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  ABSTRACT 
A numerical method based on finite difference scheme with uniform mesh is presented for solving 

singularly perturbed two-point boundary value problems of 1D reaction-diffusion equations. 

First, the derivatives of the given differential equation is replaced by the finite difference 

approximations and then, solved by using fourth order compact finite difference method by taking 

uniform mesh.  To demonstrate the efficiency of the method, numerical illustrations have been given. 

Graphs are also depicted in support of the numerical results. Both the theoretical and computational rate 

of convergence of the method have been examined and found to be in agreement. As it can be observed 

from the numerical results presented in tables and graphs, the present method approximates the 

exact solution very well. 
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1. INTRODUCTION 

Any differential equation in which the highest order derivative is multiplied by a small positive 

parameter )10(   is called Singular Perturbation Problem and the parameter is known as 

the perturbation parameter. These types of problems arise very frequently in diversified fields of 

applied mathematics and engineering, for instance fluid mechanics, elasticity, hydrodynamics, 

quantum mechanics, chemical-reactor theory, aerodynamics, plasma dynamics, rarefied-gas 

dynamics, oceanography, meteorology, modeling of semiconductor devices, diffraction theory 

and reaction-diffusion processes and many other allied areas. 

It is well-known fact that the solution of singular perturbation problems exhibits a multi-scale 

character; that is, there are thin transition layer(s) where the solution varies rapidly or jump 

suddenly known as boundary layer, while away from the layer(s) the solution behaves regularly 

and varies slowly known as outer region. Thus, the treatment of such problems is not trivial 

because of the boundary layer behavior of their solutions. Detailed theory and analytical 

discussions of solving singular perturbation problems have been published (O’Malley, 1974, 

1991; Nayfeh, 1973, 1981; Cole and Kevorkian, 1979; Bender and Orszag, 1978; Eckhaus, 1973; 

Vandyke, 1975; Bellman, 1964), and have the details of numerical and asymptotic solutions in 
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(Doolan et al., 1980; Goering et al., 1983; Hemker, 1977; Hemker and Miller, 1979; Miller, 

1993; Miller et al., 1996). 

Moreover, in the recent times many researchers have been trying to develop and present 

numerical methods for solving these problems. For instance, Padmaja et al. (2012) have 

presented a nonstandard explicit method involving the reduction of order for solving singularly 

perturbed two point boundary value problems. To apply the method, the authors have 

approximated the original problem by a pair of initial value problems and solved the first initial 

value problem as outer region problem whose solution can be required in the second initial value 

problem which they considered it as an inner region problem and is modified using the stretching 

transformation. The Differential Quadrature Method (DQM) has been applied for finding the 

numerical solution of singularly perturbed two point boundary value problems with mixed 

condition (Prasad and Reddy, 2011). DQM is based on the approximation of the derivatives of 

the unknown functions involved in the differential equations at the mesh point of the solution 

domain and is an efficient discretization technique in solving boundary value problems using a 

considerably small number of grid points. Geng (2011) has proposed the reproducing kernel 

method (RKM) for solving a class of singularly perturbed boundary value problems by 

transforming the original problem in to a new boundary value problem whose solution does not 

change rapidly. RKM has the advantage that it can produce smooth approximate solutions, but it 

is difficult to apply the method for singularly perturbed boundary value problems without 

transforming using appropriate transformation. However, most of the existing classical finite 

difference methods which have been used in solving singular perturbation problems give good 

result only when the mesh size is much less than the perturbation parameter which is very costly 

and time consuming.  

In this paper, fourth order compact finite difference method is presented for solving singularly 

perturbed 1D reaction-diffusion equations. Compact finite difference method is a finite 

difference method which employs a linear combination of three consecutive points of derivatives 

to approximate a linear combination of the same three consecutive values of a function

1,,1),(  iiijxy j . 

 

 



Fasika, W., Gemechis, F and Tesfaye, A (MEJS)                                                Volume 8(2):168-181, 2016 

 

 CNCS, Mekelle University                                      170                                                     ISSN: 2220-184X 

 

 

2. DESCRIPTION OF THE METHOD 

Consider the following singularly perturbed reaction-diffusion equation of the form:  

 ,10);()()()(  xxfxyxaxy       (1) 

with the boundary conditions          

   )1(,)0( yy          (2) 

where,  is a small positive parameter (diffusion coefficient) such that 10  , , are given 

constants and );(xa )(xf  are assumed to be sufficiently continuously differentiable functions. 

