that the route of nutrient 
administration is important in pancreatic 
function by both biochemical and immuno-
cytochemical evidences. Hyperglycaemia 
induced by IV glucose administration, or 
hyperlipidemia by IV intralipid infusion, caused 
marked induction and expression of iNOS in 
rat β-cells [41]. This is consistent with previous 
reports, that plasma insulin response was 
much greater following glucose ingestion than 
IV glucose administration despite an 
equivalent increase in plasma glucose 
concentration. This is explained by the release 
of incretin hormones from endocrine cells in 
the gastrointestinal tract e.g. glucagon-like 
peptide-1 (GLP-1) [52-53]. The expression of 
iNOS after IV infusion of glucose could be 
explained by suppression of release of GLP-1 

and glucose-dependent insulinotropic 
polypeptide (GIP) whose secretion is 
dependant upon ingestion of carbohydrates 
(for GLP-1) or FFA (for GIP).   
The relative importance of glucotoxicity versus 
lipotoxicity in inducing β-cell dysfunction and 
apoptosis remains controversial. Although it 
has been reported that lipotoxicity alone will 
not affect β-cell function without signs of 
glucotoxicity [54], we showed that glucose or 
intralipid infusion for 24h induced marked 
expression and activity of iNOS [41]. This is in 
line with results of cultured cell lines exposed 
to high glucose or FFA for 24-48 hours [55-56]. 
In this context, it is conceivable that iNOS 
derived NO might be a contributing factor in 
this process [55].  
 
Furthermore, IV infusion of nutrients is 
commonly prescribed as an important 
treatment model both pre- and post-operatively 
[6,57], in burn patients,  and in some patients 
as a life long treatment when they can not take 
oral food.  If IV nutrients induce NO-production 
in human β-cells, this may explains post-
operative hyperglycaemia to some degree. 
 
Lipotoxicity 
Long term Total Parenteral Nutrition (TPN) in 
rats for 10 days resulted in increased iNOS 
and decreased ncNOS activity in pancreatic 
islets [30,34]. Infusion of lipids for 24 hours 
induced suppression of insulin secretion [41]. 
This is in agreement with previous studies 
[30,34,58]. Although the induction of iNOS 
could not account entirely for alteration in β-
cell survival, it might negatively modulate the 
secretory function of β-cells. In addition, long 
term exposure of β-cells to FFA resulted in a 
marked production of reactive oxygen species 
e.g. superoxide anion (O-2) [59]. Combination 
of NO and O-

2 resulted in the formation of 
peroxynitrite, which is a powerful oxidant and 
cytotoxic molecule. The increase in NO, O-2

 
and peroxinitrite concentrations were positively 
correlated with mitochondrial and DNA 
damage in β-cells [44]. It has been reported 
that an increased plasma FFA obtained by IV 
infusion of lipids resulted in decreased plasma 
levels of glucagon in humans [60]. The 
suppression of insulin secretion during TPN 
could partly be due to the absence of incretin 
hormone which may be normalized by injection 
of GLP-1 [61].  
 
Fasting and pancreatic function 
Cyclic AMP is a potent inhibitor of islet’s NOS 
activity [24,26,30,34]. It is markedly 
suppressed in islets isolated from fasting mice 
and rats. Besides, GSIS was markedly 
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impaired in islets isolated from fasting mice, 
and associated with a decreased production of 
CO and HO-2 expression. Hence two potent 
inhibitors of islet NO production; CO and cyclic 
AMP, were markedly suppressed in islets 
isolated from fasting mice and rats. This may 
explain the increased iNOS activity in β-cells 
and suppression of insulin secretion in these 
animals. 
 
Taken together, decreased CO production and 
increased iNOS-derived NO production is 
associated with a diabetic condition in islets β-
cells [62]. 
 
Preoperative fasting or IV glucose infusion for 
24 hours induced strong expression and 
activity of iNOS in rat pancreatic islets post-
operatively (data not published), which was 
stronger than those seen in rats that received 
preoperative oral glucose or were freely fed. 
This is of significant clinical importance if the 
same thing happens in human pancreatic 
islets. Since, preoperative fasting and/or post-
operative IV glucose infusions are applied in 
surgical patients, especially in abdominal 
operations. Hence both fasting and IV glucose 
administration play a role, at least partly, in 
suppression of insulin secretion and induction 
of post-operative hyperglycaemia. Although 
post-operative insulin resistance is still 
blamed, fasting and IV glucose may act as 
contributors to insulin suppression by inducing 
post-operative hyperglycaemia, which needs 
further study in humans. 
 
Trauma and β-cell function 
Trauma-induced iNOS expression and activity 
has been noted in rat pancreatic islets [63]. 
During trauma, the body responds with a 
series of reactions e.g. a change in 
metabolism, to a catabolic state, and an 
expression of insulin resistance [64]. The 
consequence of post-operative insulin 
resistance is that patients in the post-operative 
period are in a metabolic state similar to T2DM 
[13]. Insulin resistance persists for about 2-3 
weeks after uncomplicated elective upper 
abdominal surgery [65]. It negatively affects 
the post-operative recovery, convalescent 
period, and LOS.  
 
Surprisingly, in spite of insulin resistance and 
its role in post-operative hyperglycaemia, 
iNOS isoenzyme may be involved very early in 
the impairment of the insulin secretion. Hence, 
β-cells seem to be unable to respond 
adequately to a glucose challenge. It seems 
reasonable to assume that an improvement in 
the insulin secretory capacity of the pancreas 

may positively affect the post-operative 
glycemic state and ultimately the outcome of 
surgery. 
The present findings may stir more debate in 
the explanation of post-operative 
hyperglycaemia. 
  
CONCLUSIONS 

1. Trauma, fasting, hyperglycaemia, 
hyperlipidemia and route of nutrient 
administration possibly are other 
factors contribute to post-operative 
hyperglycaemia.  

2. It is recommended to investigate the 
molecular mechanism behind the 
pathophysiology of post-traumatic 
hyperglycaemia in human beings. The 
role of nitric oxide in this scenario 
should be appreciated. 

3. New strategy should be developed 
regarding peri-operative management 
and postoperative hyperglycaemia.  

4. A possible pharmacological target is to 
suppress iNOS activity in pancreatic 
islets with agents stimulating cyclic 
AMP/PKA pathway e.g. PACAP. This 
may be a hope to restore adequate 
insulin secretion post-operatively. 
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