
 

 

 

Momona Ethiopian Journal of Science (MEJS), V6(1):120-130, 2014 ©CNCS, Mekelle University, ISSN:2220-184X 

Analysis of Nonlinear Dynamic Structures 

Hailay Kiros 

Department of Mechanical Engineering, Ethiopian Institute of Technology-Mekelle (EiT-M), P. 

O. Box: 3013, Mekelle University, Mekelle, Ethiopia (hailaykk@gmail.com,  

hailaykiros@yahoo.com) 

 

ABSTRACT 

It is probable that all practical engineering structures are nonlinear to some extent. In this paper 

work a two degrees of freedom nonlinear system with zero memory was simulated, modeled and 

analyzed to show their behavior for different conditions. The limit of chaos was also 

determined. To achieve these results simulation of dynamic systems was used and analyzed 

using MATLAB.  This was done using sweeping sine forces as an input and controlling the 

amplitude specially when determining the limits of chaos. Using harmonic balance and FRF 

good results were achieved and verified. 
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Notations 

B  System Impedance Matrix 

c  Damping Coefficient 

F  Frequency Domain Force 

F  Fourier Transform 

f  Force  

G  Spectral Density 

L  Laplace Transform 

H  Frequency Response Function 

k  Spring Constant 

L  Length 

M  Constant Integer 

m  Mass 

N  Constant Integer 

n   Noise 

p  Arbitrary Constant 

t   Time 

w   Frequency in cycles/second 

X  Frequency Domain Displacement 

 x  Displacement 

x   Velocity 

x   Acceleration 

Y  Frequency Domain Output 

y  Output 

z  Input 

β, α  Constants 

   Angle 
2   Coherence 
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Indices 

m   Multiple 

F  Input Force  

P, q  Reference Points 

X   Response 

1, 2, 3, M  Integers 

 

Abbreviations 

FRF  Frequency Response Function 

MIMO  Multiple Input Multiple Output 

MISO  Multiple Output Single Input 

rms  Root Mean Square 

 

 

1. INTRODUCTION 

Structures can be categorized as linear and nonlinear according to their reaction to an input force. 

Many engineering structures are treated as linear despite it is probable that all practical 

engineering structures are nonlinear to some extent. The nonlinearity can be caused by one or a 

combination of several factors.  Mathematically the so called principle of superposition is used in 

most cases to differentiate linear systems from the nonlinear which is defined as follows.  

Assuming a system with some initial conditions responds to an input )(1 tz  with an output )(1 ty  

and to an input )(2 tz  with an output )(2 ty , then superposition holds if and only if the input 

)()( 21 tztz    gives )()( 21 tyty    as an output for all  and  . Systems which satisfy this 

condition are said to be linear.  

The aim of this paper work is to be able to simulate, model and analyze nonlinear structures with 

zero memory in order to show their behavior for different conditions. It will also show a way in 

determining the limit of chaos in structures based on simulations. Hence two degrees of freedom 

nonlinear system was studied as lumped mass system and the study focuses on analysis of the 

nonlinearity behavior as well as determination of limit of chaos with respect to amplitude of the 

input force. This is done with the help of simulations which was done using MATLAB.  

The most common types of nonlinearity encountered in dynamic testing are those due to 

polynomial stiffness and damping, clearance, impacts, friction and saturation effect (Worden and 

Tomlinson, 2001).  In this work only the nonlinearity due to polynomial stiffness is considered.  
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2. METHODOLOGY 

In this work MATLAB simulations based on two types of nonlinear FRF construction methods 

are used for the analysis of the nonlinear system. These are Harmonic Balance and Multiple 

Input Multiple Output (MIMO) or Multiple Input Single Output (MISO) techniques.   

2.1. FRF of Nonlinear Systems 

FRF is the most widely used method in structural dynamics which gives information about the 

input-output properties of structures. The FRF gives most of the information necessary to specify 

the dynamics of a structure. Among these are resonances, anti-resonances, mode shapes, and 

phase. It can also be used to identify whether the system is linear or nonlinear. In the case of a 

linear system, the response to a sinusoid is always a sinusoid at the same frequency and FRF 

summarizes input/output process and does not depend on the amplitude of excitation. In the case 

of nonlinear systems, sinusoidal input results in response components at frequencies other than 

the excitation frequency and the FRF depends on the amplitude of excitation. 

2.2. Harmonic Balance 

 The method of harmonic balance is one of the basic analytical techniques for approximating 

response of nonlinear system. To show how this approximate solution works, here the derivation 

is presented below (Worden and Tomlinson, 2001; Jaumouille et al., 2010).  

