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ABSTRACT 
Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in 
death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic 
responses that drive the pathology of various diseases including T/HS and traumatic brain injury 
(TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently 
detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and 
regeneration. The inflammatory response is driven by cytokines and chemokines and is partially 
propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s). 
DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also 
inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and non-
human primates have been utilized in an attempt to move from bench to bedside. Novel approaches, 
including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS and 
TBI in the near future.  

 
ABBREVIATIONS 
ARDS: Adult Respiratory Distress Syndrome; CSF: cerebrospinal fluid; DAMP: Damage-associated 
Molecular Pattern molecule; HMGB1: High-mobility Group Box 1; IL: Interleukin; IP-10: interferon-
inducible protein 10; ISS: Injury Severity Score; LPS: gram-negative bacterial lipopolysaccharide; 
MIG: monokine induced by gamma interferon; MIP-1α: Macrophage inflammatory protein-1 alpha; 
MODS: Multiple Organ Dysfunction Syndrome; NO: Nitric Oxide; PAMP: Pathogen-associated 
Molecular Pattern molecule; RAGE: Receptor for Advanced Glycation Endproducts; RANTES: 
Regulated on Activation Normal T Cell Expressed and Secreted; SIRS: Systemic Inflammatory 
Response Syndrome; TBI: Traumatic Brain Injury; T/HS: Traumatic/Hemorrhagic Shock; TLR: Toll-like 
receptor; TNF-α: Tumor Necrosis Factor–alpha; TGF-β1: transforming growth factor-β1 

 
  
INTRODUCTION 
Traumatic injury, often accompanied by 
hemorrhagic shock (T/HS), continues to be the 
most common cause of death for young 
people and constitutes a significant source of 
morbidity and mortality for all ages [1,2,151]. 
Traumatic brain injury is the leading cause of 
death in the U.S. and Western Europe [147-
150] and a budding epidemic throughout Asia 
and the Middle East [52]. Traumatic brain 
injury (TBI) is also a major cause of disability, 
with survivors acquiring long-term cognitive, 
motor, behavioural or speech-language 
disabilities [147]. The various forms of 
traumatic injury therefore represent a 
pandemic disease that affects every nation in 
the world without regard for economic 

development, racial or religious predominance, 
or political ideology; this disease is acute in 
onset and often results in chronic, debilitating 
health problems affecting far beyond the 
individual victims [1]. 
 
Further complicating the primary damage in 
acute trauma is the increased susceptibility to 
sepsis and Multiple Organ Dysfunction 
Syndrome (MODS), a poorly understood 
syndrome of sequential and gradual loss of 
organ function [3].  MODS is the most frequent 
cause of late deaths post-injury, accounting for 
substantial morbidity and mortality [4,5]. 
MODS is considered to be due, in part, to 
excessive or maladaptive activation of 
inflammatory pathways [6]. Organs such as 
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the liver and the gut not only become 
damaged or dysfunctional from trauma-
induced inflammation, but in turn further 
perpetuate this inflammatory vicious cycle 
[7,8,21]. Furthermore, patients admitted to the 
intensive care unit following trauma and 

hemorrhage often become susceptible to 
infection “second hit” further complicating 
attempts at immunomodulation early in the 
clinical course [9] (Fig. 1). 
 

 
Figure 1: The ‘one-hit’ and ‘two-hit’ paradigm of traumatic injury. ‘One hit’ represents the initial, 
massive tissue injury and shock and SIRS along with remote organ injury. The ‘second hit’ refers to 
the less intense SIRS that normally resolves but leaves the patient vulnerable to a secondary 
inflammatory hit that can reactivate the SIRS and precipitate late MODS. 
 
Trauma acts as a trigger of a complex cascade 
of post-traumatic events that can be divided 
into a hemodynamic, metabolic, neuro-
endocrine and immune responses leading to a 
multifocal pathophysiologic process [10]. 
However, inflammation is not in itself 
detrimental. It is in most cases a well-
coordinated communication network operating 
at an intermediate time scale between neural 
and longer-term endocrine processes [11]. 
Inflammation is necessary for the removal or 
reduction of challenges to the organism and 
subsequent restoration of homeostasis [12]. 
However, hemorrhage and trauma, perhaps 
combined with failed attempts at therapy 
[13,14], can induce a dysregulated acute 
inflammatory response that affects several 
organ systems and sets in motion a vicious 
cycle of inflammation damage inflammation 

[12,15-18] driven by cytokines, chemokines, 
and products of damaged, dysfunctional, or 
stressed tissue (Fig. 2; see below). 
 
