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ABSTRACT 
 

This study discussed the concept of cointegration and the econometric analysis of 
non-stationary time- series in the context of Nigeria data. The outcome reveals a high 
degree of non-stationarity of Nigeria data and also show along –run relationship 
between corporation income tax and the variables identified as its determinants, 
namely, market capitalization and value of stock market transactions.  This is in 
conformity with the philosophy underlying the cointegration theory. Therefore, 
ignoring cointegration in non-stationary time series variables could lead to 
misspecification of the underlying process in the determination of corporate income 
tax in Nigeria. Thus, the study conclude that cointegration is greatly enhanced the 
existing dynamic econometric modeling of economic time series and should be 
considers nowadays as a very valuable part of the applied econometrician tool kit in 
analyzing economic problems for effective decision making. 
 

 
 

INTRODUCTION 
 

Greater portion of economic theory deals with long-run equilibrium 
relationships generated by market forces. In the same vain, most empirical 
econometric studies using time series can be interpreted as attempts to 
emphasis such relationships in a dynamic framework.  Conventional wisdom 
suggest that in order to apply standard inference procedures in such studies, 
the variables in the system needed to be stationary since the vast majority of 
econometric theory is built upon the assumption of stationarity. In line with 
this argument econometricians proceeded as if stationarity could be achieved 
by simply removing deterministric components of drifts and trends from the 
data. However, stationary series should at least have constant unconditional 
mean and variance over time, a condition which hardly appears to be satisfied 
in economic theory even after removing those deterministic terms. Those 
problem were somehow disregarded in applied econometric work until 
Granger and Newbold (1974) and Nelson and Plosser (1982) call the 
attention of many to the econometric implications of non-stationarity and the 
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dangers of running spurious regressions. In particular, most of the attention 
focused on the implications of dealing with integrated variables which are a 
specific class of non-stationary variables with important economic and 
statistical properties. These are derived from the presence of unit roots which 
give rise to stochastic trends, as opposed to pure deterministic trends, with 
innovations to an integration process being permanent rather than transitory. 
        The presence of at least one or more unit roots in economic time series 
is implied in many economic models. Among them, there are those based on 
the rational use of available information or the existence of very high 
adjustment costs in some markets. Interesting examples include stock prices, 
exchange rates, money velocity, interest rate, corporate income tax, etc and, 
perhaps the most popular, the implications of the permanent income 
hypothesis for real consumption under rational expectations.  
        Following the influential approach by Box and Jenkins (1970), 
statisticians had advocated transforming integrated time series into stationary 
ones by successive differencing of the series before modelization. Therefore, 
in their perspective removing unit roots through differencing ought to be a 
pre-requisite for regression analysis. However, Sargan (1964), Hendry and 
Mizon (1978) and Davidson et al. (1978), among others, started to criticized 
on a number of grounds the specification of dynamic models in terms of 
differenced variables only, especially because of the difficulties in inferring 
the long-run equilibrium from the estimated model. After all, if deviation 
from that equilibrium relationship affect future changes in a set of variables, 
omitting the former, i.e, estimating a differenced model, should entail a 
misspecification error. However, for some time it remained to be well 
understood how both variables in differences and levels could coexist in 
regression models.  
        Granger (1981), relying on the previous ideas, clarified the confusion by 
pointing out that a vector of variables, all which achieve stationarity after 
differencing, could have linear combinations which are stationary in levels. 
Later, Engle and Granger (1987) were the first to formalize the idea of 
integrated variables sharing an equilibrium relation which turned out to be 
either stationary or have a lower degree of integration than the original series. 
They denoted this property by cointegration, signifying co-movements 
among trending variables which could be exploited to test for the existence of 
equilibrium relationships within a fully dynamic specification framework. In 
this sense, the basic concept of cointegration applies in the variety of 
economic models including the relationships between interest rate policy and 
domestic investment capital and output, real wages and labour productivity, 
nominal exchange rates and relative prices, consumption and disposable 
income, money velocity, etc. 
        In view of the strength of these ideas, substantial literature on 
cointegration and its application to solving economic problems has developed 
over the last decade. In this section we will explore the basic conceptual 
issues and discuss related economietric techniques, there in. section 2 
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provides some implications of cointegration and the basic estimationand 
testing procedures in a multivariate equation framework. 
 In Section 3, we present an empirical evidence using Nigerian data. 
Finally, Section 4 draws some concluding remarks.  
 
