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ABSTRACT 
In this paper, different Newton – C’otes quadrature formulae for the approximation of definite 
integrals and their error analysis are derived. The order of convergences of the methods is also 
derived and of these Newton – C’otes quadrature formulae, the Simpson’s 1/3 rule have been 
shown to have high order of convergence. Since the functionality of these numerical integration 
methods is practical only if we can use computer programs and applications to produce 
approximate solutions with acceptable errors within short period, C++ programs for the selected 
methods are written. These programs are used on the comparison of the Newton – C’otes 
quadrature formulae and the result obtained based on the inputs and outputs of the programs for 
different integrands. The results of these programs show that the convergence of the methods 
highly depends on the number of iterations. The results of different numerical examples show 
that for high accuracy of the trapezoidal rule computational effort is higher and round off errors 
with large number of iterations limit the accuracy. The results show that the Simpson’s 1/3 rule 
produces much more accurate solution than other methods even within small number of 
iterations. This shows that the error for Simpson’s rule 1/3 converges to zero faster than the error 
for the trapezoidal rule as the step size decreases. It is finally observed that Simpson’s 1/3 rule is 
much faster than the Trapezoidal and the Simpson’s 3/8 rules according to the results of the C++ 
programs. 
 
Keywords: Newton- C’otes quadrature formulae, Interpolation polynomials, Convergence, Error 

analysis, Trapezoidal rule, Simpson’s 1/3 rule, Simpson’s 3/8 rule, C++ 
programming. 

 

1. INTRODUCTION 

Quadrature formulae are algorithms for approximating definite integrals by means of the values 

of the integrand at a finite number of points. Often need arises for evaluating the definite integral 

of functions that does not have explicit anti-derivative, in other circumstances the function is not 

known explicitly but is given empirically by a set of measured or tabulated values. These 

Quadrature formulae which are based on uniformly spaced points (abscissas) are called Newton 

– C’otes quadrature formulae (Rao, 2010; Kreyszig, 2006). In certain circumstances where the 

integral cannot be evaluated analytically, numerical integration is used to give approximate 

solution to the definite integral. Since solutions obtained in numerical integration are 
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approximate, there is usually associated error of approximation which is a measure of the 

deviation of the approximate solution from the exact value (Chapra, 2012). 

The most common quadrature formulae have the form 

I = ∫ �(�)�(�)��
�

�
,                                                 (1.1) 

Where, the weight functionw(x)>0in a closed interval [a,b] and we assume that �(�)�(�)  are 

integrable, in the Riemann sense in [a,b] and the limits of integration  is  finite (Levy, 2010; Jain 

et al., 2004). 

The need for developing numerical integration methods is that there are definite integrals 

in which the integrands are known explicitly but cannot be evaluated by applying the analytical 

techniques in other cases the integrands of the definite integrals are not explicitly known but 

merely specified by a table of numerical values at some points only and hence analytical 

methods cannot be applied (Rao, 2010; Burden and Douglas, 2010).  

Since, all numerical methods only give approximate solutions, there is a need for their 

error analysis so as to attain better accuracy and most of these methods cannot be used manually 

for practical applications due to these associated errors unless we use computer applications (Jain 

et al., 2004; Chapra, 2012). 

Numerical integration is the study of how the numerical value of an integral can be 

found. Also called quadrature, which refers to finding a square whose area is the same as the area 

under a curve, it is one of the classical topics of numerical analysis. Of central interest is the 

process of approximating a definite integral from values of the integrand when exact 

mathematical integration is not available. Many methods are available for approximating the 

integral to the desired precision in Numerical integration (Jain et al., 2004; Levy, 2010; Amos 

and Subramaniam, 2013). 

Numerical integration is the process of computing the value of a definite integral from a 

set of numerical values of the integrand. The process of evaluation of integration of a function of 

a single variable is sometimes called Mechanical Quadrature. The computation of a double 

integral of a function of two independent variables is called Mechanical Cubature (Rao, 2010; 

Sastry, 2012). 

