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ABSTRACT 

In this paper, a seven-step block method for the solution of first order initial value problem in 

ordinary differential equations based on collocation of the differential equation and 

interpolation of the approximate solution using power series have been formed. The method is 

found to be consistent and zero-stable which guarantees convergence. Finally, numerical 

examples are presented to illustrate the accuracy and effectiveness of the method. 
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1. INTRODUCTION 

This paper considers the general first order initial value problems of ordinary differential 

equations of the form: 

 

 

 (1) 

Equation (1) can be regarded as stiff if its exact solution contains very fast as well as 

very slow components (Dahlquist, 1974). Stiff IVPs occur in any fields of engineering and 

physical sciences. The solution is characterized by the presence of transient and steady state 

components, which restrict the step size of many numerical methods (Suleiman et al., 2015). 

This behavior makes it difficult to develop suitable methods for solving stiff problems. 

However, efforts have been made by researchers, such as Abasi et al. (2014), Alvarez and Rojo 

(2002), Cash (1980), Dahlquist (1974), Suleiman et al. (2015), Yatim et al. (2011), and Mohd 

Zawawi et al. (2015) among others, to develop methods for stiff ODEs. 

Linear Multistep Method (LMM) is a computational procedure where by a numerical 

approximation  to the exact solution of the first order Initial Value Problems (IVPs) 

of equation (1) is obtained. In LMM to find the  approximate value, we use the already 

calculated previous approximate values. Given a sequence of equally spaced mesh points

with step size , the general k-step LMM is as given in Lambert (1973) as: 
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where, the coefficients and are real constants.  

It is shown that a power series method is effective in handling both linear as well as 

nonlinear problems (Hirayama, 2000). Abualanja (2015) used the power series method and 

developed a three-step continuous  representation  of  a block  implicit multistep scheme using 

interpolation  of  the  approximate  solution  and  collocation  of derivative function with power 

series as basic functions for solving non-stiff first order ODEs. Most recently, Berhan et al. 

(2019) have modified the works of Abualanja (2015) to obtain a four-step block implicit 

multistep scheme for solving stiff first order ODEs. In this paper, we have extended the work 

of Berhan et al. (2019) to obtain a seven-step block scheme. 

 

2. DERIVATION OF THE PROPOSED METHOD 

To describe the method, we divide the interval  into  equal sub-intervals of mesh length 

Let  be the mesh points, then we have Let the 

power series solutions of the equation (1) be . 

The approximate solution of equation (1) will be: 

 
. (3) 

Substituting equation (3) into equation (1), we get: 

 
 (4) 

 

Now, by adding a perturbed term to equation (4), we obtain: 

 
 (5) 

 is a perturbed parameter to be determined and   is the  shifted Legendre 

polynomial obtained by the following recursive formula. 

 and  (6) 

 According to Suli and Mayers (2003), if a function is defined on , it is sometimes 

necessary in the applications to expand the function in a series of orthogonal polynomials in this 

interval. Clearly the substitution: 
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transforms the interval of the - axis in to the interval of the - axis. 

Note that the above equation is the same as: 

 

 
 (7) 

with the substitution of and 
 
Here where  is the step size. 

Using equation (7), is transformed into  where  

From equation (5), we deduce that: 

  (8) 

 Interpolating equation (3) at and collocating equation (8) at 

, we get a system of k +2 equations with k + 2 unknowns. 

 

 

(9) 

Solving equation (9), we get the values of the unknown parameters

.At this point, if we interpolate equation (3) at , we get: 

 . (10) 

The next task now becomes a matter of expressing equation (10) in terms of 

after substituting the values of the unknown parameters. Maple software 

has been used to simplify such complicated task.  
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Now in this study, we will derive the discrete schemes for  Please bear in 

mind that, in the ongoing discussions, we applied equality in =  where 

to mean just the left and right expressions are equal after transformation of  

 

2.1. Derivation of the Method for k = 5 

Using equation (6) the Legendre polynomial becomes: 

                and applying equation (7), we get:  

 

 

 

 

Now equation (8) becomes:  

 

 (11) 

The resulting system of equations, equation (11) is solved using Maple software for 

and then substituted in equation (10) to get:  