Unit Roots and Cointegration 
 
World (1938) in his decomposition theorem states that a stationary time 
series process, after removal of any deterministic components, has an infinite 
moving average (MA) representation which, in turn, can be represented by a 
finite autoregressive moving average (ARMA) process. However, as 
mentioned in the Introduction, many time series need to be appropriately 
differenced in order to achieve stationarity. From this comes the definition of 
integration: a time series is said to be integrated of order d, in short, I(d), if it 
has a stationary, invertible, non-deterministic ARMA representation after 
differencing d times.  A white noise series and a stable first-order 
autoregressive AR (1) process are well known examples of I(0) series, a 
random walk process is an example of an I(I) series, while accumulating a 
random walk gives rise to an I(2) series, etc.  
        Consider now to time series   and   which are both I (d) (i.e., they 
have compatible long-run properties). In general, any linear combination of 

  and    will be also I (d). However, if there exists a vector (I, - β)’, such 
that the linear combination  

 -------------------------------------------------------------------
-------------(1) 
Is I(d – b), d > b > 0, then, following Engle and Granger (1987),  and  
are defined as cointegrated of order (d,b)  

 call the cointegrating vector. 
        Several features in (1) are noteworthy. First, as defined above 
cointegration refers to a linear combination of nonstationary variables. 
Although theoretically it is possible that nonlinear relationships may exist 
among a set integrated variables, the econometric practice about this more 
general type of cointegration is less developed. Second, note that the 
cointegrating vector is not uniquely defined, since for any nonzero value of Ψ, 
(Ψ,- Ψβ)’ is also a cointegrating vector. Thus, a normalization rule needs to 
be used; for example Ψ-1 has been chosen in (1). Third, all variable must be 
integrated of the same order to be qualified to form a cointegrating 
relationship. Notwithstanding, there are extensions of the concept of 
cointegration, called multicointegration, when the number of variables 
considered is larger than two and where the possibility of having  variables 
with different order of integration can be addressed (Granger and Lee, 1989). 
For example, in a trivariate system, we may have that  and   are I(2) 
and  is  I(1);  if  and    are CI(2,1), it is possible that the 
corresponding combination of  and   which achieves that property be 
itself cointegrated with   giving rise to an I(o) linear combination among 
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the three variables. Fourth, and most important, most of the cointegration 
literature focuses on the case where variables contain a single unit root, since 
few economic variables prove in practice to be integrated of higher order. If 
variables have a strong seasonal component, however, there may be unit 
roots at the seasonal frequencies,. Hence, the remainder of this section will 
mainly focus on the case of CI (I,I) variable, so that zt  in (1) is I(0) and the 
concept of cointegraion mimics the existence of a long-run equilibrium to 
which the system converges over time. If, e.g, economic theory suggests the 
following long-run relationship between  and , 

 = α + ’---------------------------------------------------------------------(2) 
Then zt can be interpreted as the equilibrium error (i.e., the distance that the 
system is away from the equilibrium at any point in time). Note that a 
constant term has been included in (1) in order to allow for the possibility 
that zt may have nonzero mean. For example, a standard theory of spatial 
competition argues that arbitrage will prevent example, a standard theory of 
spatial competition argues that arbitrage will prevent prices of similar 
products in different location from moving too far apart if the prices are 
nonstationary. However, if there are fixed transportation costs from one 
location to another, a constant term needs to be included in (I). 
        At this stage, it is important to point out that useful way to understand 
cointegrating   relationships is through the observation that CI(I,I) variables 
must share a set of stochastic trends. Using the example in (1), since  and 

 are I(I) variables, they can be decomposed into an I(I) component (say, a 
random walk) plus an irregular I(O) component (not necessarily white noise). 
Denoting the first components by , we can write. 

 =  +  --------------------------------------------------------------------(3) 
 =  +  ------------------------------------------------------------------ (4) 

        Since the sum of an I(I) process and an I()) process is always I(I), the 
previous representation must characterize the individual stochastic properties 
of  and . However, if  and  is I(0), it must be that , 
annihilating the I(I) component in the cointegrating relationship. In other 
words, if  and  are CI(1,1) variables, they must share (up to a scalar) 
the same stochastic trends,  denoted as common trend, so that  =  and 

 = . As before, notice that if  is a common trend for  and , , 
will be a common trend implying that a normalization rule is needed for 
identification. Generalizing the previous argument to a vector of 
cointegration and common trends, then it can be proved that if there are n – r 
common trends among the n variables, there must be r cointegrating 
relationships. Note that 0< r>n, since r = 0 implies that each series in the 
system is governed by a different stochaistic trend and that r = n implies that 
the I(0) instead of I(I). These properties constitute the core of two important 
dual approaches toward testing for cointegration, namely, one that tests 
directly for the number of cointegrating vectors (r) and another which test for 
the number of common trend (n – r). 
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Engle and Granger (1987) have shown that if  and  are cointegrated 
CI(I,I), ten there must exist a so-called vector error correction model (VECM) 
representation of the dynamic system governing the join behaviour of  and 

 over time of the following form: 

 

 
Where  denotes the first-order time difference (i.e.,  ad 
where the lag lengths Li,I = 1, …, 4 are such that the innovations 

 are i.i.d. (0. ).  
        Furthermore, they proved the converse result that a VECM generates 
cointegrated CI(1,1) series as long as the coefficients on zt – 1 in (the so-called 
loading or speed of adjustment parameters) are not simultaneously equal to 
zero.  
        Note that the term zt-1 in equation (5) and (6) represents the extent of the 
disequilibrium levels of  in the previous period. Thus, the VECM 
representation states that changes in one variable not only depends on 
changes of the  other variables and its own past changes, but also on the 
extent of the disequilibrium  between the levels of . For example, if 

