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ABSTRACT 

Landslides are one of the natural threats that often result in great loss of life and destruction of 

property in Ethiopia. One of the areas that is affected by landslides of different types and sizes is 

the Tarmaber district in the rift margin in the central part of Ethiopia. Keeping in view the cause 

and effect relationship and mitigation, Analytical Hierarchy Process (AHP) approach is used in 

the present case to understand the possible causes for landslides. Based on AHP, landslide 

susceptibility map is produced for Tarmaber using field survey data, remote sensing data, and 

geographic information system tools. The factors considered in the present case that can 

influence landslides are lithology, proximity to fault, land use, proximity to drainage, slope 

gradient, aspect and elevation. The results are validated with the inventory of landslide 

occurrences. The landslide susceptibility index (LSI) is calculated using the weighted -linear 

combination (WLC) technique based on the assigned weight and rating given by the AHP 

method. The accuracy of the results verified using the existing landslide locations is about 

88.6%.The landslide susceptibility zonation map has identified our classes/zones: very high 

(29%), high (44%), moderate (20.0%) and low (7%).  
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1. INTRODUCTION  

Earth being dynamic, the surface of the earth is always under change due to various geo-

processes causing natural hazards and threat to mankind. Landslides are one of the destructive 

natural hazards that commonly lead to serious problems, especially in hilly and mountainous 

regions. They are causing significant effect on livelihood, property, infrastructures, farmlands, 

and natural environments (Ayalew, 1999; Temesgen et al., 2001; Ayalew and Yamagishi, 2004; 

Ayenew and Barbieri, 2005; Woldearegay, 2005, 2008). Ethiopia is comprised of more than 58% 

mountainous and hilly areas with greater than 1500m altitude (Abay and Barbieri, 2012) and 

about 90% of the population as well as 90% of the arable lands are associated with these 

highlands including the rift margins (Gete, 2010). Between 1960 and 2010 about 388 people are 

reported dead, 24 injured and a great deal of agricultural lands, houses and infrastructures were 

affected (Meten et al., 2015). The factors that are causing these landslides include adverse 

geological conditions, high rainfall, seismicity and anthropogenic (e.g. deforestation, 

urbanization, uncontrolled farming activities, constructions). 
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To reduce the landslide associated risks, knowledge of the areas potentially prone to 

landslide activity is crucially needed (Narumon and Songkot, 2010). Forecast of potential 

landslide occurrences in future is made in the form of landslide susceptibility maps. These maps 

are vital for land use purposes and management (Rezaei et al., 2007). Review of the previous 

works (Varnes, 1984; Carrara et al., 1995; Soeters and van Westen, 1996; van Westen et al., 

1997; Aleotti and Chowdhury, 1999; Guzzetti et al., 1999) depicts that the methods for ranking 

landslide factors and assigning different susceptibility levels can be generally grouped using 

either qualitative, quantitative or semi-quantitative methods. Analytical Hierarchy Process 

(AHP) method developed by Saaty (1980), is one of the best examples for such semi-quantitative 

methods used in landslide susceptibility mapping. This method is extensively used by many 

workers (Barredo et al., 2000; Mwasi, 2001; Yagi, 2003; Woldearegay, 2005; Narumon et al., 

2010: Long and De Smedt, 2011; Mezughi et al., 2012; Papadakis and Karimalis, 2017) and the 

same is used in the present case for preparing landslide susceptibility maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of the study area, Tarmaber district, Ethiopia. 

 

Tarmaber district, one of the most landslide-affected districts in southern Afar Rift 

Margin of Ethiopia is chosen study (Fig 1) with the aim of (1) mapping the landslide 

occurrences, (2) identifying the causative factors, (3) correlating and evaluating the contribution 

of the factors to the slope failures, and (4) developing landslide susceptibility maps. The study 

area covers about 220km2, with an average rainfall of 1947 mm and an elevation between 1370m 
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and 3100m above mean sea level. Less elevated areas are densely populated and intensely 

cultivated while the elevated have steep slopes with good vegetation cover. The area is prone to 

high seismic activity and the flat terraces and cliffs are attributed to the rift margin faults. The 

drainage system of the area is dense and most of the rivers are affected by gully erosion resulting 

in deeply -cut rivers and associated mass movements. Large-scale and complex landslide 

occurred on 13th September 2005 in Tarmaber district has resulted in the loss of >1500 hectares 

of arable lands, displacement of 4049 people, destruction of >1200 dwelling houses (Tukul 

settlements)(Fig 2), and >75% crop harvest failure in many localities (Izaba and Shotel 

Amba)(Gebresilassie, 2007; Woldearegay, 2008; Abay and Barbieri, 2012; Abay, 2012). New or 

reactivated different intensity landslides are also a common phenomenon in this district in every 

rainy season or during seismic tremor events or combination of both (Woldearegay, 2008; Abay 

and Barbieri, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Some examples on the effects of landslides, Tarmaber district, Ethiopia: (a) damage to 

the dwelling houses and farm lands, (b) damaged asphalt road, c) damage to the 

cultivated lands, and (d) High tension electric grid at risk of failure due to landslides.  