Thus, though the inflammatory response is 
pivotal in clearing invading organisms and 
offending agents and promoting tissue repair, 
these same responses carried out under a set 
of extreme conditions can also compromise 
healthy tissue and further exacerbate 
inflammation [12,19]. 
 
A central question then is: how do we harness 
the beneficial effects of inflammation and allow 
proper lines of communication while 
simultaneously not allowing inflammation to 
exceed a threshold that becomes self-
sustaining? This review article will focus on the 
common inflammatory/immune responses to 
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T/HS and TBI, and will aim to give an overview 
of both the current state of relevant 
translational/clinical research and several 
novel approaches being undertaken as trauma 
research moves from the bench to the 
bedside. 
 
TRAUMA AND THE IMMUNE RESPONSE 
FROM A CLINICAL PERSPECTIVE  
The pathophysiology of T/HS and TBI is now 
understood to consist of different phases that 
form a continuum [7,107]. Death from post-
traumatic injury occurs in three phases. In the 
first phase, patients die immediately because 
of devastating trauma.  In the second phase, 
which occurs during early resuscitation, death 
may be related to hypoxia or hypovolemia.  In 
the third phase, days or weeks following injury, 

death may be due to general physical 
consequences of injury of which the dominant 
manifestations are adult respiratory distress 
syndrome (ARDS) and MODS [20]. In 1995, 
two models were proposed for the 
exaggerated immune inflammatory response 
[22], known colloquially as ‘one hit’ and 
‘second hit’ phenomena. The ‘one hit’ model, 
which accounts for the initial, massive tissue 
injury and shock that gives rise to an intense 
systemic inflammatory response syndrome 
(SIRS) with remote organ injury [22]. The 
‘second hit’ model indicates the initial, less 
intense SIRS that normally resolves but leaves 
the patient vulnerable to a secondary 
inflammatory hit that can reactivate the SIRS 
and precipitate late MODS [23] (Fig. 1). 
 

 
Figure 2. The inflammatory response to tissue injury. Traumatic injury signals various cell types to 
produce cytokines, chemokines, and DAMPs. In turn, DAMPs re-activate and further propagate the 
production of inflammatory mediators, setting in motion a positive feedback loop of 
inflammation damage inflammation. 
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Figure 3: The spectrum of cytokines, chemokines, and DAMPs in T/HS and TBI. The 
inflammatory response generated in response to T/HS or TBI can be assessed by measuring a 
panoply of cytokines, chemokines, DAMPs, and ultimate markers of end-organ damage. Some of 
these biomarkers may also be candidates for therapeutic intervention. 
 
In the case of TBI, primary brain injury consists 
primarily of unavoidable brain damage that 
occurs at the immediate moment of impact, 
resulting in the disruption of brain parenchyma 
and cerebral blood vessels. This injury is 
further classified into focal versus diffuse 
injury. A secondary brain injury develops in the 
minutes to months following the original insult, 
progressively contributing to worsened 
neurological impairment [153]. Death of 
resident cells of the central nervous system 
has traditionally been thought to take place in 
two phases: an early necrotic and an ongoing, 
long-term apoptotic phase [154,155]. 
 
Thirteen years after these two models 
regarding the pathophysiology of T/HS and 
TBI were proposed, the question arises of how 
the clinical community has benefited from 
these two theoretical models, with regard to 
decreasing patient mortality post-traumatic 
injury; we will attempt to address this thorny 
question in this review. We know that the post-
traumatic inflammatory process occurs at 
multiple scales and involves the activation of 

signaling pathways that mobilize inflammatory 
cells, and stimulate the secretion of multiple 
inflammatory mediators/biomarkers. The 
complexity of this response has stymied 
attempts at therapeutic modulation of trauma-
induced inflammation, resulting in a dearth of 
therapeutic options, though, as we discuss 
below, novel approaches from the systems 
biology field may help in deciphering this 
complexity [11,89,108]. 
 