The Trapezoidal rule is one of a family of formulas for numerical integration called 

Newton–Cotes formulae, of which the midpoint rule is similar to the trapezoid rule. Simpson's 

rule is another member of the same family, and in general has faster convergence than the 

https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
https://en.wikipedia.org/wiki/Midpoint_rule
https://en.wikipedia.org/wiki/Simpson%27s_rule
https://en.wikipedia.org/wiki/Simpson%27s_rule
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trapezoidal rule for functions which are twice continuously differentiable, though not in all 

specific cases (Alomari and Dragomir, 2014; Weidman, 2002). However, for various classes of 

rougher functions (ones with weaker smoothness conditions), the trapezoidal rule has faster 

convergence in general than Simpson's rule. Moreover, the trapezoidal rule tends to become 

extremely accurate when periodic functions are integrated over their periods, which can be 

analyzed in various ways (Weidman, 2002; Mathews and Kurtis, 2004). 

It follows that if the integrand is concave up (and thus has a positive second derivative), 

then the error is negative and the trapezoidal rule overestimates the true value. This can also be 

seen from the geometric picture: the trapezoids include all of the area under the curve and extend 

over it. Similarly, a concave-down function yields an underestimate because area is unaccounted 

for under the curve, but none is counted above (Burg, 2012; Weidman, 2002). 

 

2. METHODS AND MATERIALS 

In this paper, the Newton–C’otes quadrature methods based on Newton’s interpolation 

polynomials are derived and analyzed. 

In developing and analyzing the Newton – C’otes quadrature formulas, the following steps will 

be adopted. 

 Taking some samples of tabulated functional values of the integrand, 

 Deriving interpolation polynomial which agrees at the tabulated values of the integrand, 

 Replacing the integrand by the interpolation polynomial, 

 Integrate this polynomial on the interval [a,b], 

 Divide the interval into smaller sub intervals and take the sum as the approximate value 

of the integral, 

 Write C++ programs for each of the methods and implement it.   

The method of numerical integration which uses interpolation polynomials to approximate the 

given integral is called Newton – C’otes quadrature formula. The integration formulas of Newton 

and cotes formulas are obtained if the integrand is replaced by a suitable interpolating 

polynomial �(�) and if ∫ �(�)��
�

�
 is taken as an approximate value for∫ �(�)��

�

�
. Consider a  

uniform partition of the closed interval [�	, �] , given by �� = � + �ℎ		, � = 0, 1, 2,⋯ , �, where ℎ 

is the step length given by ℎ =
���

�
 and let �� be an interpolating polynomial of degree � or less 

https://en.wikipedia.org/wiki/Periodic_function
https://en.wikipedia.org/wiki/Trapezoidal_rule
https://en.wikipedia.org/wiki/Concave_up
https://en.wikipedia.org/wiki/Concave-down
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satisfying the following conditions, ��(��) = �(��), for all � = 0, 1, 2,⋯ , �,ad �� ≠ ��   for � ≠

�.Now using the Newton’s interpolation formulae we replace the integrand of the integral and we 

find the following quadrature formulae. 

2.1. Quadrature Methods Based on Newton’s Backward Difference Interpolations 

In this method we replace the integrand above by Newton’s backward difference interpolating 

polynomial and integrate it with in the limits of integration. The n-th order Newton’s backward 

ifference interpolation formula is given by Rao (2010); and Kharab & Guenther (2001). 

��(�) = �� + �∇	�� +
�

�
�(� + 1)∇��� +⋯+

�(���)(���)⋯(�����)

�!
∇���                (2.1) 

Where,  � =
����

�
 ,ℎ	��	����	����	 and �� = �(��) = ��	, � = 0,1,2, … , �. 

Substituting the formula equation (2.1) for the integrand in the formula equation (1.1) and 

simplifying we obtain,  

� �(�)�(�)��

�

�

= � ��(�)��

�

�

	= ℎ � ��(�)��

�

��

 

= −�ℎ �− �� +
�

�
∇�� +

�

��
(3 − 2�)∇��� +

�

��
(� − 2)(� − 2)∇��� +⋯�                 (2.2) 

Where, and ∇�� = �� − ����, and  ∇��� = ∇
����� − ∇

������� 

This expression gives us different Newton-C’otes quadrature formulas on substituting different 

values of 	�. 

2.1.1. Trapezoidal Rule 

Here, we let � = 1in the above equation (2.2) and obtained the following result  

∫ �(�)�� =
�

�
[�(��) + �(��)]

��

��
 , Where, �(��) = �� = �� for all� = 0, 1, 2,⋯ , � .Graphically. 

 

Figure 1.  The Trapezoidal rule (Levy, 2010). 
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Now, the error of this method can be approximated in the following way. 