 

2. METHODOLOGYAND INPUT DATA PREPARATION 

Remote sensing and GIS based mapping integrated with field surveys of landslide affected sites 

are used in preparing the landslide causative factors and inventory maps. Analytical Hierarchal 
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Analysis (AHP) with help of GIS is used for correlating landslide locations and the chosen 

causative factors in the study area.  

2.1. Methodology  

There are various methods to study and evaluate the landslide phenomena and its causative and 

triggering factors. The elements that affect slope stability are numerous and varied, and interact 

in complex ways (Varnes, 1984). In the present case, seven causative factors are chosen as inputs 

for the landslide hazard evaluation which include: lithology, proximity to fault, land use, slope 

steepness, aspect, elevation and proximity to drainage. Data were extracted and collected using 

remote sensing and field based surveys to prepare the preliminary lithological, structural, land 

use, landslide inventory maps from the interpretation of Aster image of various years, Landsat 

images of 2001, time series of historical Google Earth(from 2006 to 2017). This was supported 

by the existing regional geological and topographic maps. The images have been interpreted 

using ENVI4.5 by applying different enhancing and band composition techniques to visualize 

various features and were digitized using ArcGIS10.1. The topographic factors like elevation, 

slope steepness and slope aspect have been prepared from 30m DEM (Digital Elevation Model). 

Then, detailed field surveys have been conducted and the preliminary input maps have been 

crosschecked and updated into more detailed maps (Fig 4).The procedures followed to assign 

weights to various causative factors and produce landslide susceptibility maps is given below. 

2.1.1. The AHP Model 

The AHP Model as developed by Saaty (1980), is a decision-aiding tool for dealing with 

complex and multi-criteria decisions. It is one of the very popular multi-criteria decision making 

methods with a wide application in many fields such as site selection and suitability analysis 

(Bantayan and Bishop, 1998; Mahsa et al., 2011; Anagnostopoulos and Vavatsikos, 2012), 

regional planning (Jankowski, 1989), urban landuse planning (Dai et al., 2001; Feng and Chan, 

2004), and environmental impact assessment (Ramanathan, 2001; Gregory et al., 2005), and 

design and engineering (Hambali et al., 2009; András, 2010). One of its wide applicability in 

recent years is in the field of landslide study. Several landslide studies have been published using 

the AHP approach (Yagi, 2003; Ayalew et al., 2004; Woldearegay, 2005; Bachri and Shresta, 

2010; Narumon and Songkpt, 2010; Long and De Smedt, 2011; Mezughi et al., 2012; Moradi et 

al., 2012; Khodadad and Jang, 2015). 

AHP has an advantage of permitting a hierarchical structure of the criteria which 

provides users with a better focus on the specific criteria (factor) and sub-criteria (classes) when 

allocating the weight (Ishizaka and Labib, 2009). Once the hierarchy is built, the decision makers 

systematically evaluate different elements by comparing them to one another: two at a time, with 

respect to their impact on an element above them in the hierarchy. In making comparisons, the 
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decision makers typically use their expert knowledge (judgments) about the elements' relative 

meaning and importance. Then, the method converts these evaluations into numerical values that 

can be processed and compared over the entire range of the problem. A numerical weight 

or priority is derived for each element of the hierarchy, allowing diverse and often numerous 

elements to be compared to one another in a rational and consistent way. The AHP helps to 

overcome the problems with arbitrary weights and scores approaches, by its ability to enable 

decision-makers to derive ratio scale priorities or weights as opposed to arbitrarily assign them 

(Yalcin, 2007). 

To make a decision in an organized way and generate priorities, we need to decompose 

the decision into steps. Application of AHP to a decision problem considers four steps (Saaty, 

1980; Zahedi, 1986; Saaty, 2008): (1) Structuring of the decision problem in a hierarchical 

approach, (2) Making pair-wise comparisons and obtaining the judgmental matrix, (3) 

Computing local weights and consistency of comparisons, and (4) Weights aggregations. 

Step-1: Structuring of the decision problem in a hierarchical approach 

This step allows a complex decision to be structured into a hierarchy descending from an overall 

objective to various ‘criteria’, ‘sub-criteria’, and so on until the lowest level. The overall goal of 

the decision is represented at the top level of the hierarchy while the criteria and sub-criteria 

contributing to the decision are represented at the intermediate levels. Finally, the decision 

alternatives are positioned at the last level of the hierarchy. Although, there is no clear set of 

procedures for generating the levels to be included in the hierarch, Saaty (2000) indicated that a 

hierarchy can be constructed by creative thinking, recollection and using people’s perspectives. 