Cytokines are a broad class of protein 
hormones that mediate inflammatory and 
immune responses in a complex, context-
sensitive manner [12,88] (Fig. 3). Not 
surprisingly, cytokines play a major role in the 
body’s response to T/HS and TBI [107,109]. 
Major cytokines that participate in the 
response to trauma include tumor necrosis 
factor–alpha (TNF-α), interleukin-1 beta (IL-
1β), IL-2, IL-6, IL-8 [20,24,25], IL-4 [26] and 
recently IL-18 [27]. On the other hand, the 
cytokine IL-10 counteracts the effects of the 
pro-inflammatory cytokines IL-1, IL-6 and TNF-
α in various contexts [28], including severe 
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hemorrhagic shock [29]. Unlike septic shock, 
where the cascade of cytokines is well defined, 
the role of cytokines in trauma and 
hemorrhagic shock is not well elucidated, the 
experimental and clinical data are conflicting 
[7], and the response in humans (as opposed 
to animal models of T/HS) is still poorly 
understood [30]. Circulating levels of cytokines 
have been detected in animal models and in 
patients with severe sepsis, and these levels 
have some correlation with outcome [31].  
Production of the free radical nitric oxide (NO), 
which is produced in inflammatory settings by 
the enzyme inducible NO synthase (iNOS) 
[110], was shown to be a central mediator of 
post-T/HS inflammation in mice [111]. In 
human trauma patients, circulating NO 
reaction products reflect the severity of injury 
during the first two hours after the traumatic 
insult, suggesting that increased NO 
production might play a role in the very early 
post injury period [48]. 
 
Chemokines represent a class of cytokine-like 
immune modulators that are gaining attention 
as potential therapeutic targets for various 
inflammatory diseases [112,113] (Fig. 3). 
Chemokines are produced by a variety of 
immune cells (innate and adaptive immunity) 
such as macrophages, lymphocytes, 
neutrophils and dendritic cells that mediate 
various functions of these cells, including 
recruitment of other cells [90]. Chemokines 
have been the focus of intense study in 
relation to T/HS.  The complex interaction 
between cytokines and chemokines may 
underlie the crucial role of these inflammatory 
modulators in the inflammatory process 
following T/HS and TBI [109] and in other 
disease setting such as tumors, infection, and 
autoimmune disease [49]. Indeed, chemokines 
initiate recruitment of peripheral leukocytes 
after TBI, and evidence now exists for their 
intra-cerebral production [153,156,157]. 
 
Among chemokines, Macrophage 
inflammatory protein-1 alpha (MIP-1α) appears 
to orchestrate both acute and chronic 
inflammatory host responses at the site of 
injury or infection, mainly by recruiting 
inflammatory cells [49,50].  Additionally, MIP-
1α mediates an extensive repertoire of pro-
inflammatory activities, including stimulating 
the secretion of TNF-α, IL-1, and IL-6 by 
peritoneal macrophages [91]. Studies in mice 
have shown that short-term manipulation of 
MIP-1α following T/HS might be advantageous 
for diminishing the inflammatory response and 
improving vital organ dysfunction. As in most 
cases of therapeutic immunomodulation, 

inhibition of MIP-1α is a two-edged sword, in 
this case an increased risk of late infection 
[49]. 
 
Monocyte chemoattractant protein (MCP-1), 
Macrophage Inflammatory Protein-1 beta 
(MIP-1β), Regulated on Activation Normal T 
Cell Expressed and Secreted (RANTES), 
Eotaxin, Interferon-inducible Protein 10 (IP-
10), Monokine Induced by Gamma Interferon 
(MIG), and IL-8 are chemokines that may offer 
novel therapeutic or diagnostic targets for 
T/HS. 
 
