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ABSTRACT 
In this paper, we discuss about some basic things of boundary value problems. Secondly, we 
study boundary conditions involving derivatives and obtain finite difference approximations of 
partial derivatives of boundary value problems.  The last section is devoted to determine an 
approximate solution for boundary value problems using Variational Iteration Method (VIM) 
and discuss the basic idea of He’s Variational Iteration Method and its applications. 
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1. Introduction  

Solutions of Boundary Value Problems can sufficiently closely be approximated by simple and 

efficient numerical methods. Among these numerical methods are finite difference method, 

standard 5-point formula, iteration method, relaxation method and standard analytic method.  But 

here the finite-difference method and Variational Iteration Method will be considered. 

Boundary value problems arise in several branches of physics as any physical differential 

equation will have them. Problems involving the wave equation, such as the determination of 

normal modes, are often stated as boundary value problems. A large class of important boundary 

value problems are; the Sturm–Liouville problems. The analysis of these problems involves the 

Eigen functions of a differential operator. Consider the second linear boundary problem: 

                                                                                                (1.1) 

with the boundary conditions:  and                                                           (1.2)                 

There exist several methods to solve second order boundary value problem. One of these is the 

finite difference method, which is most popular. Amann (1986) contributed to Quasilinear 

Parabolic systems under nonlinear boundary conditions. Deng and Levine (2000) studied about 

the role of critical exponents in blow-up theorems. Friedman (1967) made an introduction to 

partial differential equations of parabolic type. Friedman and McLeod (1985) developed the 

blow-up of positive solutions of semi-linear heat equations. Keller (1969) studied elliptic 
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boundary value problems suggested by nonlinear diffusion process. Lady`zenskaja et al. (1988) 

developed the concept of linear and quasilinear equations of parabolic type. Le Roux (1994) 

made a semi-discretization in time of nonlinear parabolic equations with blowup of the solutions. 

Le Roux (2000) derived a numerical solution of nonlinear reaction diffusion processes. Levine 

(1990) identified the role of critical exponents in blow-up theorems. Mochizuki and Suzuki 

(1997) find a critical exponents and critical blow up for quasi-linear parabolic equations. Qi 

(1991) studied the asymptotics of blow-up solutions of a degenerate parabolic equations. 

Samarskii et al. (1995) observed a blow-up in quasilinear parabolic equations. Sperp (1980) 

studied the maximum principles and their applications. Zhang (1997) achieved on blow-up of 

solutions for a class of nonlinear reaction diffusion equations.         

  

2. METHODOLOGY 

The finite difference method for the solution of a two point boundary value problem consists in 

replacing the derivatives present in the differential equation and the boundary conditions with the 

help of finite difference approximations and then solving the resulting linear system of equations 

by a standard method. 

It is assumed that y is sufficiently differentiable and that a unique solution of (1.1) exists. 

Problems of this kind are commonly encountered in plate-deflection theory and in fluid 

mechanics for modeling viscoelastic and inelastic flows (Usmani, 1977a; Usmani, 1977b; 

Momani, 1991).  Usmani (1977a, 1977b) discussed sixth order methods for the linear differential 

equation  subject to the boundary 

conditions . The method described by Usmani 

(1977a) leads to five diagonal linear systems and involves p’, p’’, q’, q’’ at a and b, while the 

method described in Usmani (1977b) leads to nine diagonal linear systems.  

Ma and Silva (2004) adopted iterative solutions for (1.1) representing beams on elastic 

foundations. Referring to the classical beam theory, they stated that if  denotes the 

configuration of the deformed beam, then the bending moment satisfies the relation , 

where E is the Young modulus of elasticity and I is the inertial moment. Considering the 

deformation caused by a load  they deduced, from a free-body diagram, that  

and  where v denotes the shear force. For u representing an elastic beam of 
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length L= 1, which is clamped at its left side x= 0, and resting on an elastic bearing at its right 

side x =1, and adding a load f along its length to cause deformations, Ma and Silva [2004] arrived 

at the following boundary value problem assuming an EI = 1:  

                                                                                      (1.3) 

the boundary conditions were taken as 

                                                                                                                    (1.4) 

                                                                                              (1.5) 

where  and g  C(R) are real functions. The physical interpretation of the 

boundary conditions is that  is the shear force at x = 1, and the second condition in (1.5) 

means that the vertical force is equal to  which denotes a relation, possibly nonlinear, 

between the vertical force and the displacement . Furthermore, since  indicates 

that there is no bending moment at x= 1, the beam is resting on the bearing g. 