In this study the hierarchy of the landslide causative factors (criteria or sub-criteria) is adopted 

from the correlations studied by applying frequency ration model (Abay and Barbieri, 2012) 

besides to the field observations. 

Step-2: Constructing pair-wise comparisons and obtaining the judgmental matrix 

Once the hierarchy has been structured, the next step is to construct the pair-wise comparison 

matrix as proposed by Saaty (1980). The input data for problem consists of matrices of pair-wise 

comparisons of elements of one level that contribute to achieve the objectives of the next higher 

level. That is, the elements of a particular level are compared with respect to a specific element 

in the immediate upper level. Once the matrix is created, elements are compared pair-wise to 

determine their relative importance in terms of each criterion (factors) based on the scale 

introduced by Saaty (1980). According to this scale, the available values for the pair-wise 

comparisons are members of the set: {1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3,1/2, 1,2,3,4,5,6,7,8,9 } 

(Table 1). Using this scale, the verbal judgments for each pair wise elements is transformed into 

numerical quantities. Usually, an element receiving higher rating is considered as superior (or 

more influential) compared to another one that receives a lower rating. 



Asmelash A., Giulio, B and Woldearegay, K (MEJS)                                           Volume 11(1):14-36, 2019 

 

© CNCS, Mekelle University                                  19                                                         ISSN: 2220-184X 
 

Table 1. The fundamental scale of absolute numbers/Scale of Relative Importance (Saaty, 2008). 

Intensity of 

Importance 

Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 

2 Weak or slight  

3 Weak importance of one over 

another 

Experience and judgment slightly favor one 

activity over another 

4 Moderate +  

5 Essential or strong importance Experience and judgment strongly favor one 

activity over another 

6 Strong+  

7 Very strong or demonstrated 

importance 

An activity is strongly favored and its dominance 

demonstrated 

8 Very, very strong  

9 Extreme importance The evidence favoring one activity over another is 

of the highest possible order of affirmation 

Reciprocals 

of above 

nonzero 

If activity i has one of the above 

nonzero numbers assigned to it 

when compared with activity j, then 

j has the reciprocal value when 

compared with i. 

A reasonable assumption 

1.1–1.9 If the activities are very Close May be difficult to assign the best value but when 

compared with other contrasting activities the size 

of the small numbers would not be too noticeable, 

yet they can still indicate the relative importance 

of the activities. 

 

Step-3: Computing local weights and consistency of comparisons 

The aim of this step is to find a set of priorities or local weights, which is the normalized Eigen 

vector of the elements of the matrix. Although different methods have been used to derive the 

priorities, we employed the Eigen-value technique for computing the weights under AHP, which 

is one of the common methods developed by Saaty (1980). The steps followed to compute the 

criterion weights (Eigen vector) of a reciprocal matrix involved the following operations: 

(i) Summing of the values in each column of the reciprocal matrix; (ii) Divide each 

element in the matrix by its column total (the resulting matrix is referred to as the normalized 

pair wise comparison matrix and the sum of each column is 1); and (iii) Compute the average of 

the elements in each row of the normalized matrix, that is, divide the sum of normalized scores 

for each row by the number of criteria. These averages provide an estimate of the relative 

weights of the criteria being compared. The priority vector shows relative weights among the 

things that we compare. The higher the weight is the more important the criteria. 

Priorities or relative weights make sense only if derived from a consistent or near 

consistent matrices. Thus, checking the consistency of reciprocal matrix is vital. To do that, we 
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need what is called Principal Eigen value (𝜆𝑚𝑎𝑥) which is an important validating parameter in 

AHP. It is used as a reference index to screen information by calculating the Consistency Ratio 

(CR) (Saaty, 2000) of the estimated vector in order to validate whether the reciprocal matrix 

provides a completely consistent evaluation. The CR is calculated as per the following steps:  

i) Calculate the eigenvector and largest Eigen value (𝜆𝑚𝑎𝑥) for each matrix of order n. Principal 

Eigen value (𝜆𝑚𝑎𝑥)  is obtained from the summation of products between each element of Eigen 

vector and the sum of columns of the reciprocal matrix.  

ii) Compute the consistency index (CI) for each matrix of order ‘n’ by the formulae: 

𝐶I = (λmax) −n

    n− 1
  -----------------------------(1) 

 iii) Calculate the CR using the formulae: 

𝐶R =
 CI

RI
            -----------------------------(2) 

Where, RI is random consistency index obtained from a large number of simulation runs and 

varies depending upon the order of matrix (Table 2). 