=1 in (1), as many theories predict when  are taken in 
logarithmic form, then if  in the past , then 

 will imply that, everything else equal, y1 would fall and 
y2 would rise in the current period, implying that both series adjust toward its 
long-run equilibrium. Notice that both   cannot be equal to zero. 
However, if  then all of the adjustment falls on x1, or 
vice versa if  Note also that the larger are the speed of 
adjustment parameters (with the right signs), the greater is the convergence 
rate toward equilibrium. Of course, at least one of those terms must be 
nonzero, implying the existence of Granger causality in cointegrated systems 
in at least one direction. Hence, the appeal of the VECM formulation is that it 
combines flexibility in dynamic specification with desirable long-run 
properties: it could be seen as capturing the transitional dynamics of the 
system to the long-run equilibrium suggested by economic theory (see, e.g., 
Hendry and Richard, 1983). Further, if cointegration exists, the VECM 
representation will generate better forecasts than the corresponding 
representation in first-differenced form (i.e., wit , 
particularly over medium and long-run horizons, since under cointegration zt 
will have a  finite forecast error variance whereas any other linear 
combination of the forecasts of the individual series in xt  will  have infinite 
variable; (Engle and Yoo (1987). 
        Based upon the VECM representation, Engle and Granger (1987) 
suggest a two-step estimation procedure for dynamic modeling which has 
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become very popular in applied research. Assuming that xt , then the 
procedure goes as follows:  
(i) First, in order to test whether the series are cointegrated, the 
cointegration regression.  

 -------------------------------------------------------------------(7) 
is estimated by ordinary least squares (OLS) and it is tested whether the 
cointegrating residuals  are I(1). To do this, we performa 
Dickey-Fuller test on the residual sequence  to determine whether it has a 
unit root. For this, consider the autoregression of the residuals.  

 ------------------------------------------------------------------(8) 
where no intercept term has been included since then , being residuals 
from a regression equation with a constant term, have zero mean. If we can 
reject the null hypothesis that  against the alternative   at a 
given significance level, we can conclude that the residual sequence is I(0) 
and, therefore, that  are CI (1,1). It is noteworthy tat for carrying 
out this test it is not possible to use the Dickey-Fuller table themselves 
since  are a generated series of residuals from fitting regression (7). The 
problem is that the OLS estimates of   and  are such that they minimize 
the residual variance in (7) and thus prejudice the testing procedure toward 
finding stationarity. Hence, larger (in absolute value) critical levels than the 
standard Dickey-Fuller ones are needed. In this respect, MacKinnon (1991) 
provides appropriate tables to test the null hypothesis  for any sample 
size and also when the number of regressors in (7) is expanded from one to 
several variables. In general, if the  sequence exhibits serial correlation, 
then an augmented Dickey-Fuller (ADF) test should be used, based this time 
on the extended autoregression.  

 
where again, if , we can conclude that  and  are CI(1,1). 
Alternative version s of the test on   being I(I) versus I(0) can be found in 
Philips and Ouliaris (1990). Banerje et al. (1997), in turn, suggest  another 
class of tests based this time on the direct significance of the loading 
parameters in (5) and (6) where the β coefficient  is estimated alongside the 
remaining parameters in a single step using nonlinear least squares (NLS). 

         If we reject that  are I(1), Stock (1987) has shown that the OLS 
estimate of β in equation (7) is super-consistent, in the sense that the OLS 
estimator  converges in probability to its true value β at a rate proportional 
to the inverse of the sample size,  T-1, rather that at T-1/2 

 as is the standard 
result in the ordinary case where  are I(0). Thus, when T grows, 
convergence is much quicker in the CI(1,1) case. The intuition behind this 
remarkable result can be seen by analyzing the behaviour of  in (7) (where 
the constant is omitted for simplicity) in the particular case where 

, and that  and L3 = L4 = 0, so that  is 
assumed to follow a simple random walk 
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’ -------------------------------------------------------------------------(10) 
Or, integrating (7) backwards with   

 

with  possible correlated with zt. In this case, we get var (x2t) = t var (  
exploding as T . Nevertheless, it is not difficult to show that  

  converges to a random variable. Similarly, the cross-product 
 will explode, in contrast to the stationary case where a 

simple application of the Central Limit Theorem implies that it is 
asymptotically normally distributed. In the I(I) case,  
converges also to a random variable. Both random variables are functionals 
of Brownian motions which will be donated henceforth, in general, as f(B). A 
Brownian motion is a zero-mean normally distributed continuous (a.s) 
process with independent increments, i.e., loosely speaking, the continuous 
version of the discrete random walk (see Philips 1987). 