Solving (1.3) by means of iterative procedures, Ma and Silva (2004) obtained solutions and 

argued that the accuracy of results depends highly upon the integration method used in the 

iterative process. With the rapid development of nonlinear science, many different methods were 

proposed to solve differential equations, including boundary value problems (BVPS). In this 

paper, it is aimed to apply the variational iteration method proposed by He (1999) to different 

forms of (1.1) subject to boundary conditions of physical significance. 

 

3. BOUNDARY VALUE PROBLEMS 

3.1 Definition: A boundary value problem is a differential equation together with a set of 

additional restraints, called the boundary conditions.  

3.2 Definition: A solution to a boundary value problem is a solution to the differential equation 

which also satisfies the boundary conditions.  

3.3 Note: Using the Taylor’s series, we have  

                                                           (2.1) 

                                                         (2.2) 
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                                                                                                 (2.3) 

This is the forward difference approximation for . Also we have  

                                                                                                      (2.4) 

This gives the back-ward difference approximation for . Then the central difference 

approximation for is obtained by subtracting (2.2) from (2.1); 

 

 

                                                                                                            (2.5) 

This gives us a better approximation to  as compared to (2.3) or (2.4). Further adding (2.1) 

and (2.2), we get; 

 

 

                                                                                   (2.6) 

Similarly we can obtain finite-difference approximations of higher derivatives. To solve the 

boundary-value problem given by   with the boundary 

conditions:  and , we divide the range  in to n-equal sub intervals of 

width  so that . The corresponding value of  are then given 

by  .  

Now using equations (2.5) and (2.6); values of and at the points  can be written 

as: 

and  , then satisfying the differential equations 

at the point   ,  we get,                                                     (2.7) 

Now substituting the values of and in (2.7), we get ;   



Gebreslassie, T., Venketeswara Rao, J., Ataklti, A and Daniel, T (MEJS)        Volume 4 (1):102-114, 2012   
 

© CNCS, Mekelle University                                                                                               ISSN: 2220-184X 
 

106

where  etc. multiplying throughout by  

and then simplifying, we get 

                         (2.8) 

Where  and .                                                                                                         (2.9) 

Now equation (2.8) under the conditions (2.9) gives rise to a tridiagonal system which can be 

easily solved by the model method. 

Example 1: Solve numerically the equation , with boundary conditions  

when and when . 

Solution: Here . Choosing  we get . Now  

 Putting this value in the given equation, we get    

 

                 

Figure 1. Mesh points of  when  

  

Putting , we get        but   and  

    But  (*) 

Again solving the given equation analytically by standard method, we get 

(**). 

 Inspections (*) and (**) shows that the finite-difference solution for is about 2.4% too 

large. 

4. BOUNDARY CONDITIONS INVOLVING A DERIVATIVE 

4.1 Definition: The central difference  of  is defined by 

 

Higher-order differences are defined recursively by:   

 =  
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In particular, the second central difference may be written  

 

The differential equation                                                  (3.1)           

may be associated with boundary conditions involving the first derivative of the solution. 

Suppose, for example, that we are given real numbers   and B. Consider the differential 

equation (3.1) together with the boundary conditions              (3.2) 

The condition at   may be approximated in various ways; we shall introduce an extra mesh 

point  outside the interval and use the approximate version .  

This gives =  Writing the same central difference approximation 

                                                                               (3.3)                         

But now for  we can eliminate the extra unknown  from the equation at 

j=0 to give  together with (3.1), for  we 

now have a system of n equations for the unknowns , there are one more 

equation and one more unknown. 

4.2 Theorem: Suppose that   then, there exists a real number x in 

 such that                                                 (3.4) 

Proof: Taylor’s Theorem shows that there exist  and   such that  

  

  

We subtract the first equality from the second, and note that the approximation to  at 

 may be written   for  we define the truncation 

error .  In addition, since we shall now also incur an error in the approximation of the boundary 

condition at  , we define 

.  
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5. OBTAINING FINITE DIFFERENCE APPROXIMATIONS OF PARTIAL 
DERIVATIVES 
 
Let the x-y plane be divided into a network of rectangles of side and  by drawing 

the set of lines and   

The points of intersection of these lines are called mesh points (lattice points or grid points). 

0 
   

   
   

   
   

   
   

  (
) 

    

 

 

 

 

 

    

   

 

 

    

    

Figure 2.  Mesh points (lattice points or grid points). 

 

Then we have the finite difference approximations for the partial derivatives in x-direction, as  

  

 

Further writing as simply , the above 

approximations are reduced to: 

                                           (4.1)                         

And                                                                                          (4.2) 

And similarly we have the approximations for the derivatives w.r.to y: 

                                           (4.3)                         

And                                                                                          (4.4) 
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6.  AN APPROXIMATE SOLUTION FOR BOUNDARY VALUE PROBLEMS 

6.1 Definition: The general form of the equation for a fixed positive integer n, n ≥ 2 is a 

differential equation of order 2n:                                                               (5.1) 

Subject to the boundary conditions ,         (5.2) 

where −∞ < a ≤ x ≤ b < ∞, ,  are finite constants. 