 

Table 2. Random Consistency Index (RI) (Saaty, 1980, 2000). 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59 

 

CR range varies according to the size of matrix i.e. 0.05 for a 3 by 3 matrix, 0.08 for a 4 

by 4 matrix and 0.1 for all larger matrices, n ≥ 5 (Saaty, 2000; Cheng and Li, 2001). The value of 

CR ≤ 10%, indicates a good level of consistency in the comparative judgments represented in 

that matrix and is acceptable. CR value with>10% has resulted in inconsistency of judgments 

within that matrix. This suggests that the evaluation process needs to be reviewed and improved. 

Step-4: Weights Aggregations  

Final priorities of the alternatives can be obtained by aggregating the local priorities of elements 

of different levels, which are obtained in the above steps (steps 1-3). The AHP approach adopts 

an additive aggregation (equation 3) with normalization of the sum of the local priorities to unity 

(Ishizaka and Labib, 2009). 

𝑃𝑖 = ∑ 𝑤𝑗l𝑖𝑗𝑗     -------------------------------(3) 

Where, Pi: over all final priority of the alternative i (LSI in our case); Lij = local priority;  

            wj; weight of the criterion j.  

 

The specific application of the AHP method is presented below in modeling the landslide   

susceptibility of the study area. 
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2.2. Input Data Preparation 

The factors that cause landslides are varied, and interact in complex ways (Varnes, 1984). There 

is no standard method for selecting these factors (Yalcin, 2008). In the present case, seven 

factors are considered for landslide hazard evaluation based on the landslide occurrences and 

their characteristics in Tarmaber, and published information (Abay and Barbieri, 2012; Meten et 

al., 2015). These include lithology, proximity to fault, land use, slope steepness, aspect, elevation 

and proximity to drainage. 

2.2.1. Landslide Inventory Mapping  

Landslide inventory maps depict spatial distribution of past landslides and it is an essential 

information for producing landslide zoning (susceptibility, risk and hazard zoning) (Moradi et 

al., 2012). The landslide distribution is determined using image interpretation (Aster image of 

various years, Landsat images, and Google Earth) and field survey, and then digitized directly 

into inventory map using GIS. Accordingly, 165 landslides of different types and sizes are 

identified in the study area (Table 3, Fig 3). The inventory map is also used an input map for 

verification of the susceptibility of landslide occurrences prediction for the study area. 

Figure 3. Various types of landslides in Shotel amba and Yizaba, Tarmaber district, Ethiopia, (a) 

Complex/composite slide; (b) Debris flow; c) Rock fall; and d) Mud flow. 

 

Table 3. Types of slope failures and their areal coverage in Tarmaber district, Ethiopia. 

No Type of landslide No of failures Areal coverage (%) 

1 Debris/earth slides 90 19.3 

2 Rock slides 39 7.2 

3 Earth slides 18 2 

4 Complex/composite slides 12 58.1 

5 Debris flow 1 13.1 

6 Mud flow 1 0.2 

7 Rock fall 4 0.1 

 

 



Asmelash A., Giulio, B and Woldearegay, K (MEJS)                                           Volume 11(1):14-36, 2019 

 

© CNCS, Mekelle University                                  22                                                         ISSN: 2220-184X 
 

2.2.2. Landslide Causative Factors 

i). Slope Gradient  

Slope gradient is very regularly used in landslide susceptibility studies since land sliding is 

directly related to the slope angle (Dai et al., 2001; Lee, 2005; Woldearegay, 2005; Yalcin, 2007; 

Long et al., 2011). For the study area, the slope is derived from 30m DEM using the slope 

function of the spatial analyst of ArcGIS 10.1. The slope map is in the form of a raster having the 

same pixel size as the DEM. A map of slope classes is generated by grouping the slope angles 

into six different classes (Fig 4a): (1) Class I: <5°, (2) Class II: 5-10° (3) Class III: 10-25° (4) 

Class IV: 25-40° (5) Class V: 40-55° and (6) class VI: >550. The slope class III (10-25°) is the 

dominant one consisting of 52% of the study area followed by the slope classes IV (25-40°) and 

slope class II (5-10°). 

ii). Aspect 

Aspect is considered as a landslide controlling factor by several other studies (Saha et al., 2005; 

Yalcin, 2011). Aspect in general refers to the orientation to which a mountain slope faces. The 

aspect of a slope can make very significant influences on its local climatic factors such as 

amount of rainfall which in turn influences the occurrences of landslides. Aspect related 

parameters such as exposure to sunlight, drying winds, rainfall (degree of saturation), and 

discontinuities may control the occurrence of landslides (Dai and Lee, 2002). The Aspect map of 

the study area was derived from the DEM of the study area. During mapping, the slope aspect 

was grouped into eight main directions (Fig 4b). Slopes facing to the SE (134°), E (89°), NE 

