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ABSTRACT 

The main goal of this paper is to study the spectrum and resonances of several classes of 

Schrödinger operators. Two important examples occurring in mathematical physics are 

discussed: harmonic oscillator and Hamiltonian of hydrogen atom. 
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1. INTRODUCTION 

A big problem in mathematical physics is the description of spectral properties of Schrödinger 

operators. Here we present some fundamental theorems about spectral and resonance theory of 

Schrödinger operators. We look at some important examples occurring in mathematical 

physics: the harmonic oscillator and the hydrogen atom. The spectrum of Laplace operator,  ∆=

∑
𝜕2

𝜕𝑥𝑗
2

𝑛
𝑗=1  on the space 𝐿2(ℝ𝑛) of square-integrable functions on ℝ𝑛 (the state space in quantum 

mechanics), has many applications in geometry, topology, physics, chemistry etc. We define 

the Schrödinger operator on the manifold ℝ𝑛 by the linear unbounded operator 𝑃 = −∆ + 𝑉, 

on the set of smooth compact supports functions 𝐶𝑐
∞(ℝ𝑛) ⊂ 𝐿2(ℝ𝑛), where 𝑉: ℝ𝑛 → ℝ is the 

multiplication operator associated with the potential 𝑉(𝑥) in the Hilbert space 𝐿2(ℝ𝑛) equipped 

with the inner product 〈𝜑, 𝜓〉 = ∫ 𝜑(𝑥)𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅
ℝ𝑛

𝑑𝑥, and the associated norm  

 ||𝜑|| = √∫ |𝜑(𝑥)|2 𝑑𝑥
ℝ𝑛

;  𝜑, 𝜓 ∈ 𝐿2(ℝ𝑛). 

All the information about a quantum mechanical system (atoms, molecules, nuclei, 

solids, etc…) is contained in the Schrödinger operator for the system and in particular in the 

structure of its spectrum. In many applications, 𝑉 is −∆-bounded with bound < 1. In this case, 

we may apply the Kato-Rellich theorem to deduce that 𝑃 is self-adjoint on domain 𝐷(𝑃) =

𝐻2(ℝ𝑛), where 𝐻2(ℝ𝑛) = {𝜑 ∈ 𝐿2(ℝ𝑛) ∶ 𝐷𝛼𝜑 ∈ 𝐿2(ℝ𝑛), 𝛼 ∈ ℕ𝑛, |𝛼| ≤ 2} and 𝐷𝛼𝜑 are the 

weak derivatives of 𝜑. 

Present paper is devoted to the spectral analysis of Schrödinger operators acting on 

𝐿2(ℝ𝑛), 𝑛 ≥ 1, where, we present a detailed mathematical study of the spectra and resonances 
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of the operator 𝑃, which is both accessible to theoretical physicists and chemists and also to 

researchers in the field of applied mathematics. The essential and discrete spectrum and 

resonances for such operators have been the subject of a vast literature over the last 20 years, a 

detailed review and references are found in the book series of Reed and Simon (Volume 3, 1979 

and Volume 4, 1978) and publications (Aguilar and Combes, 1971; Balslev and Combes, 1971; 

Brüning, 1989; Muminov and Shodiev, 2011). 

We define the discrete spectrum 𝜎𝑑𝑖𝑠𝑐(𝐴) of a self-adjoint operator 𝐴as the set of 

eigenvalues of 𝐴 having finite multiplicity and being isolated points of the spectrum. The 

essential spectrum of 𝐴 is the set 𝜎𝑒𝑠𝑠(𝐴) = 𝜎(𝐴) ∖ 𝜎𝑑𝑖𝑠𝑐(𝐴). 

We thus have the disjoint decomposition 𝜎(𝐴) = 𝜎𝑑𝑖𝑠𝑐(𝐴) ∪ 𝜎𝑒𝑠𝑠(𝐴). Obviously, 

𝜎𝑒𝑠𝑠(𝐴) consists of all accumulation points of 𝜎(𝐴) and all eigenvalues of infinite multiplicity. 

The essential spectrum of a self-adjoint operator is a closed subset of  ℝ, it can be characterized 

as that part of the spectrum that is invariant under compact perturbations, this is the content of 

Weyl’s Theorem, and so, for a Schrödinger operator should morally depend only on properties 

of the potential 𝑉.  

We propose to present some fundamental theorems of Schrödinger operators and their 

spectral theory considering the following five situations: 

(1) 𝑉(𝑥) → ∞ as  |𝑥| → ∞;  

(2) 𝑉(𝑥) → 0 as |𝑥| → ∞; 

(3) 𝑉 ∶  ℝ𝑛 → ℝ  bounded and continuous;  

(4) 𝑉:ℝ𝑛 → ℝ  periodic; and 

(5) 𝑉(𝑥) = 𝑥. 𝑘 , 𝑘 ∈ ℝ𝑛 (Stark-effect).  

We also describe the resonances of 𝑃 by using the analytic dilation in a complex strip 

for suitable potentials (complex Scaling method). Resonances of 𝑃 are complex eigenvalues of 

the non-hermitian Hamiltonian obtained by complex scaling. Resonance theory of Schrödinger 

operators based on the complex scaling method is detailed in Messirdi (1994); and Messirdi et 

al. (2018). However, since the present problem is partly motivated by recent investigations of 

resonances in periodic structures, we have chosen to investigate resonances Schrödinger 

operators with periodic potentials.  

Note that the problem of computing resonances of 𝑃 with 𝑉 periodic has been much less 

studied, it is an interesting physical problem with major mathematical difficulties. The 

resonances of 𝑃 are accessible by meromorphic extension of the resolvent (𝑃 − 𝑧)−1 , we 
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explain the different steps necessary to get this extension from the upper half plane through the 

spectrum of 𝑃. The singularities of (𝑃 − 𝑧)−1 are effectively the resonances of 𝑃. 