Pathogen-associated molecular patterns 
(PAMPs), damage-associated molecular 
patterns (DAMP’s, also known as alarmins), 
and their receptors (e.g. Toll-like receptors 
[TLR]-2 and -4; Receptor for Advanced 
Glycation End products [RAGE]) represent a 
parallel and perhaps integrative [114]  system 
that is turned on during infection as well as 
tissue injury, including T/HS [92] and perhaps 
also TBI [115] (Fig. 3). PAMPs encompass a 
diverse set of microbial molecules that share 
various recognizable biochemical features that 
alert the organism to intruding pathogens 
[92,93]. Such exogenous PAMPs are 
recognized by cells of the innate and acquired 
immune system, primarily through TLRs, which 
activate several signaling pathways among 
which NF-κB is the most distinctive [92]. For 
example, gram-negative bacterial 
lipopolysaccharide (LPS) is the prototypical 
PAMP [116]. 
 
In an analogous fashion, DAMPs are produced 
by injured tissue and stimulate or propagate 
inflammation through the production of 
cytokines; in this way, DAMPs play an 
important role in the pro-inflammatory cascade 
of innate immunity [92 95] (Figs. 2 and 3). 
Molecules in this class of inflammatory 
mediators include High-mobility Group Box 1 
(HMGB1), S100A and B, Uric acid, IL-1α, heat 
shock proteins, and a growing list of additional 
molecules (Fig. 3). HMGB1 is produced in 
diverse settings such as infection, trauma, 
ischemia, T/HS, and TBI, which may contribute 
to the pathogenesis of severe sepsis along 
with other early, classical pro-inflammatory 
cytokines such as TNF-α and IL-1β [94]. In 
animal studies, HMGB1 was shown to be a 
key mediator of inflammation in models of 
sterile injury, including hemorrhagic shock 
[99,100]. Serum HMGB1 concentrations were 
significantly increased 16-32 h after exposure 
to lipopolysaccharide, and systemic 
administration of HMGB1 was lethal [105]. 
Antibodies to HMGB1 were shown to be 
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protective even in the setting of established 
septic shock in mice [117]. 
 
ANIMAL MODELS OF TH/S AND TBI 
Traumatic hemorrhage can be a consequence 
of direct injury to blood vessels, with massive 
bleeding, or as a result of diffuse bleeding  
secondary to coagulopathy in vessels too 
small and too numerous for surgical 
management [51]. In the last few decades, the 
pathophysiology of the systemic response to 
T/HS has been studied extensively in an 
attempt to elucidate the hemodynamic 
mechanisms and immunological alterations 
associated with T/HS. However, translating 
these experimental findings into clinically 
applicable therapy has proven difficult, and 
investigators in this field are challenged by two 
sometimes mutually incompatible goals. 
Researchers desire to minimize the animal-to-
animal variability and at the same time seek to 
simulate clinical conditions. Ideally, the 
experimental setup mimics the clinical situation 
associated with hemorrhagic shock in the 
trauma patient, while providing the controlled 
conditions that maximize reproducibility and 
standardization. There are three common 
variants of preclinical animal models, which all 
have their advantages and disadvantages. 
These experimental preparations are the 
uncontrolled hemorrhage model and the 
controlled hemorrhage model that is divided 
into two: the fixed pressure regimens, and the 
fixed volume models. 
 
The model that best reflects the clinical setting 
is the uncontrolled hemorrhage model. 
Although the standardization and 
reproducibility of this model is poor, it can be 
combined with organ and tissue injury, and 
allows for assessment of compensatory 
mechanisms. On the other hand, controlled 
hemorrhage offers a much better management 
of the degree of shock induced. In fixed 
volume model, animals are bled to a fixed 
amount of blood, usually based on the weight 
of the animal. It is not as clinically relevant as 
the uncontrolled hemorrhage model, but one 
can achieve a reasonably good management 
of the degree of shock induced [32]. In a fixed 
pressure model, also called “Wiggers model”, 
blood pressure is monitored and blood is 
removed or reinfused to achieve a fixed 
pressure [33]. In these models, the degree and 
duration of hypotension can be controlled by 
using a variable stress (blood loss) to maintain 
a constant level of response (blood level). 
However, the clinical comparability is poor and 
animals often need to be heparinized. Heparin 
has been shown to confound results in 

experimental models of hemorrhagic shock 
like release of catecholamine’s and alter 
cytokine levels [34,35]. Recent advances in 
computerized automation, however, raise the 
possibility that very precise hemorrhage can 
be carried out in both rats [118] and mice 
[119]. 
 