 Now, from the expression for the OLS estimator of , we obtain 
 

                           ---------------------------------- (12) 
 
 
and, from the previous discussion, it follows that  
 
 
 
 
 

                     -----------------------------------------------(13) 
 
 
 
is asymptotically (as T↑∞) the ratio of two non-degenerate random variables 
that in general, is not normally distributed. Thus, in spite of the super-
consistency, stand inference cannot be applied to  except in some restrictive 
cases which are discussed below. 
(ii) After rejecting the null hypothesis that the cointegrating residuals in 
equation (7) are I(1), the   term is included in the VECM system and the 
remaining parameter are estimated by OLS. Indeed, given the 
superconsistency of , Engle and Granger (1987) show that their asymptotic 
distributions will be identical to using the true value of β. Now all the 
variables in (3) and (4), are I(0) and conventional modeling strategies (e.g., 
testing the maximum lag length, residual autocorrelation or whether either 



Cointegration and Econometric Analysis of Non-Stationary Data in Nigeria 

 201

 or  is zero, etc) can be applied to assess model adequacy; (see 
Lütkepohl, 1999). 
        In spite of the beauty and simplicity of the procedure, however, several 
problems remain. In particular, although   is supper-consistent, this is an 
asymptotic result and thus biases could be important in finite samples. For 
instance, assume that the rates of convergence of two estimators are T-1/2 and 
1010 T-1. Then, we will need huge sample sizes to have the second estimator 
dominating the first one.  In this sense, Monte Carlo experiments by Banerjee 
et al. (1993) showed that the biases could be important particularly when zt 
and  are highly serially correlated and they are not independent. Phillips 
(1991), in turn, has shown analytically that in the case where x2t and zt are 
independent at all leads and lags, the distribution in (3) as T grows behaves 
like a Gaussian distribution (technical is a mixture of normal’s) and, hence, 
the  distribution of the t-statistic of β is also asymptotically normal. For this 
reason, Phillips and Hansen (1990) have developed an estimation procedure 
which corrects for the previous bias while achieves asymptotic normality. 
The procedure, denoted as a fully modified ordinary least squares estimator 
(FM-OLS), is based upon a correction to the  OLS estimator given in (12) by 
which the error term zt is conditioned on the whole process 

 and, hence, othogonality between regressors and 
disturbance is achieved by construction. For example, if zt and ε2t in (7) and 
(10) are correlated white noises with , the FM-OLS 
estimator of β, denoted , is given by 
 

                             -----------------------------------------------------------(14) 
 

 
 
 
where  is the empirical counterpart of  obtained from regressing the OLS 
residuals  on . When zt and   follow more general process, the 
FM-OLS estimator of β is similar to (14) except that further corrections are 
needed in its numerator. Alternatively, Saikkonen (1991) and Stock and 
Watson (1993) have shown that, since  is a two-sided 
filter in the lag operator L, regression of x1t on x2t and leads and lags of  
(suitably truncated), using either OLS or GLS, will yield an estimator of β 
which is asymptomatically equivalent to the FM-OLS estimator. The 
resulting estimation approach is known as dynamic OLS or, DGLS. 

  In the beginning of this section we confined the analysis to the case 
where there is at most a single cointegrating vector in a bivaiate system, this 
set-up is usually quite restrictive when analyzing the cointegrating properties 
of an n-dimensional vector of I(1) variables where several cointegration 
relationships may arise. For example, when dealing with a trivariate system 
formed by the logarithms of aggregate corporate income tax, market 
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capitalization and value of stock transaction, there may exist two 
relationships, one determining corporate income tax equation and another 
determining capital market equation. In furtherance to this, we comment on 
some of the popular estimation and testing procedures for cointegration in 
this general multivariate context which will be denoted as system-based 
approaches has presented in the table below.   

  In generally, if yt now represents a vector of n I(1) variables its 
World representation (assuming again no deterministic terms) is given by  

 ---------------------------------------------------------------------(15) 
where now  being the covariace matrix of  and C(L) an ( n x 
n) invertible matix of polynomial lags, where the term “invetible” means that 

  has all its strictly larger than unity in absolute value. If there is a 
cointegrating (n x 1) vector, , then, premultiplying (11)  
yields 

--------------------------------------------------(16) 
where C(L) has been expanded around L = 1 using a first-order Taylor 
expansion and  can be shown to be an invertible lag matrix.  Since the 
cointegration property implies that  is I(0), then it must be that  
=0 and hence ∆ (= 1 – L) will cancel out on other sides of (16). Moreover, 
given that C(L) is invertible, then  has a vector autoregressive 
representation such that  

 
 ---------------------------------------------------------------------- (17) 

Where  being the ( ) identity matrix. Hence, we must 
have that  implying that  can be written as a linear 
combination of the elements  namely,  with  being another 

 vector. In the same manner, if there were r cointegrating vectors 
, then , where  and  are this time  

matrices which collect the  and  vectors. Matrix  is known as the 
 since its rows determine how man cointegrating 

relationships enter each of the individual dynamic equations in (17). Testing 
the rank of  or , which happen to be  and , respectively, 
constitutes the basis of the following two procedures:  
(i)  Johansen (1995) develops a maximum likelihood estimation procedure 
based on the so-called that, as the other 
methods to be later discussed, presents some advantages over the two-step 
regression procedure described in the previous section. Fist, it relaxes the 
assumption that the cointegrating vector is unique, and, secondly, it takes into 
account the short-run dynamics of the system when estimating the 
cointegrating vectors. The underlying intuition behing Johansen’s testing 
procedure can be easily explained by means of the following example. 
Assume tat  has a  representation, that is,  IN (17) is such 
that . Hence, the  process can be reparameterized in 
the  representation as  