The structure of this paper is as follows. First, in section 2 we study the spectral 

properties of −∆ on 𝐿2(ℝ𝑛). Section 3, is dedicated to a spectral study of Schrödinger operator 

𝑃 in different physical situations where, 𝑉(𝑥) → ∞; 𝑉(𝑥) → 0 as |𝑥| → ∞; 𝑉 is bounded and 

continuous; 𝑉 is periodic and 𝑉(𝑥) = 𝑥. 𝑘 , 𝑘 ∈ ℝ𝑛 (Stark-effect), respectively.  

Another critical area of mathematical quantum mechanics lies in finding resonances of 

𝑃 with a given potential is discussed in section 4 of this paper. We also investigate the situation 

where the potential 𝑉 is periodic and we compute explicitly the energy spectrum and resonances 

of hydrogen atom. 

 

2. SPECTRAL PROPERTIES OF FREE SCHRÖDINGER OPERATOR 

Let us first study the spectral properties of −∆ on 𝐿2(ℝ𝑛). We will see later that −∆ does not 

have eigenvalues. Indeed, the spectrum of −∆ is purely essential covering positive half line. 

2.1. Proposition: 𝜎𝑒𝑠𝑠(−∆) = [0,+∞[. 

Proof: According to the integration by parts formula, we have: 

〈−∆𝜑, 𝜑〉 = ∫ (−∆𝜑)(𝑥)𝜑(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥
ℝ𝑛

= ∫ |∇𝜑(𝑥)|2𝑑𝑥
ℝ𝑛

, for all 𝜑 ∈ 𝐶𝑐
∞(ℝ𝑛). 

Given, 𝜑 ∈ 𝐻2(ℝ𝑛), there exists a sequence (𝜑𝑘)𝑘∈ℕ ⊂ 𝐶𝑐
∞(ℝ𝑛) such that 𝜑𝑘 → 𝜑 and 

−∆𝜑𝑘 → −∆𝜑 as 𝑘 → ∞, then 〈−∆𝜑, 𝜑〉 ≥ 0 for all 𝜑 ∈ 𝐻2(ℝ𝑛). 

In particular, −∆ is a positive self-adjoint operator on the domain 𝐻2(ℝ𝑛), so the 

spectral theorem shows that 𝜎(−∆) ⊂ [0,+∞[. 

For the reverse inclusion, Weyl criterion is used characterizing the essential spectrum 

as follows: 

𝜆 ∈ 𝜎𝑒𝑠𝑠(−∆) if and only if there exists a sequence (𝜑𝑘)𝑘∈ℕ ⊂ 𝐻
2(ℝ𝑛) such that 

‖𝜑𝑘‖ = 1 and for all 𝑘 ∈ ℕ, (𝜑𝑘)𝑘∈ℕ is a weak null sequence, i.e. 𝜑𝑘 → 0 weakly, and 

‖(−∆ − 𝜆)𝜑𝑘‖ → 0 (such a sequence is called a singular Weyl sequence of −∆ and −𝜆). 

Let 𝜆 ∈ [0,+∞[, 𝑧 ∈ ℝ𝑛 so that |𝑧| = √𝜆 and 𝜔(𝑥) =  𝑒𝑖𝑥.𝑧, 𝑥 ∈ ℝ𝑛. 

Clearly, 𝜔 ∉ 𝐻2(ℝ𝑛), but we have point wise: 

−∆𝜔(𝑥) = 𝜆𝜔(𝑥) for all 𝑥 ∈ ℝ𝑛.                                                                                         (2.1) 

Let 𝐵𝑟 = {𝑥 ∈ ℝ
𝑛 ∶  |𝑥| < 𝑟 } be the open ball with radius 𝑟 > 0 around zero in ℝ𝑛. 

Then, there is a cut-off function 𝜓 ∈ 𝐶𝑐
∞(ℝ𝑛) with support in 𝐵2, 0 ≤ 𝜓 ≤ 1 and 𝜓 = 1 on 𝐵1 . 
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Define 𝜓𝑘(𝑥) = 𝜓 (
𝑥

𝑘
) , 𝑥 ∈ ℝ𝑛, 𝑘 ∈ ℕ∗, so that 𝜓𝑘(𝑥) = 1 for |𝑥| ≤ 𝑘, 𝜓𝑘(𝑥) = 0 for 

|𝑥| ≥ 2𝑘 and |∇𝜓𝑘(𝑥)| ≤ 𝑀𝑘
−1, |

𝜕2𝜓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
| ≤ 𝑀𝑘−2, with a suitable constant 𝑀 > 0.  

We set 𝜂𝑘(𝑥) = 𝜓𝑘(𝑥)𝜔(𝑥) and 𝜑𝑘(𝑥) =  
𝜂𝑘(𝑥)

‖𝜂𝑘‖
, 𝑘 ∈ ℕ∗. It is clear that ||𝜑𝑘|| = 1, also 

show that 𝜑𝑘 → 0 weakly in 𝐿2(ℝ𝑛).  𝐿𝑒𝑡 𝜑 ∈ 𝐶𝑐
∞(ℝ𝑛), write Ωk = B2k ∖ Bk and observe that: 

|〈𝜑𝑘, 𝜑〉| = | ∫
𝜂𝑘(𝑥)

‖𝜂𝑘‖
𝐵2𝑘

𝜑(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥| ≤ | ∫
𝜂𝑘(𝑥)
‖𝜂𝑘‖

𝜑(𝑥)̅̅ ̅̅ ̅̅

Ωk

𝑑𝑥| + | ∫
𝜑(𝑥)̅̅ ̅̅ ̅̅

‖𝜑𝑘‖
𝑑𝑥

𝐵𝑘

| 

≤
||𝜑||

𝐿1(ℝ𝑛)

||𝜂𝑘||
+ |∫

𝜂𝑘(𝑥)

||𝜂𝑘||
𝜑(𝑥)̅̅ ̅̅ ̅̅

Ωk
𝑑𝑥|                                                                                          (2.2) 

where, ||𝜑||𝐿1(ℝ𝑛) = ∫ |𝜑(𝑥)|
ℝ𝑛

𝑑𝑥.  