Animal models of TBI include both paradigms 
of focal injury such as closed cortical impact, 
fluid percussion, or stab wound injury [177], as 
well as models that involve diffuse injury that 
occurs from the tissue distortion, or shear, 
caused by inertial forces present at the 
moment of injury [177,178]. These are most 
commonly separated into four main 
pathologies: traumatic axonal injury (TAI), 
diffuse hypoxic brain damage, diffuse brain 
swelling and diffuse vascular injury, which 
seems to be the worst of the four [177-179]. In 
these animal models, IL-1β and TNF-α have 
been implicated as primary pro-inflammatory 
cytokines, while a potentially beneficial, anti-
inflammatory role has been ascribed to IL-10. 
Interleukin-1β has been characterized 
extensively in animal models of TBI as a 
promoter of neuroinflammation [158,159]. The 
neuronal damage resulting from IL-1β release 
appears to be indirect, due to synergistic 
action with other pro-inflammatory cytokines 
such as TNF-α [160, 161].  Like IL-1β, TNF-α 
has been regarded as a purely pro-
inflammatory cytokine in the short history of 
TBI research [153]. The time course of release 
of TNF-α has is remarkably consistent across 
experimental paradigms of focal TBI in rodents 
(closed cortical impact, fluid percussion, or 
stab wound injury), with detectable levels at 1 
h post-injury, maximal concentration at 3-8 h, 
and a decline in release by 24 h within the 
brain [162,163].  In diffuse injury models, 
serum levels of TNF-α rise within 24 h with an 
absence of expression in brain tissue, 
suggesting that diffuse injury induces a 
different immune response [164]. Similar to 
TNF-α, IL-6 has shown to play a role in 
neuroinflammation that is detected by 1 h post-
injury in animal models, followed by a peak 
concentration between 2 and 8 h 
[153,165,166]. On the anti-inflammatory side, 
experimental studies have demonstrated a 
beneficial effect of IL-10, with exogenous 
administration of this cytokine aiding 
neurological recovery and reducing pro-
inflammatory cytokine expression [167]. 
 
HUMAN STUDIES OF T/HS 
Translational research aims to apply scientific 
discoveries in basic science into the clinical 
level hoping to provide measures that predict 
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outcome and to decrease the mortality rate in 
humans [120]. In the setting of T/HS and TBI, 
initial efforts to understand the role of 
cytokines focused on post-traumatic blood 
levels and pharmacological therapy aimed at 
enhancing the protective cytokines and 
inhibiting the damaging cytokines are 
underway and have shown some improved 
survival rates in experimental animals [36]. 
Conclusions from these studies were that, at 
low concentrations, cytokines are important to 
the host response to trauma whereas in higher 
concentrations they are deleterious [37]. The 
best characterized and, apparently, earliest 
and most fundamental cytokine in the trauma-
induced pro-inflammatory cascade is TNF-α. 
TNF-α triggers the production of other 
cytokines, which amplify and propagate the 
inflammatory response [96] where raised 
plasma TNF-α have been found in 
hemorrhagic shock patients [97,98]. TNF-α 
also participates in the generation of free 
radicals such as NO [110,121]. Clinical studies 
have demonstrated that levels of several 
inflammatory mediators, such as IL-6, IL-8 and 
IL-10, correlate closely with severity of injury 
and complication rates [101-104]. From the 
family of DAMPs, serum HMGB1 was 
significantly increased in patients with sepsis, 
and the highest concentrations were observed 
in samples from patients who died [106].  
Recent studies in HS patients suggested that 
HMGB1 may be involved in the pathogenesis 
of human HS outcome [106], though further 
studies are needed to determine HMGB1 role 
in the inflammatory response to trauma. We 
have demonstrated recently that mean post-
T/HS HMGB1 levels samples within the first 24 
h were higher in non-survivors vs. survivors, 
and that these levels correlated with various 
indices of injury severity including Marshall 
Score, creatinine, and circulating liver 
transferases [122]. 
 