------------------------------------------------------(18) 
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If  then  is  and there are no cointegrating 
relationship ,  whereas if rank . Likewise, alternative 
hypotheses could be designed in different ways; e.g., that the rank is  
or that it is . 
        Under the previous considerations, Johansen (1995) deals with the more 
general case where  follows a VAR(ρ) process of the form 
  -------------------------------(19) 
Which, as in (3) and (4), can rewritten in the ECM representation 
  ------------ (20) 
Where  

 
        In that respect, the Johansen’s approach allows to test restrictions on , 
B and   subject to a given number of cointegrating relationships. The insight 
to all these tests, which turn out to have asymptotic chi-square distributions, 
is to compare the number of cointegrating vectors (i.e. the number of 
eigenvalues which are significantly different from zero) both when the 
restrictions are imposed and when they are not. Since if the true cointegration 
rank is  only  linear combinations of the variables are stationary, one 
should find that the number of coiintegrating vectors does not diminish if the 
restrictions are not binding and vice versa. Thus, denoting by  and  the 
set of  eigenvalues for the unrestricted and restricted cases, both sets of 
eigenvalues should be  equivalent if the restrictions are valid. For example, a 
modification of the trace test in the form. 

 
will be small if the ’s are similar to the ’s whereas it be large if the 

 are smaller than the ’s. if e impose  restrictions, then the above test 
will reject the null hypothesis if the calculated value of (24) exceeds that in a 
chi-square table with  degree of freedom.  
        Most of the existing Monte Carlo studies on the Johansen methodology 
point out that dimension of the data series for a given sample size may pose 
particular problems since the number of parameters of the underlying  
models grows very large as the dimension increases. Likewise, difficulties 
often arise when, for a given  the lag length of the system,  is either over 
or under-parameterized. In particular, Ho and Sorensen (1996) and Gonzalo 
and Pitarakis (1998) show by numerical methods that the cointegrating order 
will tend to be overestimated as the dimension of the system increases 
relative to the time dimension, while serious size and power distortions arise  
when choosing too short and too long a lag length, respectively. Although 
several degrees of freedom adjustments to improve the performance of the 
test statistics have been advocated. (Reinsel and Ahn, 1992), researchers 
ought to have considerable care when using the Johansen estimator to 
determine cointegration order in high dimensional system with small sample 
sizes. Nonetheless, it is worth noticing that a useful approach to reduce the 
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dimension of the  system is to rely upon erogeneity arguments to 
construct smaller conditional systems as suggested by Ericsson (1992) and 
Johansen (1992a). Equally, if the  specification is not appropriate, 
Phillips (1991) and Saikkonen (1992) provide efficient estamtion of 
cointegrating vectors in more general time series settings, including vector 

 processes.  
(ii) As mentioned above, there is a dual relationship between the number of 
cointegrating vectors  and the number of common trends   in an 

dimensional system. Hence, testing for the dimension of the set of 
“common trends” provides an alternative approach to testing for the 
cointegration order in a  representation. Stock and Watson (1988) 
provide a detailed study of this type of methodology based on the use of the 
so-called Beveridge-Nelson (1981) decomposition. This works from the 
World representation of an  system, which we can write as in expression 
(15) with . As shown in expression (16),  can 
be expanded as , so that, by integrating (15),  
 
we get  --------------------------------------------------------(25)  
 
where  can be shown to be covariance stationary, and 

 is a latent or unobservable set of random walks which capture 
the  nature of the data. However, as mentioned above I the cointegration 
order is , there must be an  matrix such that  since, 
otherwise,  would be  instead of . This means that the 

 matrix cannot have full rank. Indeed, from standard linear 
algebra arguments, it is easy to prove that the rank of  is   
implying that there are only  independent common trends in the 
system. Hence, there exists the so-called 

of a cointegrated system, such that  
 

-------------------------------------------------------------------(26)  
 
Where  is an  matrix of loading coefficients such that  = 0 
and  is an  vector random walk. In other words,  can be written 
as the sum of  common trends and an  component. Thus, testing 
for ) a common trend in the system is equivalent to testing for  
cointegrating vectors. In this sense, Stock and Watson’s (1988) testing 
approach relies upon the observation that, under the null hypothesis, the first-
order authoregressive matrix of  should have  eigenvalues equal to 
unity, whereas, under the alternative hypothesis of higher cointegration order, 
some of those eigenvalues will be less than unit. It is worth noticing that 
there are other alternative strategies to identify the set of common trends, , 
which do not impose a vector random walk structure. In particular, Gonzalo 
and Granger (1995), using arguments embedded in the Johansen’s approach, 
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suggest identifying   as linear combinations of   which are not caused 
in the long-run by the cointegration relationship  these linear 
combinations are the orthogonal complement of matrix  in (20), 