Let the function � = �(�) be continuous and possess a continuous derivatives in[��, ��]. 

Expanding � in Taylor’s series about� = ��, we obtain  

∫ �(�)�� = ∫ [�� + (� − ��)��
�+

�

�
(� − ��)

���"+⋯]��
��

��

��

��
           (2.3) 

= ℎ�� +
��

�
��
�+

�

�
ℎ���"+	…    , Where,  ℎ = (� − ��) . 

Similarly, 

�

�
[�� + ��] = ℎ�� +

��

�
��
�+

�

�
ℎ���"+	… .                 (2.4) 

Then from (2.3) and (2.4) we obtain  

� = ∫ ��� −
�

�
[�� + ��] = −

�

��
ℎ���"+⋯

��

��
. 

Hence, the error on this interval is given by� = −
�

��
ℎ���"+⋯     . 

Similarly, we drive the composite trapezoidal rule as follows. 

Given an interval [�, �] and a partition  {��,⋯ , ��} of [�, �] where, �� = �, �� = �.  

We want to evaluate the definite integral over the whole partition. But, in the previous section we 

obtain that the approximation of the integral ∫ ��� =
�

�
[�� + ��]

��

��
 and similarly we obtain  

∫ ��� =
�

�
[�� + ��]	,⋯

��

��
, and ∫ ��� =

�

�
[���� + ��]

��

����
. Hence the integration over all 

subdivisions is determined to be 

∫ ��� =
�

�
[�� + 2(�� + ⋯+ ����) + ��]

��

��
. 

Graphically, 

 

 

 

 

 

 

 

 

 

Figure 2. The Composite Trapezoidal rule (Levy, 2010). 
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Proceeding in a similar manner we obtain the errors in the subintervals 

[��, ��], [��, ��], [��, ��],⋯ , [����, ��	] and adding all the errors we get  

�� = −
�

��
ℎ�[��"+ ��"+⋯����"] . 

Now assuming that �"(�) is the largest value of the �-quantities on the right hand side we obtain 

�� = −
�

��
ℎ���"(�). 

= −
�

��
(� − �)ℎ��"(�) , this is true since,  ℎ =

���

�
 . 

2.1.2. Simpson’s 1/3-Rule 

Here, we let � = 2 in the above equation (2) and obtain the following result  

∫ �(�)�� =
�

�
[�(��) + 4�(��) + �(��)]

��

��
 , 

Where, �(��) = �� = �� for all= 0, 1, 2,⋯ , � . 

Graphically, 

 

Figure 3. The Simpson’s 1/3 rule (Levy, 2010).                                                    

 

Now, the error of this method can be approximated in the following way. 

Let the function � = �(�) be continuous and possess a continuous derivatives in [��, ��] 

Expanding � in Taylor’s series about � = ��, we obtain   

�(�) = �� + (� − ��)��
�+

1

2
(� − ��)

���
��+

1

3!
(� − ��)

���
���+ ⋯ 

∫ �(�)�� = ∫ ℎ ��� + �ℎ��
� +

�

�
(�ℎ)���

��+
�

�!
(�ℎ)���

���+
�

�!
(�ℎ)���

(��) + ⋯���
�

�

��

��
, 

Where,	� = �� + �ℎ. 



Tuemay, T and Dessalegn, A (MEJS)                                                           Volume 11(2): 301-316, 2019 

  

© CNCS, Mekelle University                             307                                                           ISSN: 2220-184X 
 

= ℎ ���� +
��

�
ℎ��

�+
�

�
(�ℎ)����

��+
�

��
(�ℎ)����

���+
�

���
(�ℎ)����

(��) + ⋯�
�

�

. 

= 2ℎ�� + 2ℎ
���
�+

�

�
ℎ���

��+
�

�
ℎ���

���+
�

��
ℎ���

(��) + ⋯ .                             (2.5) 

Therefore, 

�� = ��                                                                        (2.6) 

�� = �� + (�� − ��)��
�+

1

2
(�� − ��)

���
��+

1

3!
(�� − ��)

���
���+

1

4!
(�� − ��)

���
(��) + ⋯ 

= �� + ℎ��
�+

�

�
ℎ���

��+
�

�
ℎ���

���+
�

��
ℎ���

(��)
+ ⋯                       (2.7) 