Various intrinsic factors such as age, gender, 
race, body temperature, resuscitation, and 
hypotensive period, among others, play a role 
in how the body responds to acute traumatic 
injury. In addition, aspects of the injury itself 
(assessed clinically as ISS score, Marshall 
score, lactate, and base deficit), as well as 
treatment with agents such as inotropes, are 
additional important variables that impact 
clinical outcomes. It is daunting to attempt to 
study this multitude of variables in the acute 
clinical setting, and thus they are often 
examined separately.  For example, the effect 
of aging on the immune response to traumatic 
injury has been studied. The inflammatory 
response becomes radically altered during the 

process of aging [38-41]. Indeed, the two 
processes (inflammation and aging), have 
prompted some authors to coin the term 
“inflamm-aging” for this complex process [39]. 
However, the characteristics of the aged 
inflammatory response vary occasionally 
between rodents (the experimental animals 
typically used for studies of inflammation) and 
humans. Interestingly, inflammation in the 
aged is characterized by a confounding array 
of alterations in cytokine production rather 
than a clear-cut increase or decrease.  Several 
studies in vitro have reported enhanced 
production of IL-6, TNF-α and IL-1β in elderly 
human peripheral blood mononuclear cells 
compared to younger controls after 
inflammatory stimulation [42]. In contrast, and 
illustrating the complex interplay of age and 
gender, spontaneous production of IL-8 by 
elderly males is lower than that produced by 
elderly females and young controls [43]. 
Furthermore, there is a lower degree of in 
vitro-stimulated production of the chemokines 
MIP-1α, RANTES and IL-8 by natural killer 
cells from elderly donors compared to younger 
ones [44]. Zhang et al [45] showed elevated 
serum levels of cytokines, including IFN-α, 
IL12p40 and TNF-α in aged compared with 
young mice. Others have also shown that 
LPS-induced cytokine production is increased 
in the serum of aged mice [46,47]. 
 
Studies focused on gender–specific 
differences in the response to traumatic injury 
in animal models suggest that this dimorphic 
response is, at least in part, based on the 
levels of estrogen, testosterone, or their 
derivatives [52-54]. In this respect AET (5-
androstene-3B, 7B, 17B-triol) administered 
subcutaneously provided significant survival 
effect in a 40%-volume hemorrhage trauma 
model in rats. This was the first study to report 
the ability of AET to improve survival after 
traumatic shock [55].  A clinical study provided 
evidence for differences in the early cytokine 
response between females and males after 
injury, with males having persistently elevated 
IL-6 cytokine expression over time as 
compared to similarly injured females [56]. An 
alternative hypothesis states that X-linked 
genetic differences between males and 
females, independent of hormonal status, 
responsible for these gender-based differential 
outcomes after injury in humans [56,57,58]. 
These studies suggest a new avenue for T/HS 
research and interaction with the field of 
endocrinology. 
 
Clinical studies in TBI have also linked 
cytokines to outcome. For example, IL-1β 
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levels correlated with poor clinical outcome in 
either adult or pediatric population. Patients 
with elevated cerebrospinal fluid (CSF) levels 
of IL-1β tended to have significantly poorer 
Glasgow Outcome Scores [168,169]. TNF-α in 
both serum and CSF has been documented in 
clinical settings of patients with severe TBI 
[170].  Paradoxically, both neuroprotective and 
neurotoxic effects of TNF-α have been 
suggested in human TBI, in terms of the 
inverse relationship of TNF-α with the both 
pro-inflammatory IL-18 and the anti-
inflammatory IL-10 [171,172]. IL-6 is the 
cytokine found in the highest concentration in 
human CSF [171]. Measurements in a TBI 
population displayed maximal levels of IL-6 in 

the CSF between 3 and 6 days, with a steady 
decline in release thereafter [173]. 
 
Evidence for the intrathecal production of anti-
inflammatory cytokines in TBI patients also 
exists. For example, IL-10 was increased 
acutely within 24 h of injury, correlating with 
decreases in TNF-α. In addition, transforming 
growth factor-β1 (TGF-β1) was elevated in 
both CSF at day 1 and serum at 3 weeks post-
injury [153,171,174]. Interestingly, serum 
levels of IL-10 were elevated in both the 
severely head injured, as well as those 
suffering polytrauma, potentially rendering this 
cytokine a nonspecific marker of TBI as well as 
pointing to common mechanisms of injury 
response in T/HS and TBI [169,175,176]. 