However, ||𝜂𝑘||
2 = ∫ |𝜓𝑘(𝑥)𝜔(𝑥)|

2
ℝ𝑛

𝑑𝑥 ≥ ∫ |𝜔(𝑥)|2𝑑𝑥
𝐵𝑘

= |𝐵𝑘|
𝑘→∞
→  ∞ and that the 

second term on the right-hand side of (2.2) vanishes for 𝑘 ≥ 𝐾 and when the support of 𝜑 is 

included in 𝐵𝐾 . Thus, |〈𝜑𝑘, 𝜑〉|
𝑘→∞
→  0. As 𝐶𝑐

∞(ℝ𝑛) is dense in 𝐿2(ℝ𝑛), we conclude that 

|〈𝜑𝑘 , 𝜑〉|
𝑘→∞
→  0 for any 𝜑 ∈ 𝐿2(ℝ𝑛). 

Then, check that ||(−∆ − 𝜆)𝜑𝑘|| → 0 as 𝑘 → ∞.  

For 𝜑 ∈ 𝐶𝑐
∞(ℝ𝑛), we have:  

−∆(𝜓𝑘𝜑) = −∑
𝜕2

𝜕𝑥𝐽
2

𝑛

𝑗=1

(𝜓𝑘𝜑) = −∑[𝜑
𝜕2𝜓𝑘
𝜕𝑥𝑗

2 + 2
𝜕𝜓𝑘
𝜕𝑥𝑗

𝜕𝜑

𝜕𝑥𝑗
+ 𝜓𝑘

𝜕2𝜑

𝜕𝑥𝑗
2]

𝑛

𝑗=1

 

                                  = −𝜑∆𝜓𝑘 − 2〈∇𝜓𝑘, ∇𝜑〉 − 𝜓𝑘∆𝜑,                                                     (2.3) 

and        ||(−∆ − 𝜆)𝜑𝑘||
2 = ∫ |(−∆ − 𝜆)

𝜂𝑘(𝑥)

||𝜂𝑘||
|
2

ℝ𝑛
𝑑𝑥 

                =
1

||𝜂𝑘||
2 [∫ |(–Δ− 𝜆)𝑒𝑖𝑥.𝑧|

2

𝐵𝑘
𝑑𝑥 + ∫ |(−Δ− 𝜆)(𝜓𝑘(𝑥)𝜔(𝑥))|

2𝑑𝑥
Ω𝑘

].                  (2.4) 

The first term on the right-hand side of (2.4) vanishes according to (2.1). Using once 

again the identity (2.1) and equation (2.3), we get: 

||(−∆ − 𝜆)𝜑𝑘||
2
=

1

‖𝜂𝑘‖
2
∫|2〈∇𝜓𝑘, ∇ω〉 + 𝜔Δ𝜓𝑘|

2

Ω𝑘

𝑑𝑥 

≤
2

‖𝜂𝑘‖
2
[ ∫|2〈∇𝜓𝑘, 𝑧〉|

2𝑑𝑥 + ∫|Δ𝜓𝑘|
2𝑑𝑥

Ω𝑘Ω𝑘

] 

≤
2

‖𝜂𝑘‖
2
[4𝜆 ∫|∇𝜓𝑘|

2𝑑𝑥 + ∫|Δ𝜓𝑘|
2𝑑𝑥

Ω𝑘Ω𝑘

]. 
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So, there exist positive constants 𝐶1and 𝐶2 such that: 

||(−∆ − 𝜆)𝜑𝑘||
2 ≤

|Ωk|

|𝐵𝑘|
(
𝐶1
𝑘2
+
𝐶2
𝑘4
) =

(2𝑘)𝑛 − 𝑘𝑛

𝑘𝑛
(
𝐶1
𝑘2
+
𝐶2
𝑘4
) 

= (2𝑛 − 1) (
𝐶1

𝑘2
+
𝐶2

𝑘4
) ⟶ 0 as 𝑘 → ∞. 

It is concluded that the operator −∆ on 𝐿2(ℝ𝑛) with domain 𝐻2(ℝ𝑛) does not have 

eigenvalues. In fact, the spectrum of −∆ is purely continuous. 

2.2. Proposition: If 𝜑 ∈ 𝐻2(ℝ𝑛) is such that −∆𝜑 = 𝜆𝜑 for some 𝜆 ≥ 0, then 𝜑 is infinitely 

differentiable on ℝ𝑛. 

Proof: It follows from the equation −∆𝜑 = 𝜆𝜑 that if 𝜑 ∈ 𝐻2(ℝ𝑛), then −∆𝜑 ∈ 𝐻2(ℝ𝑛) and 

so 𝜑 ∈ 𝐻4(ℝ𝑛). Iterating in this manner, it follows that 𝜑 is in any positive indexed Sobolev 

space. So, the function 𝜑 is infinitely differentiable. 

 

3. SPECTRAL PROBLEM BACKGROUND FOR SCHRÖDINGER OPERATOR 

For Schrödinger operators on 𝐿2(ℝ𝑛),  consider 𝑃 as a perturbation of −∆ by the potential 𝑉 

with domain 𝐷(𝑃) = 𝐻2(ℝ𝑛) ∩ {𝜑 ∈ 𝐿2(ℝ𝑛) ∶  𝜑𝑉 ∈ 𝐿2(ℝ𝑛)}. 

Some important spectral results for Schrödinger operators are presented below. We first 

recall Persson formula for the infimum of the essential spectrum (Persson, 1960). 

3.1. Theorem: Let 𝑉 be bounded operator on 𝐿2(ℝ𝑛), then: 

inf𝜎𝑒𝑠𝑠𝑃 = sup
𝐾⊂ℝ𝑛,   𝐾 𝑐𝑜𝑚𝑝𝑎𝑐𝑡

inf
𝜑∈𝐶𝑐

∞(ℝ𝑛,𝐾),‖𝜑‖=1 
〈𝑃𝜑, 𝜑〉. 