Furthermore, assume that 0)(  xa in the interval ]1,0[ , where   is some positive constant. 

To describe the method, we divide the interval ]1,0[  into N equal sub-intervals of mesh length h . 

Let 1...,,,,0 210  Nxxxx be the mesh points. Then, we have ihxxi  0 , Ni ....,,2,1,0

For the sake of simplicity, let us denote ,)( ii axa  ,)( ii fxf  iiii yxyyxy  )(,)( and

.)(
)()( n

ii

n yxy   Assume that )(xy  has continuous fourth order derivatives on ]1,0[ . 

By using Taylor series expansion, we obtain:       
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Subtracting Eq. (4) from Eq. (3), we obtain the second order finite difference approximation 

)( 1

ic y  for the first derivative of iy : 
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  

Similarly, adding Eqs. (3) and (4), we obtain the second order finite difference approximation 

)( 2

ic y for the second derivative of iy : 
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Substituting  Eqs. (3)and(4) into Eq. (5), we obtain: 

 
3

)3(
2

1

6
  iiic y

h
yy         (7) 

where, .
120

1

)5(
4

3   iy
h

          

Substituting  Eqs. (3) and (4) into Eq. (6), we obtain: 4

)4(
2

2

12
  iiic y

h
yy   (8)  

where, .
360

2

)6(
4

4   iy
h

 

Writing Eq. (1) at discretized mesh, we obtain:   iiii fyay      (9) 

Differentiating Eq. (9) twice and solving for 
)4(

i
y , we get:  


i

i
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f
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a
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
)4(

  (10) 

Substituting Eq. (10) into Eq. (8) and solving for 
i

y   is given by:    
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Substituting Eq. (11) into Eq. (1) for
i

y   yields:       
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Substituting Eq. (6) for 
ic

y2  into Eq. (12), we obtain:      
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where, )6(
4

360
iy

h
   is the local truncation error of the method.  

From Eq. (13) we get three-term recurrence relation of the form:     

 1...,,3,2,1,11   NiHyGyFyE iiiiiii     (14)  
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Eq. (14) can easily be solved by Discrete Invariant Imbedding Algorithm commonly known as 

Thomas Algorithm. To get the numerical results and validate the scheme, MATLAB software 

has been applied. 

The conditions for the discrete invariant imbedding algorithm to be stable are, (see Angel and 

Bellman, 1972; Elsgolt’s and Norkin, 1973):  

  iiiii GEFGE  ,0,0 and ii GE        

For our method, one can easily show that Eq. (14) satisfies the conditions given above and hence 

Thomas Algorithm is stable for the proposed method. 

 

3. CONVERGENCE ANALYSIS 

Writing the tri-diagonal system in Eq. (14) above in matrix vector form, we get:  

 CAY            (15)  

where, 1,1),(  NjimA ij  is a tri-diagonal matrix of order ,N  with   
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and )( idC   is a column vector with ,
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 for 1...,,2,1  Ni  with the 

local truncation error  

 )4(
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h
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We also have ChYA  )(         (17)  

where, t

NyyyyY )...,,,,( 210 denote the exact solution and t

NN hhhh ))(...,),(),(()( 1201  

denote the local truncation error.    
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Making use of Eq. (15) and Eq. (17), we obtain an error equation:   

 )(hAE            (18) 
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Since, 10   , we can choose h  sufficiently small so that the matrix A  is irreducible and 

monotone (Mohanty and Jha, 2005). Then, it follows that 1A  exists and its elements are non-

negative. Hence, from Eq. (18), we get         

)(.1 hAE            (19) 

and            

 )(.1 hAE           (20) 

Let ikm ,  be the ),( ik  elements of .1A  Since, ,0, ikm  by the definition of multiplication of   

matrices with its inverses, we have 

  




1

1
, 1...,,2,1,1

N

i
iik NkSm        (21)  

Therefore, it follows that 
ii

Ni

N

i
ik

aS
m

1

min

1

11

1

1
,  







     (22) 

We define 





1

1
,

11

1
max

N

i
ik

Ni

mA and )(max)(
11

ii
Ni

hh 


      



Fasika, W., Gemechis, F and Tesfaye, A (MEJS)                                                Volume 8(2):168-181, 2016 

 

 CNCS, Mekelle University                                      174                                                     ISSN: 2220-184X 

 

 

From Eqs. (16), (19), and (20) and (22), we obtain:      
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independent of .h Therefore, ).( 4hoE  This implies that the method gives a fourth order 

convergence.   