Considering a single degree of freedom (SDOF) system with cubic non linearity as follows: 

)(3

3 tyxkkxxcxm                    ……………………………………………………... (2.1) 

With the assumption that the response to sinusoidal excitation is a sinusoid at the same frequency 

and,   

)sin(wtXx        ……………………………………………………….(2.2) 

)sin(3

3  wtYxkkxxcxm      ……………………………………………………….(2.3) 

Neglecting the higher harmonics, this yields 

)sin(  wtY  …………….(2.4) 

After little elementary trigonometry this becomes 

 ))3sin(4/1)sin(4/3(3

3 wtwtXk   

   )sin)cos(cos)sin(  wtYwtY     ………………………………………………………..(2.5) 

Equating for the same coefficients of both sides of (2.5) gives: 

cos)4/3( 3

3

2 YXkkXXmw   ………………………………………………………(2.6) 

)(sin)sin()cos()sin( 33

3

2 wtXkwtkXwtcwXwtXmw 

 )sin()cos()sin(2 wtkXwtcwXwtXmw
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sinYcwX                …………………………………………….........(2.7) 

Squaring, adding and rearranging these equations yields 

2

1

2222

3

2 ))
4

3
((

1

wcXkkmw
Y

X



  …………………………………………………(2.8) 

And the phase is obtained from the ratio of equations (2.6) and (2.7) as, 

2

3

2

1

4

3
tan

Xkkmw

cw




               ………………………………………………….(2.9) 

2.3. MIMO Identification Technique 

In order to show the MIMO identification technique for nonlinear systems, it is useful to start 

with linear system first in brief (Magnevall et al., 2006; Josefsson et al., 2007).  So considering 

the linear system shown in figure 1 below, with N inputs and M outputs, and noise on the 

measured outputs, the H1 estimator can be expressed as: 

1

1

 FFXF GGH       …………………………………………….....(2.10) 

Where XFG - is the cross-spectral density matrix with size (M × N), FFG  the auto-spectral density 

matrix with size (M × N) and H1 is the estimated transfer matrix with size (M × N). 

 

Figure 1. MIMO model with noise at the output. 

 

Having this, the coherence function which is used as check of signal quality or linearity can be 

defined for single input single output p and q respectively as follows.  

ppqq

qp

XXFF

FX

pq
GG

G




2

2      ………………………………………………..(2.11) 

This ordinary coherence will give a value of unity if linear relationship exists for the single input 

and single output case.  But for the case of MIMO/MISO, the coherence can show much less 

than unity, due to the influence of other inputs while there is perfect linear relationship between 
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all inputs and outputs. Due to this reason a multiple coherence, which is shown below, is used for 

the MIMO case (Magnevall et al., 2006; Josefsson et al., 2007).  

XX

H

XFFFXF
m

G

GGG 


1
2     ………………………………………………..(2.12) 

Where, XXG  is auto-spectral density and H

XXG  is its complex conjugate transpose. 

Using MIMO technique MATLAB toolbox has been used for nonlinear systems (Ahlin and 

Lango, 2007).  It is important to give brief explanation of the technique for the sake of clarity. 

Considering the Duffing’s equation:   

fxpxkxcxm  3    ……………………………………………….(2.13) 

Taking equation (2.13) into the frequency domain  

 pXB  F Fx )( 3    ……………………………………………….(2.14) 

Where, B is the impedance of linear system and F(.) is the Fourier transform.  As is explained in 

(Magnevall et al., 2006) equation (2.14) is solved using the MIMO technique by the so called 

reverse path method as shown in the figure 2 below (Josefsson et al., 2007).  

 

Figure 2. Reverse path method for solving Duffing’s equation. 

 

3. ANALYSIS OF NONLINEAR LUMPED MASS SYSTEM 

A two degree of freedom system with cubic spring of zero memory attached between one of the 

masses and the ground is used to study a nonlinear system as shown in figure 3.  

The equations of motion for this system can be written as follows. 

)()()( 3

121121111 tfpxxxkxxcxm      …………………………………(3.1) 

0)()( 211222112222  xxkxkxxcxcxm    …………………………………(3.2) 

Rearranging the above equations in a matrix form; 







 


0

)( 3

1pxtf
    ………(3.3) 


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Figure 3. Two degrees of Freedom nonlinear lumped-mass system model. 

 

Taking equation (3.3) into the frequency domain (Laplace Transform) 

= L 






 

0

)( 3

1pxtf
  …………...(3.4) 

This can be written as 

  XsB )(  + p  L )( 3

1x = )(sF   …………………………………………………(3.5) 

Where   







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
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


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2

1
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0
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kkk

kk
s

ccc

cc
s

m

m
sB , is system impedance matrix 

and; L (.) is Laplace transform.  