Proof: (See Cycon et al., 1987). 

Consider the cases:  (1) 𝑉(𝑥) → ∞ as |𝑥| → ∞; 

(2) 𝑉(𝑥) → 0 as |𝑥| → ∞;  

(3) 𝑉: ℝ𝑛 → ℝ bounded and continuous; 

(4) 𝑉: ℝ𝑛 → ℝ periodic; and  

(5) 𝑉(𝑥) = 𝑥. 𝑘, 𝑘 ∈ ℝ𝑛 (Stark-effect). 

3.1. 𝑽(𝒙) → ∞ 𝒇𝒐𝒓 |𝒙| → ∞. Consider the operator 𝑃 = −∆ + 𝑉 defined on 𝐿2(ℝ𝑛) such that 

𝑉 is locally bounded on ℝ𝑛, real valued function and      lim
|𝑥|→∞

𝑉(𝑥) = +∞.                        (3.1) 

The most important example in this class is the anharmonic oscillator for which 𝑉(𝑥) =

|𝑥|2𝑘, 𝑘 ∈ ℕ∗. 𝐼 denotes in the following the identity operator. 

3.2. Lemma: If 𝑉 ≥ 0 is a non-negative potential and 𝑊 is multiplication by a bounded 

function of compact support, then 𝑊 is P-compact, i.e. 𝑊(𝐼 + 𝑃)−1is compact operator on 

𝐿2(ℝ𝑛). 
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Proof: Note first that 𝐼 + 𝑃 is a positive operator, then (𝐼 + 𝑃)−1 is bounded on 𝐿2(ℝ𝑛). On 

the other hand, 𝑊(𝐼 + 𝑃)−1 2⁄ = 𝑊(𝐼 + 𝑃0
1 2⁄ )

−1
(𝐼 + 𝑃0

1 2⁄ )(𝐼 + 𝑃)−1 2⁄ , 𝑃0 = −Δ, and it is 

known that the product of the first two factors is compact and the product of the second two 

factors is bounded. So, 𝑊(𝐼 + 𝑃)−1 2⁄  is compact. Now if we multiply by the bounded operator 

(𝐼 + 𝑃)−1 2⁄  on the right, we conclude that 𝑊(𝐼 + 𝑃)−1 is compact.  

The following theorems show that under certain conditions on 𝑉, the essential spectrum 

of 𝑃 is empty, so the spectrum is purely discrete. 

3.3. Theorem: Let 𝑉: ℝ𝑛 → ℝ such that 𝑉(𝑥) → ∞ 𝑓𝑜𝑟 |𝑥| → ∞, then 𝜎𝑒𝑠𝑠(−Δ + 𝑉) is empty. 

Proof: For any 𝐸 ∈ ℝ, write 𝑉 − 𝐸 = 𝑓 − 𝑔 where 𝑓 ≥ 0 and 𝑔 has compact support. By the 

Lemma 3.2, 𝑔 is (−Δ + 𝑓)-compact, so by virtue of perturbation theorem of Weyl we have 

𝜎𝑒𝑠𝑠(−Δ + 𝑓) = 𝜎𝑒𝑠𝑠(𝑃 − 𝐸). 

Since 𝑓 ≥ 0, we know that 𝜎𝑒𝑠𝑠(𝑃 − 𝐸) ⊂ [0,+∞[ and then 𝜎𝑒𝑠𝑠(𝑃) ⊂ [𝐸,+∞[. Since 

this is true for all 𝐸, we conclude that 𝜎𝑒𝑠𝑠(𝑃) is empty. The next result is due to Friedrichs 

(1934). 

3.4. Theorem: Let 𝑉:ℝ𝑛 → ℝ be continuous with 𝑉(𝑥) → ∞ for |𝑥| → ∞. Then: 

1) There is a constant 𝐶0  such that 𝑃 + 𝐶0 ≥ 1 and (𝑃 + 𝐶0)
−1 is compact. 

2) The spectrum 𝜎(𝑃) of 𝑃 is an increasing sequence (𝜆𝑘)𝑘∈ℕ ⊂ ℝ of eigenvalues of finite 

multiplicity and 𝜆𝑘 → ∞ for 𝑘 → ∞. In particular, 𝜎(𝑃) = 𝜎𝑑𝑖𝑠𝑐(𝑃) 𝑎𝑛𝑑 𝜎𝑒𝑠𝑠(𝑃) = ∅. 

The associated eigenfunctions form an orthonormal basis of the Hilbert space 𝐿2(ℝ𝑛). 

Proof: 1) Clearly, 𝑉(𝑥) ≥ −𝐶 for some 𝐶 and therefore 𝑃 is self-adjoint. Thus, without loss of 

generality, we assume that 𝑉(𝑥) ≥ 0, 𝑥 ∈ ℝ𝑛,  which implies that 𝑃 ≥ 0. Let 𝑓𝑘 be a weakly 

converging sequence to 0 in 𝐿2(ℝ𝑛) and let 𝑢𝑘 = (𝑃 +  𝐼)
−1𝑓𝑘, 𝑘 ∈ ℕ. 

We show that there is a subsequence (𝑢𝑘𝑗)𝑗∈ℕ such that ‖𝑢𝑘𝑗‖ → 0 as 𝑗 → ∞. First, the 

fact that (𝑓𝑘)𝑘∈ℕ converges weakly implies that (𝑓𝑘)𝑘∈ℕ is bounded in 𝐿2(ℝ𝑛). As (𝑃 +  𝐼)−1 

is bounded, the sequence (𝑢𝑘𝑗)𝑗∈ℕ is also bounded in 𝐿2 (ℝ𝑛) and converges weakly to zero in 

𝐿2(ℝ𝑛). 