(40°), S (180°) have more records of landslides, while slopes facing to W (270°), NW (315°), 

SW (224°) and N(360°) have less records of slope failures.  

iii). Proximity to Drainage 

Streams may negatively affect slope stability by eroding the slopes or by saturating the lower 

part of the material (Dai et al., 2001). Most of the recorded landslides have occurred close to 

stream/rivers cut by gully erosion. Distance to stream is one of the controlling factors for the 

stability of a slope (Yalcin et al., 2011). The drainage map has been prepared from the 30 m 

DEM, using the Arc hydro10.1 and digitized from the topographic map of 1:50,000 scale for 

comparison. Most drainage system of the area is created following the geological structures. The 

tectonic morphology of the study area is greatly modified by stream incisions, which finally 

could influence slope stability through over steepening the lower sections of the slopes and 
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removal of materials that provided support at the toe. For this reason the drainage proximity is 

considered as one causative factor in the landslide susceptibility study. The study area is divided 

into six different drainage proximity zones (Fig 4c) and about 52.7% of the study area is found 

within 300m distance from the drainage and about 70% of the landslides occur in these areas. 

iv). Elevation 

Elevation is another factor that plays an important role in landslide susceptibility assessments 

considered in several researchers (Dai et al., 2002; Yalcin et al., 2011; Dou et al., 2015). The 

variation in elevation may be related to different environmental settings such as vegetation types 

and rainfall (Catani et al., 2013). The elevation map of the area of interest has been prepared 

from the 30m DEM using the spatial analyst of ArcGIS10.1 and categorized into 5-class ranges 

(Fig 4d). The minimum elevation is 1,368 m, while the maximum is 3,200 m. Elevation classes 

in the range of 1,500-2,000m and 2,000-2,500m covers 44.5% and 32.5% of the total area 

respectively. No major landslides were recorded at elevation class with greater than 2500m 

because this portion of the study area is covered by dense and deep rooted trees and sound rock 

mass which eventually reduced the potential land sliding process as it is covered by deep rooted 

forest and sound rock exposures. About 86% of the landslides occurred at elevation range 

between 1,500 and 2,500 m. 

v). Proximity to Faults 

Faults have been considered as a critical factor in activating landslide in tectonically active areas 

(Tien et al., 2011). The main Ethiopian rift system and its escarpments (where the study area is 

located) are characterized by normal faults. Fault map for the study area is prepared and 

compiled from various images (Aster and Landsat images) and previous works. The images have 

been interpreted using ENVI4.5 by applying different enhancing and band composition 

techniques, identifying the various features and digitizing them using ArcGIS 10.1. Faults are 

very important factors for landslide initiations due to the fact that they are not only weak zones, 

but also mostly characterized with: (a) deeper weathering, resulting in greater thickness of soil 

masses; (b) higher potential for concentrated groundwater flow, which can act as lubricant and 

also can produce water pressures causing landslides. Keeping this in view, fault proximity maps 

are produced to evaluate its contribution to the landslide (Fig 4e).The major fault trends in the 

study area can be grouped into the NNE-SSW, NNW-SSE and East-west trending fault systems. 

vi). Land Use 

The land use pattern is often has a great influence in the landslide occurrences because they 

relate to the anthropogenic interference on hill slopes (Pradhan et al., 2010). Accordingly, Aster 

and Landsat image, Google Earth, topographic maps of 1:50,000 and field surveys are used in 

preparing the land use map (Fig 4f). The major land use pattern in the area comprises 
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heterogeneous agricultural areas (40%), arable land (28%), bushes & shrubs (15%), bare 

land/sparse vegetation (10%), forest (4%), river bed (2%) and Urban/semi-urban areas (1%). 

Areas with small slope steepness(less than 30 degrees) have comparatively higher human 

influence. People in this region are still actively involved in agriculture and are moving into 

steep slopes and cultivating without constructing proper terraces. This is leading to deforestation 

and land degradation which contributes to landslide initiation/reactivation in the area. 

Figure 4. Landslide causative factors in the Tarmaber district, Ethiopia: (a) Slope angle, (b) 

Aspect (c) Proximity to drainage, (d) Elevation, (e) Proximity to fault, (f) Land use/land 

cover. 