 
. (12) 

Therefore, equation (12) is the numerical scheme when  

 

2.2. Derivation of the Method for k = 6 

Using equation (6) the Legendre polynomial for becomes:  
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 and applying equation (7), we get:
 

 

Now equation (8) becomes:  

 

 
(13) 

The resulting system of equations, equation (13) is solved for 

and substituted into equation (10) to get:  

 
 (14) 

Therefore, equation (14) is the implicit scheme for  

 

2.3. Derivation of the Method for k = 7 

In a similar procedure as in the previous sections, we obtain an implicit scheme for as 

follows: 
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2.4 The Proposed Block Method  

The proposed block procedure with implicit linear multistep method is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16) 

3. ANALYSIS OF THE METHOD 

3.1. Order and Error Constant 

For a given linear multistep method, the so called characteristic polynomials are defined as:  

. 

According to Lambert (1973) and Suli and Mayers (2003), the local truncation error 

associated with equation (2) is defined by the difference operator: 
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where, is the exact solution.  

Suppose is smooth and expanding equation (17) and applying Taylor expansion 
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 (18) 

and the coefficients are as follows. 

 
 (19) 

A given LMM is of order  if all the coefficients ( ) are zero except the last 

coefficient ( ). Moreover, the number  is called the error constant of the method. 

Hence, the orders of the methods in equation (16) are with error constants 

 

3.2. Zero Stability of the Method 

Applying the works of Shampine and Watts (1969), equation (16) is expressed as a block 

formula in matrix form: 
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The stability polynomial for equation (16) is obtained by evaluating 

 . (21) 

to get the characteristic polynomial as follows: 

 . (22) 

Solving equation (22) for gives the following roots: 

 

Owing to the work of Fatunla (1988), Our block method equations are zero stable since 

and for those roots with , the multiplicity does not exceed 

two. 

3.4. Consistency of the Method 

Referring to the definition given by Lambert (1973) which states that a LMM is said to be 

consistent if it has order at least one, the block scheme given by equation (16) is consistent. 

3.5. Convergence of the Method 

Owing to Dahlquist theorem which states that the necessary and sufficient condition for a LMM 

to be convergent is to be consistent and zero stable, it is clear that the method given by equation 

(16) is convergent as it is both consistent and zero stable. 

 

4. NUMERICAL EXAMPLES 

For the purpose of showing the effectiveness of our method, comparisons are made with 

previous related works using the following stiff first order ODEs as follows. 
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Example 1: Consider the first order stiff ordinary differential equation, Suleiman et al. (2015). 

. 

The exact solution is 
 

Example 2. Consider the first order stiff ordinary differential equation, Ibrahim (2006). 

 

The exact solution is  

Table 1. Maximum Absolute errors (MAEs) of Suleiman et al. (2015), Yoseph Berhan (2017) 

and the Present Method (PM) for problem 1.  

 

h Suleiman et al. 

(2015) 

Yoseph Berhan (2017) 

(Block Method k1 up to k4) 

PM 

(Block Method k1 up to k7) 

10-1 - 1.34333e-4 5.63131e-5 

10-2 1.47080e-3 1.17710e-6 6.83365e-8 

10-3 1.52651e-4 1.17799e-8 7.00620e-11 

10-4 1.53220e-5 1.17705e-10 7.03881e-14 

10-5 7.10611e-8 1.42827e-14 7.24374e-19 

                                                                                                               

Figure 1. Log- log plot of the absolute maximum errors for (a) problem 1 and (b) problem 2. 

 

5. CONCLUSION  

In this study a block procedure with implicit eighth order linear multistep method using the 

power series as a basis function and by adding a perturbed term using Legendre polynomials 

is derived for the solutions of stiff first order differential equations. This method is based on 
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collocation of the differential equation and interpolation of the approximate solution of power 

series at the grid points which is built on the discrete steps k = 1, 2, 3, and 4. 

The method is tested and found to be consistent, zero stable and hence convergent. We 

tested the method on two numerical examples and the numerical results depict that the method 

is accurate and effective for stiff problems. The results showed that our method’s accuracy 

results are superior to that of the works of Berhan et al. (2019). 