Furthermore, 𝑢𝑘 ∈ 𝐷(𝑃) and ||𝑃𝑢𝑘|| ≤ ||(𝑃 + 𝐼)(𝑃 + 𝐼)
−1𝑓𝑘|| + ‖𝑢𝑘‖ = ‖𝑓𝑘‖ +

‖𝑢𝑘‖ ≤ 𝐶1,  𝐶1 > 0. So, 〈𝑃𝑢𝑘, 𝑢𝑘〉 ≤ ||𝑃𝑢𝑘||||𝑢𝑘|| ≤ C2, C2 > 0. As 𝑉(𝑥) → ∞ 𝑓𝑜𝑟 |𝑥| →

∞,  given 휀 > 0, we choose 𝑅 > 0 such that 𝑉(𝑥) ≥
1

𝜀
 for |𝑥| ≥ 𝑅. 
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Since, for all 𝜑 ∈ 𝐷(𝑃): 〈𝑃𝜑, 𝜑〉 = ∫ (−∆𝜑(𝑥) + 𝜑(𝑥)𝑉(𝑥))𝜑(𝑥)̅̅ ̅̅ ̅̅
ℝ𝑛

𝑑𝑥 =

∫ (|∇𝜑(𝑥)|2 + 𝑉(𝑥)|𝜑(𝑥)|2)
ℝ𝑛

𝑑𝑥, we have ∫ 𝑉(𝑥)|𝑢𝑘(𝑥)|
2

ℝ𝑛
𝑑𝑥 ≤ 𝐶2 and hence, 

∫ |𝑢𝑘(𝑥)|
2

𝑥≥𝑅
𝑑𝑥 ≤ 휀𝐶2. 

 Let 𝜓𝑅 ∈ 𝐶𝑐
∞(ℝ𝑛) with 𝑆𝑢𝑝𝑝𝜓 ⊂ 𝐵2𝑅 , 𝜓 = 1 on 𝐵𝑅 and 0 ≤ 𝜓 ≤ 1. We observe that: 

‖𝜓𝑅𝑢𝑘‖
2 + ‖∆(𝜓𝑅𝑢𝑘)‖

2 ≤ 2 ∫ 𝜓𝑅
2

ℝ𝑛

(𝑥)|∇𝑢𝑘(𝑥)|
2𝑑𝑥 + 2 ∫|∇𝜓𝑅(𝑥)|

2|𝑢𝑘(𝑥)|
2

ℝ𝑛

𝑑𝑥 + 2‖𝑢𝑘 ‖2 ≤ 𝐶3, 𝐶3 > 0. 

Consequently, ( 𝜓𝑅𝑢𝑘)𝑘∈ℕ is a bounded sequence in the graph norm. Applying Rellich’s 

compactness theorem, we obtain a subsequence (𝑢𝑘𝑗)𝑗∈ℕ of (𝑢𝑘)𝑘∈ℕ such that ‖𝜓𝑅𝑢𝑘𝑗‖ → 0 

as 𝑢𝑘 converges weakly to 0.  Choose 𝑗0 ∈ ℕ so that ‖𝜓𝑅𝑢𝑘𝑗‖
2
≤ 휀 for every 𝑗 ≥ 𝑗0. So, 

‖𝑢𝑘𝑗‖
2
≤ 휀𝐶2 + 휀 for 𝑗 ≥ 𝑗0. 

2) Note that (𝑃 +  𝐼) ∶  𝐷(𝑃) → 𝐿2(ℝ𝑛) is bijective with compact inverse (𝑃 +  𝐼)−1. This 

implies that 𝜎(𝐴) is either empty or 𝜎(𝑃) = 𝜎𝑑𝑖𝑠𝑐(𝑃) contains at most countably many 

eigenvalues 𝜆𝑘. If 𝜎(𝑃) is infinite, then (𝜆𝑘)𝑘∈ℕ is an increasing sequence of eigenvalues of 

finite multiplicity and |𝜆𝑘| → ∞ as 𝑘 → ∞. For all 𝜆𝑘 ∈ 𝜎(𝑃), the range ℛ(𝜆𝑘 − 𝑃) of 𝜆𝑘 − 𝑃  

is closed, 𝑑𝑖𝑚𝒩(𝜆𝑘 − 𝑃) =  𝑐𝑜𝑑𝑖𝑚ℛ(𝜆𝑘 − 𝑃), and thus the eigenfunctions of (𝑃 + 𝐼)−1 form 

an orthonormal basis of 𝐿2(ℝ𝑛), where 𝒩(𝜆𝑘 − 𝑃) denotes the kernel of (𝜆𝑘 − 𝑃). Clearly, 

𝜎𝑒𝑠𝑠(𝑃) = ∅. 

3.5. Example: Let 𝑉(𝑥) =  𝑥2, 𝑥 ∈ ℝ. Then, 𝑃 = −
𝑑2

𝑑𝑥2
+ 𝑥2 ∶ 𝐶𝑐

∞(ℝ) ⟶ 𝐿2(ℝ) is self-adjoint 

on 𝐻2(ℝ) ∩ {𝜑 ∈ 𝐿2(ℝ) ∶  𝑥2𝜑 ∈ 𝐿2(ℝ)}. Theorem 3.4 implies that 𝜎(𝑃) =  𝜎𝑑𝑖𝑠𝑐(𝑃) consists 

of a sequence of eigenvalues of finite multiplicity 0 < 𝜆1 < 𝜆2 < ⋯ with 𝜆𝑘 → ∞ 𝑎𝑠 𝑘 → ∞.  

It is possible to calculate the eigenvalues of 𝑃 explicitly, they are given by 𝜆𝑘 = 2𝑘 + 1;  𝑘 ∈

ℕ. The associated eigenfunctions are 𝜙𝑘(𝑥) = 𝑐𝑘𝑄𝑘(𝑥)𝑒
−𝑥2 2⁄ , 𝑐𝑘 ∈ ℝ, where 𝑄𝑘(𝑥) is the 𝑘th-

order Hermite polynomial, 𝑘 ∈ ℕ. 