 

4. NUMERICAL EXAMPLES          

To demonstrate the applicability of the methods, two model singularly perturbed problems have 

been considered. These examples have been chosen because they have been widely discussed in 

the literature and their exact solutions were available for comparison.   

Example 1: Consider the following singularly perturbed problem:     

  ,10,  xxyy  with .
1

exp1)1(,1)0( 










yy   

The exact solution is given by:         

  .exp)( 











x
xxy          

The numerical solutions in terms of maximum absolute errors are given in Tables 1. 

Example 2: Consider the following singularly perturbed problem:     

 ,10),2cos(2)(cos 22  xxxyy  with .0)1()0(  yy   

The exact solution for this example is given by:   

 ).(cos
)/1exp(1

)/exp()/)1(exp(
)( 2 x

xx
xy 









     

The numerical results of maximum absolute errors are tabulated in tables 2 for different values of 

the perturbation parameters  and .N The effect of the perturbation parameter on the solution of 

the problem is also shown in figures 1(a) – 2(b) for fixed h  and different values of the 



Fasika, W., Gemechis, F and Tesfaye, A (MEJS)                                                Volume 8(2):168-181, 2016 

 

 CNCS, Mekelle University                                      175                                                     ISSN: 2220-184X 

 

 

perturbation parameter  . That is, figures 1(a) – 2(b) show the comparison of the exact and 

numerical solutions for .h  

          

5. NUMERICAL RESULTS          

 Table 1. Maximum Absolute Errors for Example 1.       

  16N  32N  64N  128N  256N  

Our Method 

1/16 1.9605E-006 1.2339E-007 7.7250E-009 4.8297E-010 2.9947E-011 

1/32 7.8196E-006 4.9554E-007 3.1124E-008 1.9474E-009 1.2164E-010 

1/64 3.0781E-005 1.9774E-006 1.2445E-007 7.7918E-009 4.8715E-010 

1/128 1.1257E-004 7.8234E-006 4.9578E-007 3.1137E-008 1.9482E-009 

Rashidinia et al. (2007) 

1/16 2.96E-006 1.85E-007 1.15E-008 7.24E-010 4.56E-011 

1/32 1.18E-005 7.54E-007 4.67E-008 2.96E-009 1.82E-010 

1/64 4.74E-005 2.96E-006 1.86E-007 1.16E-008 7.30E-010 

1/128 1.78E-004 1.18E-005 7.46E-007 4.67E-008 2.92E-009 

 

Table 2. Maximum Absolute Errors for Example 2.       

  16N  32N  64N  128N  256N  

Our Method 

1/16 2.7142E-005 1.6884E-006 1.0540E-007 6.5854E-009 4.1160E-010 

1/32 1.3336E-005 8.2769E-007 5.1638E-008 3.2259E-009 2.0159E-010 

1/64 3.5441E-005 2.2716E-006 1.4288E-007 8.9515E-009 5.5984E-010 

1/128 1.1588E-004 8.0642E-006 5.1092E-007 3.2072E-008 2.0072E-009 

Rashidinia et al. (2007) 

1/16 4.07E-005 2.53E-006 1.58E-007 9.87E-009 6.17E-010 

1/32 2.00E-005 1.24E-006 7.74E-008 4.83E-009 3.02E-010 

1/64 5.45E-005 3.42E-006 2.14E-007 1.34E-008 8.39E-010 

1/128 1.83E-004 1.22E-005 7.68E-007 4.81E-008 3.01E-009 

Kadalbajoo and Bawa (1996) 

1/16 7.09E-003 1.77E-003 4.45E-004 1.11E-004 2.78E-005 

1/32 5.68E-003 1.42E-003 3.55E-004 8.89E-005 2.22E-005 

1/64 4.07E-003 1.01E-003 2.54E-004 6.35E-005 1.28E-005 

1/128 6.97E-003 1.75E-003 4.33E-004 1.08E-004 2.71E-005 

Surla et al. (1991) 

1/16 4.14E-003 1.02E-003 2.54E-004 6.35E-005 1.58E-005 

1/32 3.68E-003 9.03E-004 5.61E-005 1.40E-005 3.50E-006 

1/64 3.45E-003 8.40E-004 2.08E-004 5.20E-005 1.30E-005 

1/128 3.43E-003 8.21E-004 2.03E-004 5.06E-005 1.26E-005 
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The computational rate of convergence can also be obtained by using the double mesh principle 

defined below.  