6.2. Basic idea of He’s variational iteration method 

To clarify the basic ideas of He’s VIM, the following differential equation is considered: 

                                                                                                  (5.3) 

where L is a linear operator, N is a nonlinear operator, and  is an inhomogeneous term. 

According to VIM, a correction functional could be written as follows: 

                                                   (5.4) 

where λ is a general Lagrange multiplier which can be identified optimally via the variational 

theory and the subscript n indicates the nth approximation and  is considered as a restricted 

variation, that is, . 

For fourth-order boundary value problem with suitable boundary conditions, Lagrangian 

multiplier can be identified by substituting the problem into (5.4), upon making it stationary 

leads to the following: 

 

                                                                                                                   (5.5) 

. 

Solving the system of (5.5) yields 

                                                                                                                            (5.6) 

and the variational iteration formula is obtained in the form 

                             (5.7) 

6.3. The Applications of Variational Iteration  Method 

In this section, the Variational Iteration Method is applied to different forms of the fourth-order 

boundary value problem introduced in through (5.1). 

Example 1: Consider the following linear boundary value problem: 
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                                                                                       (5.8) 

subject to the boundary conditions 

                                                                      (5.9) 

The exact solution for this problem is 

                                                                                                                    (5.10) 

According to (5.7), the following iteration formulation is achieved: 

.                                          (5.11) 

Now it is assumed that an initial approximation has the form 

                                                                                   (5.12)  

where a, b, c, and d are unknown constants to be further determined. 

By the iteration formula (5.11), the following first-order approximation may be written: 

  

  

 =                   

(5.13) 

Incorporating the boundary conditions (5.9), into , the following coefficients can be 

obtained: 

                                     (5.14) 

Therefore, the following first-order approximate solution is derived: 

 

Comparison of the first-order approximate solution with exact solution is tabulated in table 1, 

showing a remarkable agreement. 
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Table 1. Comparison of the first-order approximate solution with exact solution.  

x UE U1 Error 

0 1.000000000 1.000000000 0.0000E+ 000 

0.1 1.215688010 1.215681524 6.4860E – 006 

0.2 1.465683310 1.465660890 2.2420E – 005 

0.3 1.754816450 1.754773923 4.2527E – 005 

0.4 2.088554577 2.088492979 6.1598E – 005 

0.5 2.473081906 2.473007265 7.4641E – 005 

0.6 2.915390080 2.915312734 7.7346E – 005 

0.7 3.423379602 3.423312592 6.7010E − 005

0.8 4.005973670 4.005929404 4.4266E − 005

0.9 4.673245911 4.67322989 1.6020E − 005

1.0 2e 2e 0.0000E+ 000 

Similarly, the following second-order approximation is obtained: 

  

                        

(5.16) 

 

 

Therefore, the second-order approximate solution may be written as 
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Again, the obtained solution is of distinguishing accuracy, as indicated in table 2 below. 

 

Table 2. Comparison of the second-order approximate solution with exact solution. 

x UE U2 Error 

0 1.000000000 1.000000000 0.0E+ 000 

0.1 1.215688010 1.215688008 2.0E − 009 

0.2 1.465683310 1.465683305 5.0E − 009 

0.3 1.754816450 1.754816444 6.0E − 009 

0.4 2.088554577 2.088554566 1.1E − 008 

0.5 2.473081906 2.473081902 4.0E − 009 

0.6 2.915390080 2.915390064 1.6E − 008 

0.7 3.423379602 3.423379600 2.0E − 009 

0.8 4.005973670 4.005973650 2.0E − 008 

0.9 4.673245911 4.673245930 1.9E − 008 

1.0 2e 2e 0.0E +000 

 

7. CONCLUSION 

This study showed that the finite difference method for the solution of a two point boundary 

value problem consists in replacing the derivatives present in the differential equation and the 

boundary conditions with the help of finite difference approximations and then solving the 

resulting linear system of equations by a standard method. 
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The Variational Iteration Method is remarkably effective for solving boundary value problems.  

A fourth-order differential equation with particular engineering applications was solved using the 

VIM in order to prove its effectiveness. Different forms of the equation having boundary 

conditions of physical significance were considered.  

Comparison between the approximate and exact solutions showed that one-iteration is enough to 

reach the exact solution. Therefore the Variational Iteration Method is able to solve partial 

differential equations using a minimum calculation process. This method is a very promoting 

method, which promises to find wide applications in engineering problems. 
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