3.2. 𝑽(𝒙) → 𝟎 𝒇𝒐𝒓 |𝒙| → ∞. If 𝑉 is locally bounded and 𝑉(𝑥) → 0 𝑎𝑠 |𝑥| → ∞, we show that 

under certain conditions, the essential spectrum of 𝑃 = −Δ + 𝑉 ∶ 𝐷(𝑃) → 𝐿2(ℝ𝑛) is in fact 

exactly the set of non-negative real numbers. A special treatment is reserved for Schrödinger 

operators with Coulomb potentials 𝑉(𝑥) =
𝛾

|𝑥|
, 𝛾 > 0. 

3.6. Theorem: Let 𝑉 ∶ ℝ𝑛 → ℝ be locally bounded and 𝑉(𝑥) → 0 as |𝑥| → ∞. Then, 𝜎𝑒𝑠𝑠(𝑃) =

[0,+∞[ . 
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Proof: The proof of Theorem 3.4 allows to see that 𝑃 can have only isolated eigenvalues of 

finite multiplicity on ]−∞, 0[. It remains for us to show that [0, +∞[⊂ 𝜎(𝑃). Let 𝜆 ≥ 0 be fixed. 

We shall construct a Weyl sequence (𝜑𝑘)𝑘∈ℕ∗ ⊂ 𝐻
2(ℝ𝑛) of 𝑃 and 𝜆. We have −Δ𝑒𝑖𝜉.𝑥 =

𝜆𝑒𝑖𝜉.𝑥,  where 𝜉 ∈ ℝ𝑛, |𝜉| = √𝜆 and  lim
|𝑥|→∞

(𝑃 − 𝜆)𝑒𝑖𝜉.𝑥(𝑃 − 𝜆)𝑒𝑖𝜉.𝑥 since lim
|𝑥|→∞

𝑉(𝑥) = 0. 

Moreover, let 𝜓 ∈ 𝐶𝑐
∞(ℝ𝑛) such that 𝜓 ≥ 0, 𝜓(𝑥) = 1 𝑓𝑜𝑟 |𝑥| ≤

1

2
 and 𝜓(𝑥) =  0 𝑓𝑜𝑟 |𝑥| ≥

2. Let 𝜓𝑘(𝑥) = 𝜓 (
𝑥−𝑘

√𝑘
) , 𝑘 ∈ ℕ∗, then:  

𝑆𝑢𝑝𝑝𝜓𝑘 ⊂ {𝑥 ∈ ℕ ∶  |𝑥 − 𝑘| ≤ √𝑘} and  lim
𝑘→∞

sup
𝑥∈𝑆𝑢𝑝𝑝𝜓𝑘

𝑉(𝑥) = 0. 

Now consider the sequence 𝜑𝑘(𝑥) = 𝜓𝑘(𝑥)𝑒
𝑖𝜉.𝑥, 𝑘 ∈ ℕ∗. Note that for every 𝑘 ∈ ℕ∗: 

‖𝜑𝑘‖
2 = ∫ |𝜓𝑘(𝑥)|

2
ℝ𝑛

𝑑𝑥 = 𝑘𝑛 2⁄ ‖𝜓‖2 .                                                                            (3.2) 

So, 𝑃𝜑𝑘 = (−∆𝜓𝑘)𝑒
𝑖𝜉.𝑥 − (∇𝜓𝑘)(−∇𝑒

𝑖𝜉.𝑥) + |𝜉|2𝜓𝑘(𝑥)𝑒
𝑖𝜉.𝑥 + 𝑉(𝑥)𝜓𝑘(𝑥)𝑒

𝑖𝜉.𝑥 and 

(𝑃 − 𝜆)𝜑𝑘 = 𝑒
𝑖𝜉.𝑥(𝑃𝜓𝑘 − 𝑖𝜉. ∇𝜓𝑘).                                                                                     (3.3) 

Now, |∇𝜓𝑘| ≤
‖𝜓‖2

√𝑘
 and |∆𝜓𝑘| ≤

‖𝜓‖2

𝑘
, 𝑘 ∈ ℕ∗. We can deduce from (3.3), that 

lim
𝑘→∞

sup
𝑥∈ℝ𝑛

|(𝑃 − 𝜆)𝜑𝑘(𝑥)| = 0, and thus lim
𝑘→∞

‖(𝑃−𝜆)𝜑𝑘‖
2

𝑘𝑛 2⁄ = 0. Along with (3.2) this implies 

lim
𝑘→∞

‖(𝑃−𝜆)𝜑𝑘‖
2

‖𝜑𝑘‖
= 0. 

Sketch of the proof of Theorem 3.6, or directly thanks to Weyl’s theorem, we can prove the 

theorem for Schrödinger operators with relatively bounded potentials with respect to – Δ and 

with relative bound <  1. 

3.7. Theorem: Let 𝑉 ∶  ℝ𝑛 → ℝ be piecewise continuous with 𝑉(𝑥) →  0 as |𝑥| → ∞. Assume 

that the multiplication operator by 𝑉 is relatively bounded with respect to −∆ with relative 

bound <  1. Then 𝑃 = −∆ + 𝑉 ∶ 𝐷(𝑃) = 𝐻2(ℝ𝑛) → 𝐿2(ℝ𝑛) is self-adjoint and 𝜎𝑒𝑠𝑠(𝑃) =

𝜎𝑒𝑠𝑠(−Δ) = [0,+∞[. 

3.8. Remark: Under the assumptions of Theorem 3.7, we have that 𝜎𝑒𝑠𝑠(𝑃) = [0,+∞[. 

Nevertheless, it is possible that 𝑃 has discrete eigenvalues below 0 (and they are of importance 

in physics when thinking of spectroscopy etc.). These eigenvalues are characterized by the min-

max-principle. 

3.9. Theorem: Let 𝑃 as in Theorem 3.7. If there exists 𝜑 ∈ 𝐻2(ℝ𝑛) with 〈𝑃𝜑, 𝜑〉 =

∫ 𝑃𝜑(𝑥)𝜑(𝑥)̅̅ ̅̅ ̅̅
ℝ𝑛

𝑑𝑥 < 0, then 𝑃 has at least one negative eigenvalue. 