 

vii). Lithology 

Lithology is one of the most important parameters in landslide studies because different 

lithological units have different susceptibility (Dai et al., 2001; Yalcin, 2007). Hence, it needs to 

be considered. Lithology significantly influences the occurrence of landslides, because 

lithological variations often lead to a difference in the strength and permeability of rocks and 

soils. Thus, the lithological map of the study area has been prepared from the interpretation of 
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Aster image (Level-1B), Landsat images of 2001, and Google Earth, supported by the existing 

regional geological and topographic maps and field surveys. The main lithological units of the 

study area can be grouped as Alaje formation (basalts, rhyolitic/trachytic ignimbrites, tuffs, and 

agglomerates), Tarmaber formation (basalts), Quaternary sediments (alluvial, colluvial-eluvial 

deposits, fine residual soils) (Fig 5). The Alaje formation especially the ignimbrites and the tuffs 

are highly altered and weathered. Alaje basalts, basic tuffs and agglomerates and Tarmaber 

basalts cover 24.4%, 22.2% and 19.7% of the whole area respectively while the remaining 33.7% 

is covered by other lithologies. However, about 50% of the landslides have occurred in the 

colluvium-eluvium sediments. The physico-mechanical parameters, such as degree and depth of 

weathering, orientation and spacing of discontinues, unconfined compressive strength, hydraulic 

nature, compaction of each lithologies, have been described and measured during the field 

survey. The depth of weathering has been measured from gully and ridge exposure using the 

meter tape, while Schmidt hammer, compass and GPS have been used to measure the 

compressive strength, joint characteristics and locations respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Geology of the study area, Tarmaber district, Ethiopia. 

 

3. RESULTS AND DISCUSSION 

Seven landslide causative factors mentioned above, depending on their relative influence, each 

factor is further classified into a number of classes. In putting priorities, weighing factors, and 
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determining relative influence of the factors- (a) field- based expert judgment, and (b) review of 

published data (Abay and Barbieri, 2012) are used. Values ranging from 9 (extremely) to 1 

(equally) and 1/9 (opposite extremely) are assigned based on table 1 to each pair of parameters 

resulting a square reciprocal matrix by rating rows relative to columns, shown in tables 4 and 5. 

 Pair-wise comparisons and obtaining the judgmental matrix, consistency checks are done. 

Although all the mentioned factors induces landslide, their individual relative influences on the 

slope instabilities are different. To weigh the relative importance of the above mentioned 

causative factors and their subdivisions (classes) quantitatively on the initiation of the landslide, 

a pair-wise comparison and a judgment matrix was made based on the proposal of Saaty (1980, 

2000). When comparing two attributes (layer classes or parameters in a layer), the above stated 

numerical relational scale is used (Table 1). 

Once the comparisons matrices are made, the priorities or relative weights or Eigen 

vectors, as well as the Principal Eigen value (𝜆𝑚𝑎𝑥) are calculated following the procedures 

stated in step-3 above. Then, consistency index (CI) and consistency ratio (CR) values of each 

developed factor or class matrices have been determined using equations 1 and 2 above while 

values of Random consistency index (RI) are referred from table 2. The average eigen vectors 

(relative weight) for each factor, in the columns are initially calculated following the steps stated 

under step-2 above. 

As can be noted from table 4 and figure 6, lithology is the major parameter contributing 

to the landslide of the Tarmaber district followed by the faulting and drainage, which is also true 

from the prospective of the field observation. The area is characterized by the fragile types of 

lithology i.e. thick colluvium-eluvium, highly fractured and deeply weathered rhyolitic 

ignimbrites, welded tuffs, and basalts. Slope aspect and slope gradient are the next influential 

parameters, with more or less equal influences on the landslide occurrences. 

 

 

 

 

 

 

 

Figure 6. Relative influences of parameters on the landslide of Tarmaber district, Ethiopia. 
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Table 4. Pair-wise comparison matrixes, principal eigenvectors (relative weights) and 

consistency ratios of various parameters (causative factors) and the data layers. 

  [1] [2] [3] [4] [5] [6] [7]   Weight (%)  

[1]Lithology 1     
      

  34.2 

[2] Land use  1/5 1     
      

7.2 

[3] Slope gradient  1/4 2     1     
     

7.4 

[4] Aspect  1/4 1     2     1     
    

7.5 

[5] Proximity to fault  1/2 4     4     4     1     
   

24.5 

[6] Proximity to Drainage  1/3 3     3     3      1/2 1     
  

16.2 

[7] Elevation   1/9  1/5  1/3  1/2  1/7  1/5 1       2.9 

 

Table 5. Pair-wise comparison matrixes, principal eigenvectors (relative weights) and 

consistency ratios of classes within the various parameters (causative factors) and the 

data layers. 
Factors/ Classes                     

Lithology [1] [2] [3] [4] [5] [6] [7] [8] [9] Weight  

[1] Ignimbrite (upper) 1     

        

0.027 

[2] Fractured Rhyolite &  

      Welded tuff 8     1     

       

0.161 

[3] Alaje basalt 2      1/4 1     

      

0.040 

[4] Alluvial/Debris 8     1     5     1     

     

0.177 

[5] Basic tuff &Agglomerate 1      1/6 1      1/6 1     

    

0.032 

[6] Colluvium-Eluvium  9     4     9     4     9     1     

   