�� = �� + (�� − ��)��
�+

1

2
(�� − ��)

���
��+

1

3!
(�� − ��)

���
���+

1

4!
(�� − ��)

���
(��)

+ ⋯ 

= �� + 2ℎ��
� + 2ℎ���

��+
�

�
ℎ���

���+
�

�
ℎ���

(��) + ⋯                            (2.8) 

Now, from (2.6) (2.7)and (2.8), we get: 

ℎ

3
[�� + 4�� + ��] =

ℎ

3
[6�� + 6ℎ��

� + ℎ���
��+ 2ℎ���

���+
5

6
ℎ���

(��) + ⋯ ] 

= 2ℎ�� + 2ℎ
���
�+

�

�
ℎ���

��+
�

�
ℎ���

���+
�

��
ℎ���

(��) + ⋯  (2.9) 

Now from (2.5) and (2.9) we obtain, 

� ��� −
ℎ

3
[�� + 4�� + ��] = �

4

15
−
5

18
� ℎ���

(��) + ⋯

��

��

= −
1

90
ℎ���

(��) + ⋯ 

This is the error committed in the interval[��, ��]. 

Generally, the composite Simpson’s 1/3 rule we need an even number of subdivisions. Let [a,b] 

be sub-divided into n even number of subdivisions,  � = �� < �� < ⋯ < �� = �,then 

From the previous results we have, 

� ��� =
ℎ

3
[�� + 4�� + ��]

��

��

 

� ��� =
ℎ

3
[�� + 4�� + ��]

��

��

 

And similarly, we obtain  

� ��� =
ℎ

3
[���� + 4���� + ��]

��

����
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Therefore, the integral over the whole interval is found by adding these integrations and is equal 

to  

∫ ��� =
�

�
[�� + 4(�� + �� +⋯+ ����) + 2(�� + �� +⋯+ ����) + ��]

��

��
. 

 

 

 

 

 

 

 

 

 

Figure 4. The composite Simpson’s 1/3 rule (Levy, 2010). 

 

In a similar manner we obtain the errors in the remaining sub-intervals  

[��, ��],⋯ , [����, ��	],we have: 

� = −
�

��
ℎ����

(��)
+ ��

(��)
+ ⋯+ ����

(��)
�. 

= −
�

���
(� − �)ℎ��(��)(�) , � ∈ [�, �]where,�(��)(�) is the largest value of the �-quantities on 

4th derivatives. 

2.1.3. Simpson’s 3/8 –Rule 

Here, we let � = 3 in the above equation (2.2) and obtain the following result  

∫ �(�)�� =
��

�
[�(��) + 3�(��) + 3�(��) + �(��)]

�

�
. 

Using the same techniques as the above, we obtain the error committed in this method to 

be� = −
�

��
ℎ��(��)(�). 

This shows that the Simpson’s 3/8 –rule is not as accurate as the Simpson’s 1/3 –rule. 

Now, we again need to derive the composite Simpson’s 3/8 rule. Setting and using the formula 

derived so far, we obtain, 

∫ ��� =
��

�
[�� + 3�� + 3�� + ��]

��

��
. 

∫ ��� =
��

�
[�� + 3�� + 3�� + ��]

��

��
. 
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.

.

.
 

∫ ��� =
��

�
[���� + 3���� + 3���� + ��]

��

����
. 

And then we get the integral over [�, �]to be the sum of all these integrals  

∫ ��� =
��

�
[�� + 3�� + 3�� + 2�� + 3�� + 3�� + 2�� +⋯+ 3���� + 3���� + ��]

��

��
. 

And the error over the interval is obtained to be� = −
�

��
ℎ��(��)(�). 

3.1.4. Boole’s and Weddle’s Rules 

If we wish to retain differences up to those of the fourth order we should integrate between �� 

and �� and obtain Boole’s formulas as follows: i.e. � = 4 

∫ �(�)�� =
��

��
[7�(��) + 32�(��) + 12�(��) + 32�(��) + 7�(��)]

�

�
. 