 where  is an full ranked matrix, such that  
, that can be estimated as the last  eigenvectors of the 

second moments matrix  with respect to . Or instance, when 
some of the rows of matrix  are zero, the common trends will be linear 
combinations of those  variables in the system where the cointegrating 
vectors do no enter into their respective adjustment equations. Since common 
trends are expressed in terms of observable variables, instead of a latent set 
of random walks, economic theory can again be quite useful in helping to 
provide useful interpretation of their role. For example, the rational 
expectations version of the permanent income hypothesis of consumption 
stations that consumption follows a random walk whilst saving (disposable 
income minus consumption) is . Hus, if the theory is a valid one, the 
cointegrating vector in the system formed by consumption and disposable 
income should be  and it would only appears in the second 
equation (i.e , implying that consumption should be the 
common trend behind the nonstationary behaviour of both variables……….. 
will be located at time   where the inf of the  test is obtained. The work 
of Gregory and Hansen is opening an extensive research on analyzing the 
stability of the parameters of multivariate possibly cointegrated systems 
models like the  in (20). Further work in this direction can be found in 
Hansen and Johansen (1993), Quintos (1994) and Juhl (1997).  

 
Empirical Evidence from Nigerian Data 
 
Results of Stationary Tests  
 
Taking the Nigerian data into consideration, we present our estimated result 
of the model for the determinants of corporate income tax to enable us 
evaluate the results and then X-ray the findings in the context of 
cointegration theory in other for us to determine the extent of the non-
stationarity of the Nigerian data and its policy implications. The results of the 
unit root tests show that the three time series are non-stationary in levels (or 
log levels) but are stationary in first differences (or log differences). This is 
deduced from the fact that for levels  of the variables, the absolute value of 
the, ADF test statistics are less than the absolute value of the critical values 
of the ADF at 1%, 5% and 10% significance  levels respectively. However 
for the first differences of the variables the ADF test statistic of each is 
greater than the 5% and 10% critical value of the ADF statistic in absolute 
values. 
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Table 1: Test for Unit Root 
(A) At ordinary levels  

Variables ADF Order of Integration Decision Rules 
LN (CIT) -2.208534 1(0) Non stationary  
LN (VSM) -1.347236 1(0) Non stationary 

LN (MKCAP) 1.801015 1(0) Non stationary 
Rejection of Null hypothesis of unit  root at  
1% = * 
5% = ** 
10%  = **** 
The null hypothesis are all accepted at both 1, 5 & 10% levels of significance   

Source: Authors computation 
 
(B) At first differences 

Variables ADF Order of Integration Decision Rule 
∆LN (CIT) -3.200652 ** (***) 1(1) Stationary  

∆LN(VSM) -5.770307 * (** (***) 1(1) Stationary 

∆LN (MKCAP) -3.331303 ** (***) 1(1) Stationary 
Rejection of Null hypothesis of unit  root at  
*  = 1%  
** = 5% 
*** = 10%   

Source: Authors computation  
 
 
Therefore, the ADF test presented above justify the test for cointegration in 
the equation. The presence of cointegration makes it possible to estimate an 
error correction mechanism (ECM), which is a solution to the problem of 
spurious result associated with estimating equations involving time series 
variables. Based on the revelation of the presence of cointegration we reject 
the null hypothesis of no cointegration and conclude that the variables are 
cointegrated. The Johansen (1991) cointegration result presented in table (2) 
bellow was carried out on the residuals of the static cointegrating regression 
involving the non-stationary variable identified as the determinants of 
corporate income tax. The test results indicate that there are at most 3 
cointegrating vectors at 5% levels of significance. Following the decision 
rule for the Johansen cointegration tests, we reject the null hypothesis of no 
cointegration in the variables at this level of significance. Since there are at 
most 3 cointegrating vectors and 3 linear combinations of the variables that 
are stationary then all other linear combinations are non –stationary. The 
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results therefore suggest the presence of cointegration in the time series 
variables implying that the normalized cointegrating coefficient gives the 
long-run relationship in the variables. This is given by the solved static long-
run equation in table 2 above. This solved static long-run Corporate Income 
Tax (CIT) equation agrees with the ECM long-run run solution because the 
variables and its coefficients are the same in the equation. From our 
cointegrating test, it was seen that there are 3 cointegrating relationship and 
following Johansen (1988) and Johnnsen & Juelius (1990, 1992) 
representation theorem, the residual from the cointegrating regression is a 
valid error correction and the speed of adjustment, ρ in the equation is 
determined as the co-efficient of the error correction variable. If ρ is 
statistically equal to zero, the change in corporate Income tax does not 
respond at all to the deviation from the long-run equilibrium in periodt-1 
(Taylor and Sarno, 1997). 
 