 
Figure 4: A vision for the future of drug design for T/HS and TBI. The future of rational drug 
design for T/HS and TBI may involve the use of in silico (computer simulated) that would be based on 
a mechanistic understanding of the inflammatory response as well as pharmacokinetic and 
pharmacodynamic principles and used to determine the optimal properties, dosage, timing, and 
inclusion/exclusion criteria for a given drug candidate’s clinical trial. Key aspects of these simulations 
would be tested iteratively in cell culture experiments and pre-clinical animal models, streamlining the 
process (and reducing the time and cost) of clinical trial design and implementation. 
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SYSTEMS BIOLOGY APPROACHES CAN 
SHED INSIGHT INTO INFLAMMATION AT 
THE CELLULAR, TISSUE, ORGAN, AND 
ORGANISM LEVELS 
The acute inflammatory response is generally 
recognized as a complex system, both in 
structure and behavior. Understanding and 
potentially manipulating the acute 
inflammatory response requires an extension 
beyond the traditional scientific paradigm of 
analysis via sequential reductionist 
experimentation. Accomplishing this task 
requires a formal, explicit means of synthesis, 
heretofore an intuitive process carried out in 
the mind of the researcher. The emerging 
scientific discipline of systems biology, 
encompassing the search for information 
relating to the behavior of many biological 
components interacting in unison and often 
embodied in “-omics” technologies (genomics, 
proteomics, metabolomics, etc.) holds promise 
with regard to gaining definitive insights into 
biological processes [123-132]. Both genomic 
[81,133-138] and proteomic [115,139-143] 
approaches have begun to yield insights into 
the mechanisms of the response to T/HS. 
 
Computational simulations are often used to 
integrate genomic and proteomic information, 
and have been used extensively by 
researchers dealing with such complex 
dynamic systems as studied in many fields 
[59-62] but only recently in biology [63-67]. 
Both inflammation and associated processes 
(e.g. apoptosis and organ 
damage/dysfunction) have been studied at the 
molecular and cellular levels [68-71].  Given 
the central role of organ damage/dysfunction 
in acute illness [19], modeling at the tissue and 
organ level has also played an essential 
function, especially examining the issue of 
physiologic variability [73,74]. 
 
This type of modeling has been successful in 
yielding basic insights into acute inflammation 
[75-78] including quantitative insights into the 
biology underlying experimental paradigms of 
acute inflammation in animals [79-81]. A more 
recent concept has been that of “Translational 
Systems Biology” [11,72,82,108], which 
includes computational simulations of clinical 
trials [83-86], potential clinical diagnostics in 
the form of patient-specific models [144], 
streamlined usage of experimental animals 
[87], and rational device design [89]. Using 
these approaches, we have shed basic 
insights into the basic interactions of trauma 
with hemorrhage in mice [81], and have 
already begun to create patient-specific, 

predictive simulations in human T/HS [145] 
and TBI [146]. 
 
CONCLUSIONS AND FUTURE PROSPECTS  
New knowledge derived from a rich set of 
studies in cells, animals, and humans, 
combined with computational methods that are 
rapidly coming into use, promises to 
revolutionize the way in which clinical studies 
and clinical practice in T/HS and TBI are being 
conducted. We are rapidly gaining a new 
understanding of the complex interactions 
between injury and the inflammatory response 
and vice versa, and these new insights will 
hopefully serve as the foundation for improving 
patient care worldwide. We may envision a 
point at which an integrated, rational, and 
iterative program of simulated clinical trials, in 
vitro screening for new drug compounds, pre-
clinical studies, and human clinical trials will 
lead to a raft of new therapeutic options for 
T/HS and TBI (Fig. 4). This new frontier 
increasingly requires training not only in 
clinical medicine, but also in quantitative 
sciences, bioinformatics, and translational 
science. Moreover, this new approach 
highlights the need for inter- and multi-
disciplinary teams. Finally, emphasis should 
be placed on applying this new methodology 
to the difficult, complex clinical scenarios of 
combined T/HS and TBI, and especially 
integrating additional factors such as age, 
gender, genetics, and co-morbidities. Despite 
the many challenges that remain, we are 
optimistic that a bright future lies ahead for the 
care of traumatic injury and critical illness. 
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