Let 1...,,2,1,max
2/  NiyyZ h

i

h

i
i

h      

Where, h

iy is the numerical solution on the mesh 1

1}{ N

ix at the nodal point 
i

x where  

 1,...,2,1,0  Niihxxi   and  where, 2/h

i
y is the numerical solution at the nodal 

point 
i

x on the mesh 12

1}{ N

ix
 
where, .12,...,2,1,2/0  Niihxxi  

In the same way one can define 
2/h

Z  by replacing h by 2/h  and 1N by .12 N  

That is, 
/2 /4

/2 max , 1, 2, 3, ..., 2 1h h

h i i
i

z y y i N    . 

The computed rate of convergence is defined as  

2log

loglog 2/hh ZZ
Rate


 .  

Tables 3 and 4 shows the rate of convergence of the present method for different values of the 

mesh size h . 

 

Table 3. Rate of Convergence for Example 1 ( 16/1 )       

h  2/h  
hZ  4/h  

2/hZ  Rate  

1/16 1/32 1.8371E-006 1/64 1.1566E-007 3.9894 

1/32 1/64 1.1566E-007 1/128 7.2420E-009 3.9974 

1/64 1/128 7.2420E-009 1/256 4.5302E-010 3.9987 

 

Table 4. Rate of Convergence for Example 2 ( 16/1 ).      

  

 

 

 

Figures 1(a) – 2(b) show that the numerical solutions obtained by the present method for h

as compared to the exact solutions. 

 

 

h  2/h  hZ  4/h  2/hZ  Rate 

1/16 1/32 2.5453E-005 1/64 1.5830E-006 4.0071 

1/32 1/64 1.5830E-006 1/128 9.8814E-008 4.0018 

1/64 1/128 9.8814E-008 1/256 6.1738E-009 4.0005 
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Figure 1. (a) Numerical Solution of Example 1 for =0.01 & , (b) Numerical Solution 

of Example 1 for  & .01.0h  
 

 .01.0h

001.0
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Figure 2. (a) Numerical solution of Example 2 for =0.01 & , (b) Numerical solution 

of Example 2 for 001.0  &    

 

 .01.0h

.01.0h
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6. DISCUSSION  

In this paper, fourth order compact finite difference method has been presented for solving 

singularly perturbed reaction-diffusion equations. To validated the applicability of the method,  

two model examples have been solved by taking different values for the perturbation parameter, 

 and mesh size, .h The numerical results obtained by the present method have been tabulated in 

terms of maximum absolute errors for different values of the perturbation parameter,   and mesh 

points, N ; and compared with numerical results obtained by (Rashidinia et al., 2007; Kadalbajoo 

and Bawa, 1996; Surla et al., 1991). Further, the numerical solutions obtained by the proposed 

method for h  , for which most of the existing numerical methods fail to give good results, 

have been presented in graphs (Figures 1(a & b) and 2(a & b). As it can be observed from the 

tables and graphs, the present method approximates the exact solution very well and gives better 

solution than some existing methods reported in the literature.  

Both the theoretical and numerical order of convergence have been investigated (Section 3; and 

Tables 3 & 4) and the results obtained confirmed that computational rate of convergence is in 

agreement with the theoretical estimates of the order convergence. In concise manner, the 

present method is conceptually simple, easy to use and readily adaptable for computer 

implementation for solving singularly perturbed reaction-diffusion equation. 

 

7.  CONCLUSION 

Fourth order compact finite difference method has been presented for solving singularly 

perturbed reaction-diffusion equations. The method approximates the exact solution very well 

and gives better result than some existing methods reported in the literature. The rate of 

convergence of this method has been computed and is observed that it is in agreement with the 

theoretical estimates of the method which is of fourth order convergent. 
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