Results from Cointegration and Error Correction Models 
 
Following our findings on the unit root test above that all the variables are 
integrated of order one 1(1) (or non-stationary), we therefore test for possible 
cointegration or non-stationarity among the variables. The result is presented 
in table 2 below. Adopting the general to specific framework, as discussed in 
the literature, we proceeded to estimate an over-parameterized error 
correction model of the determinant of corporate income tax from where a 
parsimonious (preferred) error correction model would be obtained. The 
attractiveness of the ECM is that it provides a framework for establishing 
links between the short-run and long run approaches to econometric 
modeling. Thus with the ECM, no information associated with variable first 
differencing is lost because the modeling technique incorporates both the 
short-run dynamics (i.e the first differences) and the long run information 
through the error correction term. 
 
Table 2:  Johansen Integration Tests Results. 
Test assumption: linear deterministic trend in the data 

Series: D(LOG(CIT),2) D(LOG(VSM),2)D(LOG(MKCAP),2)  

Lags interval: 1 to 1 
 Likelihood  5 percent 1 Percent  Hypothesized 
Eigenvalue Ratio Critical Value Critical Value No. of CE(s) 
0.931974 206.0351 29.68 35.65 None * 
0.863020 117.3357 15.41 20.04 At most 1** 
0.791478 51.73439 3.76 6.65 At most 2** 
* (**) denotes rejection of the hypothesis at 5% (1%) significance level 
L.R. test indicates 3 cointegrating equation(s) at 5% significance level 
CIT = -0.02 – 0.30D (LOG(VSM)) + 0.51D(LOG(MKCAP) 
SEE =           (0.04)                         (0.13) 
ECM =  CIT + 0.30 D (LOG(VM) – 0.51D (LOG(MKCAP) + 0.02 
Source: Authors’ computation.  
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Table 3: Overparameterized Error Correction Model Result  
Dependent Variable D(LOG(CIT)) 
 Method: Least Squares 
 Sample (adjusted): 1979 2007 
 Included observation: 29 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
C 1.482935 0.446505 3.3321204 0.1862 

D(LOG(CIT(-1))) -1917052 1.011150 -1.895912 0.3090 
D(LOG(CIT(-2))) 2.544865 1.455205 1.748802 0.3307 
D(LOG(CIT(-3))) 0.659098 0.651703 1.011347 0.4964 
D(LOG(CIT(-4))) -2.154549 1.048301 -2.055278 0.2883 
D(LOG(CIT(-5))) -2.928627 1.306852 -2.240979 0.2672 
D(LOG(CIT(-6))) 0.550164 0.844774  0.651257 0.6325 
D(LOG(CIT(-7))) -0.722709 1.145259 -0.631044 0.6416 
D(LOG(CIT(-8))) -1.935066 0.778936 -2.484241 0.2436 
D(LOG(VSM)) -0.036488 0.270592 -0.134846 0.9147 
D(LOG(VSM(-1))) -0.713130 0.235272 -3.032375 0.2028 
D(LOG(VSM(-2))) -1.170589 0.475373 -2.462465 0.2456 
D(LOG(VSM(-3))) -0.372936 0.223877 -1.665810 0.3442 
D(LOG(VSM(-4))) -0.445566 0.343046 -1.298852 0.4177 
D(LOG(VSM(-5))) 0.730112 0.334581 2.1821168 0.2736 
D(LOG(VSM(-6))) 0.629595 0.521879 1.206398 0.4406 
D(LOG(VSM(-7))) 0.236526 0.417841 0.566066 0.6721 
D(LOG(VSM(-8))) -0.799015 0.649376 -1.230435 0.4345 
D(LOG(MKCAP)) 2.065457 1.541821 1.339622 0.4082 
D(LOG(MKCAP(-1)) -1.079449 0.414267 -2.605684 0.2333 
D(LOG(MKCAP(-2))) 5.357992 1.882877 2.845641 0.2151 
D(LOG(MKCAP(-3))) 2.108849 1.528389 1.379785 0.3993 
D(LOG(MKCAP(-4))) 5.698041 2.144568 2.65964 0.2292 
D(LOG(MKCAP(-5))) 3.228460 1.580172 2.043107 0.2898 
D(LOG(MKCAP(-6))) -0.435148 0.902916 -0.481936 0.7141 
D(LOG(MKCAP(-7))) -0.888087 1.075159 -0.826005 0.5605 
D(LOG(MKCAP(-8)))  2.363000 2.150089 1.099024 0.4700 
ECM(-1) -0754984 0.403659 -1.870351 0.3126 
R-squared 0.984622 Mean dependent var  0.101369 
Adjusted R-squared  0.569426 S.D dependent var 0.219055 
S.E of regression 0.143740 Akaike info criterion -2.477883 
Sum of squared resid 0.020661 Schwarz criterion -1.157735 
Log likelihood 63.92930 F-statistic  2.371462 
Durbin-Watson stat 3,301777 Prob (F-statistic) 0.478414 

Source: Author’s Computation 2009. 
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Table 4:  Parsimonious Error Correction Model Result 
 
Dependent Variable D(LOG(CIT)) 
 Method: Least Squares 
 Sample (adjusted): 1979 2007 
 Included observation: 29 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
C  1.396254 0.186949  7.468645 0.0017 