 









2

1

X

X
X , is displacement vector in the frequency domain 

 F(s) is the Laplace transform of force f (t).  

 

Now equation (3.5) is the same as equation (2.14) and can be solved using the MIMO technique 

explained above.  

A forward sine sweep force (Fig. 4) is applied to the system in figure 3 and analyzed using 

MATLAB (2005). This system acts as linear for very small values of the input force and starts to 
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be nonlinear as the amplitude is increased. Figure 5(a) shows that the system is in the verge of 

linear and nonlinear with 0.2 N root mean square (rms) value of the input force.  For a force of 2 

N rms, the nonlinearity can be clearly seen for the first degree of freedom as shown in figure 

5(b). 

 

Figure 4. Example of sweeping sine function. 

 

Figure 5. FRF of the two degree of freedom lumped mass system (a): linear response of the 

nonlinear structure at low amplitude of the input force F = 0.2 N rms. (b): Starting of 

nonlinear response at amplitude of the input force F = 2 N rms. 

 

When the rms value of the input force is increased both resonances show nonlinearity as can be 

seen from figure 6(a) and (b). There is a jump of the response as compared to the harmonic 
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balance for both resonances. This is due to the cubic nonlinearity which is introduced in the 

system. The harmonic balance is also showing that there are possibilities of getting three roots at 

one frequency as shown for the regions of green and red colors or around the tip of the curved 

part of the graphs which is the case for nonlinear conditions. In figure 6(b), around the second 

resonance, it is shown that the nonlinearity is stronger or more that the energy content was 

distributed to broader frequency range.  In the same figure near the first resonance, there is some 

chaotic behavior shown.  

 

Figure 6(a) Nonlinear FRF of two degrees of freedom lumped mass system for F = 5 N rms. 

Nonlinearity is shown around both the resonances; (b) Nonlinear FRF of two degrees of 

freedom lumped mass systems for F = 25 N rms. Some chaotic behavior is shown around 

the first resonance and strong nonlinearity for the second resonance. 

 

Nonlinear systems may get in to chaotic behavior when the amplitude of the input force is 

increased to some extent. The chaotic behavior of the lumped mass system is introduced in this 

section in order to show the possibility of determination for limit of chaos for multi degrees of 

freedom system considering the frequency region of interest in general. Hence as can be seen 

from figures 7 and 8 below, for an rms value of the input force of around 42 N, the system shows 

chaos at both resonances. The frequency region of the chaos can be also known from the 

simulation as shown in Figures below. From figure 7, the first resonance shows chaotic behavior 

at around 7-10 Hz while the second resonance is around 12-16Hz. This is evident from figure 

3.6, which is the waterfall diagram of the same response, as well.  It is also evident that the 

chaotic behavior is more around the second resonance frequency.  

(a) (b) 
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Figure 7. Chaotic FRF of the lumped mass system for F = 42 N rms. Chaos shown at 7-10 Hz of 

the first resonance and 12-16 Hz of the second resonances.  

 

Figure 8. Chaotic Waterfall diagram of the lumped mass system’s response for F = 42 N rms. 

 

This result shows that it is possible to determine the limit of chaos for two degrees of freedom 

system. This indicates also that the determination of limit of chaos for nonlinear systems is 

possible considering the first two resonances.  

 



Hailay Kiros (MEJS)                                                                             Volume 6(1):120-130, 2014 

© CNCS, Mekelle University                           129                                                ISSN: 2220-184X  

 

4. CONCLUSION 

Nonlinear systems with zero memory have been studied and analyzed based on the conventional 

MIMO technique and using MATLAB toolbox. Good results have been achieved for two degrees 

of freedom lumped-mass system.  

Simulation was done for sweeping sine as an input force and used as a check for the existence of 

nonlinearity as well as chaos in the systems/structure. The limit of chaos was also determined 

using simulation in relation to the applied amplitude to the system. This is important in 

predetermining the limits for uncontrolled region for systems with the existed situation so that it 

will be in the safe region behaviorally.  

In addition to this, as can be seen from figures 5 to 7, the system’s linear parameters of nonlinear 

structure can be extracted using the reverse path method using some experimental tests of 

nonlinear structures. This is useful for the real structural systems which are nonlinear in nature 

and need to know parameters of their dynamic behavior like the damping ratio and stiffness and 

based on such kinds of parameters, modifications can easily be applied in order to avoid 

nonlinear behaviors in systems.   

All the above simulation works and results can also be implemented for systems which are in 

real applications that can exhibit unexpected dynamic behaviors in order to take all necessary 

corrective actions, and to avoid risks with help of some kind experimental works which will help 

in getting the necessary data for the analysis. 
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