Similarly, if we integrate the interpolating polynomial between ��  and ��  we obtain the 

Weddle’s formula as follows 

� �(�)�� =
3ℎ

10
[�(��) + 5�(��) + �(��) + 6�(��) + �(��) + 5�(��) + �(��)]

�

�

 

and the error in this method is found to be  �� =
��

���
�(��)(�)		, �� < � < �� 

 

4. RESULTS AND DISCUSSION  

4.1. Comparison of Methods Using C++ Program  

As it has been discussed in the previous sections, we have derived the formulae for the Newton- 

C’otes quadrature formulae and their rate of convergences. Also, we have seen that the order of 

convergence of Trapezoidal rule is 2 while the order of convergence of the simpsons-1/3 rule is 

4. Now in this section we will use computer programs to compare and analyze the approximation 

methods. We will write C++ codes for each of the methods so as to compare their nature of 

convergence and accuracy. 

For all of the programs below we have the following input output parameters; 

INPUT 

Accepts Number of iterations(sub divisions) and interval of integration from the user 

OUTPUT 

Displays Approximate value of the Integral. 
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// a simple C++ program for the Trapezoidal rule 

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

float f(float t) 

{ 

return f(t); 

} 

int main() 

{ 

floata,b,m,So,Sn,S,s=0,x,h; 

int n ,i=1; 

//clrscr(); 

cout<<"enter end points of your interval [a,b]"<<endl; 

cout<<"enter the lower boundary"<<endl; 

cin>>a; 

cout<<"enter upper boundary"<<endl; 

cin>>b; 

So=f(a); 

Sn=f(b); 

cout<<"enter the number of partitions"<<endl; 

cin>>n; 

h=(b-a)/n; 

do{ 

x=a+i*h; 

s=s+f(x); 

i++; 

}while(i<n); 

S=h*(So+Sn+2*s)/2; 

cout<<"the approximate value of the integral  is ="<<S<<endl; 

getch(); 
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} 

//a simple C++ programe for the simpsons1/3 rule 

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

double f(double t) 

{ 

return f(t); 

} 

int main() 

{ 

double a,b,m,So,Sn,S,s1=0,s2=0,x,h; 

int n ,i=1; 

//clrscr(); 

cout<<"enter end points of your interval [a,b]"<<endl; 

cout<<"enter the lower boundary"<<endl; 

cin>>a; 

cout<<"enter upper boundary"<<endl; 

cin>>b; 

So=f(a); 

Sn=f(b); 

cout<<"enter the number of partitions"<<endl; 

cin>>n; 

h=(b-a)/n; 

do{ 

x=a+i*h; 

s1=s1+4*f(x); 

i++; 

x=a+i*h; 

s2=s2+2*f(x); 

i++; 
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}while(i<n); 

S=h*(So+Sn+s1+s2-2*f(x))/3; 

cout<<"the approximate value of the integral  is ="<<S<<endl; 

getch(); 

} 

//A C++programe for simpsos 3/8 rule 

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

double f(double t) 

{ 

return f(t); 

} 

int main() 

{ 

double a,b,m,So,Sn,S,s1=0,s2=0,s3=0,x,h; 

int n ,i=1; 

//clrscr(); 

cout<<"enter end points of your interval [a,b]"<<endl; 

cout<<"enter the lower boundary"<<endl; 

cin>>a; 

cout<<"enter upper boundary"<<endl; 

cin>>b; 

So=f(a); 

Sn=f(b); 

cout<<"enter the number of partitions"<<endl; 

cin>>n; 

h=(b-a)/n; 

do{ 

x=a+i*h; 

s1=s1+3*f(x); 
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i++; 

x=a+i*h; 

s2=s2+3*f(x); 

i++; 

x=a+i*h; 

s3=s3+2*f(x); 

i++; 

}while(i<n); 

S=3*h*(So+Sn+s1+s2+s3-2*f(x))/8; 

cout<<"the approximate value of the integral  is ="<<S<<endl; 

getch(); 

} 

Now, we will apply these C++ programs to evaluate different integrals and compare the methods 

developed above based on the outputs of the program by varying the step size and number of 

iterations (inputs) and finally draw some conclusions and put recommendations. 

 Suppose we want to evaluate the definite integral ∫ ����
�

�
 using the methods above. 

Using the code above the Trapezoidal rule with the number of partitions n=100, the value of the 

integral is 0.200033 while using the Simpson’s1/3rule the value of the integral 0.20000 and the 

exact value of the integral is 0.2. 

But, with n=8,the value of the integral using Simpson’s1/3 rule is =0.200033 which is equal to 

the result with trapezoidal rule using n=100. This result shows that the Simpson’s 1/3 rule 

converges much faster than that the trapezoidal rule, especially for polynomial integrands. 