D(LOG(CIT(-1))) -2.182790 0.428826 -5.090150 0.0070 
D(LOG(CIT(-2)))  3.111721 0.544682  5.712908 0.0046 
D(LOG(CIT(-3)))  0.405551 0.145569  2.785980 0.0495 
D(LOG(CIT(-4))) -2.599082 0.047257 -6.381919 0.0031 
D(LOG(CIT(-5))) -3.117954 0.559287 -5.574876 0.0051 
D(LOG(CIT(-6)))  1.027257 0.211089 4.866465 0.0082 
D(LOG(CIT(-8))) -7.733443 0.270556 -6.406963 0.0030 
D(LOG(VSM)) -0.190096 0.039995 -4.752957 0.0090 
D(LOG(VSM(-1))) -0.673377 0.093995 -7.164001 0.0020 
D(LOG(VSM(-2))) -1.193267 0.167918 -7.106241 0.0021 
D(LOG(VSM(-3))) -0.309789 0.059075 -5.244014 0.0063 
D(LOG(VSM(-4))) -0.561731 0.081364 -6.903942 0.0023 
D(LOG(VSM(-5)))  0.585121 0.11321 4.945180 0.0078 
D(LOG(VSM(-6)))  0.345155 0.079380 4.348110 0.0122 
D(LOG(VSM(-8))) -1.129662 0.188154 -6.003914 0.0039 
D(LOG(MKCAP))  2.652045 0.585785 4.527333 0.0106 
D(LOG(MKCAP(-1)) -1.024841 0.150633 -6.803557 0.0024 
D(LOG(MKCAP(-2)))  5.159129 0.784427 6.576943 0.0028 
D(LOG(MKCAP(-3))) 1.244508 0.297988 4.176365 0.0140 
D(LOG(MKCAP(-4))) 5.388727 0.780010 6.908537 0.0023 
D(LOG(MKCAP(-5))) 2.689161 0.380213 7.072779 0.0021 
D(LOG(MKCAP(-7))) -1.379423 0.370887 -3.719255 0.0205 
D(LOG(MKCAP(-8))) 3.397042 0.584581 5.811068 0.0044 
ECM(-1) -0.792024 0.147420 -5.372555 0.0058 
R-squared 0.978420 Mean dependent var  0.101369 
Adjusted R-squared  0.848940 S.D dependent var 0.219055 
S.E of regression 0.085139 Akaike info criterion -2.345925 
Sum of squared resid 0.028995 Schwarz criterion -1.167221 
Log likelihood 59.01591 F-statistic  7.556512 
Durbin-Watson stat 3.309724 Prob (F-statistic) 0.031018 

Source: Authors Computation, 2009. 
  
 
As earlier on mentioned, the presence of cointegration makes it possible to 
estimate an error correction model, which is a solution to the problem of 
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spurious result often associated with estimating equations involving time 
series variables. Therefore based on the result in table 3 above, we proceeded 
to re-estimate the over-parameterized model, adopting the general to specific 
approach and the summary of the result showing the parsimonious model is 
presented in table 4 above. An examination of the Parsimonious model in 
table 4 above shows that market capitalization and value of stock market 
transaction explains 98% of the variations in corporate income tax. (This is 
shown by the R2 value of 0.98). The overall regression was significant (This 
is shown by the F-ratio of 7.6) and the absence of serial correlation of 3.31. 
All the variables have the expected signs and are all significant at 1%, 5% 
and 10% level of significance respectively.  
        The coefficient of the error correction term is statistically significant and 
carries the expected negative sign at both 1%, 5% and 10% level of 
significance. However, the speed of adjustment is  rapid (fast) at 79.2% of 
the adjustment to equilibrium corporate income tax  implying that ignoring 
cointegration in non-stationary time series variables could lead to 
misspecification of the underlying process in the determination of 
corporation income tax in Nigeria. Finally, the result show along-run 
relationship between corporate income tax and the variables identified as its 
determinants namely, market capitalization and value of stock market 
transaction by firms in Nigeria.  
  

 
 

CONCLUDING REMARKS 
 
The wide gap in the past between the economic theorist, who had much to 
say about equilibrium but relatively less to say about dynamics and the 
econometrician whose models concentrated on the short-run dynamics 
ignoring the long-run equilibrium, has been bridged by the concept of 
cointegration. In addition to allowing the data to determine the short-run 
dynamics, cointegration suggest that models can be significantly improved 
by including long-run equilibrium conditions as suggested by economic 
theory. The Nigerian data applied in this study exhibit the features of 
cointgration theory  therefore the generic existence of such long-run 
relationships, in turn, should be tested using the techniques discussed in this 
study to reduce the risk of finding spurious conclusions associated with 
Nigeria data. The method of cointegration has greatly enhanced the existing 
methods of dynamic econometric modeling of economic time series as we 
can see from the Nigeria data applied here, and should be consider nowadays 
as a very valuable part of the practitioner’s toolkit in analyzing economic 
problems towards decision making. 
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