0.415 

[7] Ignimbrite (Alaje) 1      1/6 1      1/6 1      1/9 1     

  

0.032 

[8] Residual soil (clay & silt) 3      1/2 2      1/3 2      1/9 2     1     

 

0.064 

[9] Tarmaber basalt 2      1/3 1     ¼ 2      1/9 2     1     1     0.052 

Land Use                     

[1] Forest 1     
      

  

0.043 

[2] Bushes & shrubs 1     1     
     

  

0.044 

[3] Bare land/sparse vegetation 2     2     1     
    

  

0.079 

[4] Arable land 7     5     3     1     
   

  

0.199 

[5] Heterogeneous Agricultural     

      Area 
2     2     1     ¼ 1     

  

  

0.067 

[6] Urban/semi-urban areas 1     1      1/2  1/2 1     1     
 

  

0.058 

[7] River bed  9     9     9     4     9     7     1     

  

0.509 

Slope Gradient                     

[1] 0-5 1     
     

   

0.104 

[2] 5-10 2     1     
    

   

0.158 

[3] 10-25 4     2     1     
   

   

0.355 

[4] 25-40 2     3      1/2 1     
  

   

0.236 

[5] 40-55 1      1/2  1/3  1/2 1     
 

   
0.100 

[6] >55  1/3  1/3  1/7  1/4  1/2 1     

   

0.048 

Aspect                     
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[1] NE (40) 1     
       

 

0.115 

[2] E (89) 2     1     
      

 

0.215 

[3] SE (134) 3     1     1     
     

 

0.228 

[4] S (180) 1      1/2  1/2 1     
    

 

0.127 

[5] SW (224)  1/2  1/3  1/3  1/2 1     
   

 

0.072 

[6] W (270)  1/2  1/3  1/3  1/3  1/2 1     
  

 

0.058 

[7] NW (315)  1/2  1/3  1/3  1/2 1     1     1     
 

 

0.065 

[8] N (360)  1      1/2  1/2 1     2     2     2     1     

 

0.120 

Proximity to Fault                     

[1] 0-400 1     
       

 

0.244 

[2] 400-600  1/2 1     
      

 

0.218 

[3] 600-800 1      1/2 1     
     

 

0.196 

[4] 800-1000  1/2  1/3  1/2 1     
    

 

0.122 

[5]1000-1200  1/4  1/3  1/4  1/3 1     
   

 

0.059 

[6] 1200-1400  1/3  1/3  1/3 1     2     1     
  

 

0.083 

[7] 1400-1600  1/4  1/3  1/4  1/3 1     ½ 1     
 

 

0.052 

[8] >1600  1/9  1/7  1/6  1/4  1/4 ½  1/2 1     

 

0.027 

Proximity to Drainage                     

[1] 0-150 1     
        0.339 

[2] 150-300 1     1     
       0.280 

[3] 300-450  1/3  1/2 1     
      0.152 

[4] 450-600  1/4  1/3  1/2 1     
     0.121 

[5] 600-750  1/4  1/3  1/2  1/2 1     
    0.092 

[6] >750  1/7  1/6  1/4  1/3  1/3 1     
   

0.039 

Elevation                      

[1] 1368-1500 1     
        0.218 

[2] 1500-2000 1     1     
       0.204 

[3] 2000-2500 2     3     1     
      0.418 

[4] 2500-3000 ½  1/2  1/3 1     
     0.111 

[5] >3000  1/5  1/5  1/7  1/2 1             0.050 

 

Table 6. Evaluation of the consistency of the preferences used for rating the parameters and 

classes. 

Factors  n λmax CI RI CR 

Lithology 9 9.38 0.05 1.45 0.03 

Land use 7 7.38 0.06 1.32 0.05 

Slope gradient 6 6.18 0.04 1.24 0.03 

Aspect 8 8.12 0.02 1.41 0.01 

Proximity to fault 8 8.43 0.06 1.41 0.04 

Proximity to Drainage 6 6.42 0.08 1.24 0.07 

Elevation  5 5.06 0.02 1.12 0.01 

All data layers (parameters) 7 7.39 0.07 1.32 0.05 
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Finally, the aggregation and integration of the various weights of the factors and classes 

to a single landslide susceptibility index (LSI) is calculated on the basis of weighted -linear sum 

(WLS) (Voogd, 1983) as shown in equation 4 with the help  of map overlay and raster 

calculation techniques of the ArcGIS. 

𝐿𝑆𝐼 = ∑ 𝑊𝑗𝑤𝑖𝑗

𝑛
𝑖   ………………………. (4) 

Where, Wj: weight value of parameter j; wij: rating value or weight value of class i in parameter j 

               n: number of parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Landslide susceptibility zonation map of Tarmaber district, Ethiopia (based on AHP- 

method. 