The results of the approximations (computer programs) for different integrands with different 

number of iterations are tabulated below in table 1. 

 

Table 1.Outputs of the above C++ programs for polynomial integrands. 
Quadrature 
method 

Integrand 
� �� �� 

 n=6 n=60 n=6 n=60 n=6 n=90 
Trapezoidal rule  0.5 0.5 0.256944 0.250069 0.209234 0.200041 
Simpson’s 1/3 rule 0.5 0.5 0.25 0.25 0.200103 0.20000 
Simpson’s 3/8 rule 0.5 0.5 0.25 0.25 0.200231 0.20000 
Exact value  0.5 0.25 0.2 
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So,with polynomial integrands, Simpson’s 1/3 rule is much more efficient than the trapezoidal 

and the Simpson’s 3/8 rules. We also see that the methods get close to the exact value as ‘n‘ gets 

larger. 

 Suppose again we want to evaluate the definite integral  ∫
�

���

�

�
�� and∫ ��

�
	dx		

�

�
 

Using the Trapezoidal rule, the Simpson’s 1/3 rule and Simpson’s 3/8 rules with n=6 and n =90, 

the results are tabulated below in table 2. 

 

Table 2. Outputs of the above C++ programs for non-polynomial integrands. 

 

 

Now, from these results we observe that, with n=6, all of the methods give results with larger 

error. But relatively the Simpson’s 1/3 and the Simpson’s 3/8 rules give better results. While 

with n=60, the  Simpson’s 1/3 and the Simpson’s 3/8 rules produce much more closer results, 

that is, exact to five decimal digits, while the Trapezoidal rule produce a result exact only to two 

decimal digits. 

Moreover, for the approximation of the integral ∫ ���	dx		
�

�
 using the trapezoidal rule, a result 

which is exact to five decimal digits cane obtained by taking n=365. But, this needs high number 

of iterations. This means the Trapezoidal rule converges slowly relative to Simpson’s rules. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

Evaluating integrals using numerical methods is very useful in that, the methods/algorithms can 

be coded easily to some computer programs and results in an accurate solution within a short 

span of time. This results in obtaining fast and efficient solutions to any definite integrals, even if 

the function is not given explicitly but merely known only at a finite number of sample points. 

Quadrature Method 
 

Integrand 

��� �

� + �
 

 n=6 n=90 n=6 n=90 
Trapezoidal rule  1.47518 1.46271 0.694877 0.693155 
Simpson’s 1/3 rule 1.46287 1.46265 0.69317 0.693147 
Simpson’s 3/8 rule 1.46313 1.46265 0.693195 0.693147 
Exact value  1.46265 0.693147 
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From the results of the error analysis and computer programs above, it is shown that the 

Trapezoidal rule gives exact results independent of the number of iterations for the first degree 

polynomials only, while the Simpson’s 1/3 rule and the Simpson’s 3/8 rules gives exact result for 

polynomials of degree up to 3 and 4 respectively. Moreover, Simpson’s1/3 rule is considerably 

more accurate than the Trapezoidal and the Simpson’s 3/8 rules, especially for smooth 

integrands, it converges fast to the exact value even within very small number of subdivisions 

relative to the other rules. It is also observed that obtaining an approximate solution of higher 

accuracy using the trapezoidal needs large numbers of iterations ad hence higher effort and this 

was due to low order of convergence of the method. 

The use and choice of the quadrature formulae discussed so far depends on the nature and 

type of the problem to be solved ad umber of iterations/sub divisions used. In Trapezoidal, there 

is no limitation; it is applicable for any number of ordinates. In Simpson’s, the number of 

divisions should be even in number, while in Simpson’s 3/8 rules it requires the number of 

subdivisions be multiple of 3.  

5.2.Recommendations 

In using the quadrature methods for applications one must be able to write and understand 

computer programs for the methods and in order to get better results of the study and should be 

able to explain what the results show. Now a day’s numerical methods are becoming very 

popular and useful for science and engineering applications and for research studies as well. So a 

great attention should be given to the further studies and software developments of these 

methods. 

Discontinuities are also a major concern and must be carefully considered for numerical 

methods as well. On choosing a quadrature formula for application a great care should be given 

on the compatibility of the method with the integrand since a method effective for one integrand 

may not be effective for another integrand. 
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