Finally, we recommend that further researches have to be done to optimize our method 

by using a different basis function and/or a perturbed term. 

 

6. ACKNOWLEDGEMENTS 

The authors would like to thank the anonymous reviewers for their valuable comments, 

suggestion and ideas that have improved the quality of the paper significantly. 

 

7. CONFLICT OF INTERESTS  

There are no conflicts of interest. 

 

8. REFERENCE 

Abasi, N., Suleiman M., Abbasi, N & Musa, H. 2014. 2-point block BDF method with off-step 

points for solving stiff ODEs. Journal of Soft Computing and Applications, Volume 

2014: 15p (DOI: 10.5899/2014/jsca-00039). 

Abualnaja, K. 2015. A block procedure with LMMs using Legendre polynomials for Solving 

ODEs. Applied mathematics series, 6(1): 717-723. 

Alvarez, J & Rojo, J. 2002. An improved class of generalized Runge-Kutta methods for stiff 

problems. Part I: The scalar case. Appl. Math. Computer, 130: 537-560.  

Berhan, Y., Gofe, G & Gebregiorgis, S. 2019. Block procedure with implicit sixth order linear 

multistep method using legendre polynomials for solving stiff initial value problems.  

J. Fundam. Appl. Sci., 11(1): 1-10. 

Cash, J. R. 1980. On the integration of stiff systems of ODEs using extended backward 

differentiation formulae. Numer. Math., 34: 235-246. 

Dahlquist, G. 1974. Problems related to the numerical treatment of stiff differential equations. 

In: Gunther et al (eds.), International Computing Symposium, 1973, North Holland, 

Amsterdam, pp 307-314.   



Solomon, G and Hailu, M (MEJS)                                                                      Volume 12(1):72-82, 2020 
 

 

© CNCS, Mekelle University                                        82                                             ISSN: 2220-184X 

 

 

 

Fatunla, S. 1988. Numerical Methods for initial value problems for ordinary differential 

equations.1st edition, eBook ISBN: 9781483269269, Academy Press, 308p. 

Hirayama, H. 2000. Arbitrary Order and A-Stable Numerical Method for Solving Algebraic 

Ordinary Differential Equation by Power Series. 2nd International Conference on 

Mathematics and Computers in Physics, Vouliagmeni, Athens, 9-16 July 2000, 1-6. 

Ibrahim, Z.B. 2006. Block multistep methods for solving ordinary differential equations, PhD 

Thesis, Universiti Putra Malysia. 

Lambert, J.D. 1973. Computational methods in ordinary differential equations.John Willey 

and Sons, 278p.  . 

Mohd Zawawi, I, S., Ibrahim, Z. B & Othman, K. I. 2015. Derivation of diagonally implicit 

block backward differentiation formulas for solving stiff initial value problems. Article 

ID 179231 Mathematical Problems in Engineering, 19p (DOI: 10.1155/2015/179231). 

Shampine, L & Watts, H. 1969. Block implicit one-step methods. Journal of Computer Maths., 

23: 731-740 (http://dx.doi.org/10.1090/S0025-5718-1969-0264854-5). 

Suleiman, M.B., Musa, M & Ismail, F., 2015. An Implicit 2-point Block Extended Backward 

Differentiation Formula for Integration of Stiff Initial Value Problems. Malaysian 

Journal of Mathematical Science, 9(1): 33-51. 

Süli, E & Mayers, D. F. 2003. An introduction to numerical analysis. Cambridge University 

Press (DOI: 10.1017/CBO9780511801181). 

Yatim, S. A. M., Ibrahim, Z. B., Othman, K. I & Suleiman, M. B. 2011. A quantitative 

comparison of numerical method for solving stiff ordinary differential 

equations. Article ID 193691, Mathematical Problems in Engineering, 12p (DOI: 

10.1155/2011/193691). 

Yoseph B., Genanew, G & Solomon, G. 2017. Block procedure with implicit sixth order linear 

multistep method using legendre polynomials for solving stiff initial value problems.  

MSc Thesis (Unpubl.). 

 

about:blank
about:blank
about:blank

