Main Article Content

Dynamic response of ground supported rectangular water tanks to earthquake excitation


Birhane Aregawi
Abdulaziz Kassahun

Abstract

This study investigates an idealized ground supported reinforced concrete rectangular water tank under earthquake excitation. A linear three-dimensional finite element analysis and SAP2000 software have been used to predict tank response. The variable analysis parameters considered are the aspect ratio (tank height to length ratio) and tank water level, while the tank wall thickness is taken as a constant. The convective and impulsive masses are also represented by spring-mass model in the time history analysis for El-Centro earthquake ground motion record. Five tank models with a capacity of 216, 288, 360, 432 and 504 m3 were developed and analyzed for hydrodynamic and hydrostatic effects. In general the results show that, there is a smooth increase in the moment and displacement of both hydrostatic and hydrodynamic analysis with a decrease in aspect ratio. The top displacement and moment for the hydrodynamic effects are greater than the hydrostatic results and it is observed that the maximum hydrodynamic moment is 91.3% higher than the corresponding maximum hydrostatic moment. Likewise the displacement obtained from hydrodynamic analysis is 63.58% more than the corresponding hydrostatic value.

Keywords: Hydrodynamic effect, Convective and Impulsive, Rectangular tanks, Finite Element Models, Time history, SAP2000, Ethiopia


Journal Identifiers


eISSN: 2220-184X
print ISSN: 2073-073X