Proof: If we suppose that 𝜎(𝑃) ⊂ [0,+∞[, as 𝑃 is self-adjoint we would deduce that 𝑃 is 

positive, i.e. 〈𝑃𝑢, 𝑢〉 ≥ 0  for all 𝑢 ∈ 𝐻2(ℝ𝑛), what contradicts the assumption 〈𝑃𝜑, 𝜑〉 < 0. 
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3.10. Example: We focus in particular on the Coulomb potential 𝑉(𝑥) = −
1

|𝑥|
, 𝑥 ∈ ℝ3 ∖

{0}.  𝑃 = −Δ −
1

|𝑥|
 in 𝐿2(ℝ3) is the Schrödinger operator of the hydrogen atom. Hardy’s 

inequality implies that the Coulomb potential in ℝ3 is relatively bounded with respect to −∆ 

with relative bound 0 and the perturbation theorem of Kato and Rellich shows that 𝑃 is self-

adjoint on 𝐻2(ℝ3), we have also 𝜎𝑒𝑠𝑠(𝑃) = 𝜎𝑒𝑠𝑠(−∆) = [0,+∞[. 

Indeed, first check that 𝑉𝜓 ∈ 𝐿2(ℝ3) for all 𝜓 ∈ 𝐻2(ℝ3). Let 𝜑 = ℱ−1𝜓 ∈ 𝐿2(ℝ3), so 𝜓 =

ℱ𝜑 where ℱ and ℱ−1 are the Fourier transform and inverse Fourier transform, respectively on 

𝐿2(ℝ3). As the functions of 𝐻2(ℝ3) are continuous and tend to zero at infinity, we deduce that 

𝜓 is essentially-bounded on ℝ3: 

‖𝜓‖∞ = supess
𝑥∈ℝ3

|𝜓(𝑥)| = sup
𝑥∈ℝ3

|(2𝜋)−3 2⁄ ∫ 𝑒−𝑖𝑥.𝜉𝜑(

ℝ3

𝜉)𝑑𝜉| 

≤ (2𝜋)−3 2⁄ ∫ |𝜑(𝜉)|𝑑𝜉

|𝜉|≤1

+ (2𝜋)−3 2⁄ ∫ |𝜉|−2(|𝜉|2|𝜑(𝜉)|)

|𝜉|>1

𝑑𝜉. 

Hence, we can apply the Cauchy-Schwarz inequality and obtain: 

‖𝜓‖𝐿∞(ℝ3) ≤ 𝑐1‖𝜓‖𝐿2(ℝ3) + 𝑐2‖|𝜉|
2𝜑‖𝐿2(ℝ3) 

𝑐1 = (2𝜋)
−3 2⁄ ((

4𝜋

3
)
1 2⁄

 and 𝑐2 = (2𝜋)
−3 2⁄ (∫

𝑑𝜉

|𝜉|4|𝜉>1|
)
1 2⁄

 

 (𝜓 ∈ 𝐻2(ℝ3)), then ∆𝜓 ∈ 𝐿2(ℝ3), and |𝜉|2𝜑 = ℱ−1(−∆𝜓) ∈ 𝐿2(ℝ3). 

Let us also use the fact that the Fourier transform is a unitary operator on 𝐿2(ℝ3), and obtain 

‖𝜓‖𝐿∞(ℝ3) ≤ 𝑐1‖𝜓‖𝐿2(ℝ3) + 𝑐2‖∆𝜓‖𝐿2(ℝ3).         (3.4) 

So, for all 휀 > 0: 

‖𝑉𝜓‖𝐿2(ℝ3)
2 = ∫ 𝑟−2

𝑟=|𝑥|≤𝜀

|𝜓(𝑥)|2 𝑑𝑥 + ∫ 𝑟−2

𝑟>𝜀

|𝜓(𝑥)|2𝑑𝑥  

or, 

‖𝑉𝜓‖𝐿2(ℝ3) ≤ ‖𝜓‖𝐿∞(ℝ3)√∫ 𝑟−2𝑑𝑥
𝑟≤𝜀

+ 휀−1‖𝜓‖𝐿2(ℝ3). 

Using (3.4) we also have: ‖𝑉𝜓‖𝐿2(ℝ3) ≤ 𝑎‖∆𝜓‖𝐿2(ℝ3) + 𝑏‖𝜓‖𝐿2(ℝ3)                            (3.5) 

with 𝑎 = 𝑐2√∫ 𝑟−2𝑑𝑥
𝑟≤𝜀

  and 𝑏 = 휀−1 + 𝑐1√∫ 𝑟−2𝑑𝑥
𝑟≤𝜀

. Thus, 𝑉 is ∆-bounded with relative 

bound 𝑎, make 𝑎 small enough by choosing 휀 → 0+. 



Bouguetaia, T and Messirdi, B (MEJS)                                                             Volume 12(1):83-102, 2020 

 

© CNCS, Mekelle University                                      92                                              ISSN: 2220-184X 

 

For the Coulomb potential in ℝ3 one obtains an infinite sequence of negative 

eigenvalues. As 𝑉(𝑥) = −
1

𝑥
 is spherically symmetric, 𝑉(𝑥) = 𝑉(𝑟), with 𝑟 = |𝑥|, the main idea 

is to separate 𝑃 = −∆ −
1

𝑟
 in spherical coordinates to obtain the negative eigenvalues and the 

associated eigenfunctions. For any 𝑥 ∈ ℝ3 ∖ {0}, 𝑥 = 𝑟𝜔 where 𝜔 =
𝑥

|𝑥|
∈ 𝑆2 the unit sphere 

of ℝ3. 