 

 

 

 

 

 

 

 

Figure 8. Areal coverage of the four Landslide Susceptibility Index (LSI) classes by Percent 

based on AHP- method. 
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From the calculation, it was found that the LSI had a minimum value of 0.492 (low 

susceptibility), and a maximum value of 2.294 (very high susceptibility). Finally all the 

identified values of LSI were re-classified and categorized it to four classes by adopting manual 

classifier method as suggested by Galang (2004) to signify five classes of the Landslide 

susceptibility zone of the area.  Susceptibility evaluation (using the AHP method) shows that 

29% and 44% of the study area is categorized into very high and high levels of susceptibility 

respectively (Figs 7 & 8). 

3.1. Verification of the Result 

The landslide susceptibility analysis result is verified using known landslide locations (Remondo 

et al., 2003; Lee et al., 2005; Woldearegay, 2005; Lee et al., 2006; Mezughi et al., 2012). 

Verification of the result was executed by comparing known landslide location data (i.e. the 

landslide inventory map) with the landslide susceptibility map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Cumulative frequency diagram showing success rate curve for susceptibility maps 

produced by AHP model for Tarmaber district, Ethiopia. 

 

The rate curve was created and its areas of the under curve was calculated for all cases. 

The rate explains how well the model and factor predict the landslide. Thus, the area under curve 

can measure the prediction accuracy qualitatively. To create the validation curve, the computed 

index values of all cells in the study area were arranged in descending order and divided into 

100equal classes ranging from very highly susceptible classes to low susceptible classes. Then, 

100 classes were overlaid and intersected with known landslides to establish the percentage of 

landslide incidences in each susceptible class. The rate verification results appear as a line in 

figure 9. The fitness the rate curve can be judged by the fact that more percentage of landslides 
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must occur in very high susceptibility zone as compared to other zones. For example, Remondo 

et al. (2003) states that: (1) a hypothetical “validation curve” coinciding with a diagonal from 0 

to 1 would be equivalent to totally random prediction; and the further up and away the validation 

curve from that diagonal the better the predictive value of the model, (2) similarly, the greater the 

gradient in the first part of the curve the greater its predictive capability. 

Landslide susceptibility index (LSI) indicates 29% class of the study area (Fig 8) has very 

high rank and explain 91% of the total landslides. In addition, 44% class of the study area where 

the LSI had a higher rank could explain 94% of the entire landslides. Later, the prediction of the 

map was validated more accurately in a quantitative manner using the Area under the Curve 

(AUC) by considering that the ideal prediction will have highest AUC of 1. In this study, the 

AUC values were found to be 0.886. Accordingly, it indicates that the prediction precision of the 

acquired map is 88.6% as compared to the ideal value of 100%, which is satisfied. The 

prediction accuracy of the map is reasonably high, and hence the result of present study can be 

used as a basic data for preliminary slope management and land-use planning in the study area 

and other similar environments in Ethiopia in general. Due consideration should be given to 

those localities with high to very high zones because they are more liable to failure if the 

triggering factors (e.g. high rainfall and/or earth quake tremor) are experienced.As the effects of 

the landslide to the society living in the area are visible and frequent, the district authorities 

should take some measures on the improper land use activities and human settlements in the 

steep slopes. 

 

4. CONCLUSION  

Landslide susceptibility map is prepared using Analytical Hierarchical Process (AHP) for 

Tarmaber district located in the rift margin of Ethiopia. Seven landslide causative factors were 

analyzed and included in the study to prepare the susceptibility map of the area. The relative 

importance of causative factors/classes on the initiation of landslide and susceptibility of the 

study area is evaluated based on the relative weights, and consistencies are checked.  

The three major influencing factors to induce landsliding activity (judged from its given 

weightage) in the Tarmaber district are: lithology (37.2%), proximity to fault (24.5%), proximity 

to drainage (16.2 %); and followed by aspect (7.5%), slope (7.4%), land use (7.2%) and 

elevation (2.9%). 
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The areas highly prone to landslide in the Tarmaber district are those areas covered by: 

(a). colluviums-eluvium (41.5%); (b) with slope classes 10°-25° (35.5%) & 25°-40° (23.6%); (c) 

land use of river course (50.9%); (d) proximity to fault of 0-400m (24.4%), 400-600m (21.8%) & 

600-800m (19.6%); (e) proximity to drainage of 0-150m (33.9%) & 150-300m (28%); (f) Aspect 

of southeast (22.8%) & east (21.5%;%); and (g) elevation of 2000-2500m (41.8%), 1368-1500m 

(21.8%) & 1500-2000m (20.4%). 

The landslide map generated using AHP method has identified four susceptibility zones:  

very high (29%), high (44%), moderate (20%) and low (7%), and accordingly suggest that 73% 

of the area is prone to landslides. 
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