The operator −∆ on 𝑆2, has compact resolvent and purely discrete spectrum: 0 = 𝜐0 <

𝜐1 < ⋯ < 𝜐𝑘 → ∞ as 𝑘 → ∞, the associated eigenspaces to 𝜐𝑘 have a basis of 𝐶∞-functions 

𝜓𝑘,𝑙 ∶ 𝑆
2 → ℝ, 𝑙 = 1,… ,𝑚𝑘, called the spherical harmonics, where 𝑚𝑘 = 𝑘(𝑘 + 1), 𝑘 ∈ ℕ

∗,  

is the dimension of the eigenspace. 

Using separation of variables 𝑢(𝑥) = 𝑓(𝑟)𝜓𝑘,𝑙(𝜔) for the eigenfunctions 𝑢 and 

eigenvalues 𝜆 of 𝑃 = −Δ −
1

|𝑥|
 in the Hilbert space 𝐿2(ℝ3) = 𝐿2(]0, +∞[, 𝑟2𝑑𝑟) ⊕

𝐿2(𝑆2, 𝑑𝜎2), leads to the Bessel differential equation for 𝑓: 

−𝑓′′(𝑟) −
2

𝑟
𝑓 ′(𝑟) −

1

|𝑥|
𝑓(𝑟) +

𝜐𝑘
𝑟2
𝑓(𝑟) = 𝜆𝑓(𝑟), 𝑟 ∈ ]0, +∞[. 

We remark that one can show by power-series methods that for any 𝑘 ∈ ℕ∗, there exists 

a solution 𝑓 =  𝑓𝑘 ∈ 𝐿
2(]0, +∞[, 𝑟2𝑑𝑟) and an infinite sequence 𝜆𝑘 of negative eigenvalues of 

𝑃, 𝜆𝑘 = −
1

4𝑘2
, 𝑘 ∈ ℕ∗ (see Landau and Lifshitz, 1977). 

So, we see that the hydrogen atom has an infinite number of bound states below the 

essential spectrum (𝜎𝑒𝑠𝑠(𝑃) = [0,+∞[),  which accumulate at zero. 

3.3. Bounded Continuous Potentials 

If 𝑉 ∶  ℝ𝑛 → ℝ is bounded and piecewise continuous, then 𝑃 = −∆ + 𝑉 is self-adjoint with 

domain 𝐻2(ℝ𝑛). Let 𝑠− = inf
𝑥∈ℝ𝑛

𝑉(𝑥) and 𝑠+ = sup
𝑥∈ℝ𝑛

𝑉(𝑥). It’s clear that inf𝜎(𝑃) ∈ [𝑠−, 𝑠+] and 

𝜎(𝑃) ⊂ [𝑠−, +∞[. The following result gives a location of the spectrum of 𝑃 around [𝑠−, 𝑠+]. 

3.11. Theorem: Let 𝑉 ∶  ℝ𝑛 → ℝ be bounded and piecewise continuous and let 𝜆 ≥ 0. Then 

𝜎(𝑃) ∩ [𝜆 − 𝑟+, 𝜆 + 𝑟+] ≠ ∅, where 𝑟+ = max(|𝑠−|, |𝑠+|). 

Proof: Since, 𝜎𝑒𝑠𝑠(−∆) = [0,+∞[, there exists a singular sequence (𝜑𝑘)𝑘∈ℕ∗ in 𝐻2(ℝ𝑛) 

associated to −∆ and 𝜆. Since 𝑃 is self-adjoint on 𝐻2(ℝ𝑛), let (𝐸𝜇)𝜇∈ℝ be the spectral family 

associated with 𝑃. The spectral theorem yields: 

inf
𝜇∈𝜎(𝑃)

|𝜇 − 𝜆|2 ‖𝜑𝑘‖
2 ≤ ∫(𝜇 − 𝜆)2

ℝ

𝑑〈𝐸𝜇𝜑𝑘 , 𝜑𝑘〉 = ‖(𝑃 − 𝜆)𝜑𝑘‖
2 ≤ (‖(−∆ − 𝜆)𝜑𝑘‖ + ‖𝑉𝜑𝑘‖)

2. 
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As ‖𝜑𝑘‖ = 1, ‖𝑉𝜑𝑘‖ ≤ 𝑟+ for all 𝑘 ∈ ℕ and ‖(−∆ − 𝜆)𝜑𝑘‖ → 0 as 𝑘 → ∞, we obtain that: 

inf
𝜇∈𝜎(𝑃)

|𝜇 − 𝜆|2 ≤ 𝑟+
2, thus the gap between 𝜆 and 𝜎(𝑃) is less than 𝑟+. 

3.12. Remark: Simon (2009) showed that 𝑃 = −∆ + 𝑉 has purely discrete spectrum if 𝑉 ≥ 0 

and, for all 𝑀, the set {𝑥 ∈ ℝ𝑛 ∶  𝑉(𝑥) > 𝑀} has finite Lebesgue measure. We may now prove 

a beneficial result, namely that under “small” variations of 𝑉, the essential spectrum remains 

the same. 

3.13. Theorem: Let 𝑉1 and 𝑉2 be two bounded potentials on ℝ𝑛 satisfying: 

lim
|𝑥|→∞

|𝑉1(𝑥) − 𝑉2(𝑥)| = 0. Then, 𝜎𝑒𝑠𝑠(−Δ + 𝑉1) = 𝜎𝑒𝑠𝑠(−Δ + 𝑉2). 

Proof: Let 𝑃𝑗 = −∆ + 𝑉𝑗 , 𝑗 =  1, 2,  on 𝐿2(ℝ𝑛) with respective domain 𝐻2(ℝ𝑛). Note that 𝑃2 =

𝑃1 +𝑊 where, 𝑊 = 𝑉2 − 𝑉1 is bounded and vanishes at infinity. If 𝜆 ∉ 𝜎(𝑃1) ∪ 𝜎(𝑃2), then 

𝑊(𝑃1 − 𝑧)
−1 = 𝑊(−∆ − 𝑧)−1(−∆ − 𝑧)(𝑃1 − 𝑧)

−1 or (−∆ − 𝑧)(𝑃1 − 𝑧)
−1 is bounded from 

𝐿2(ℝ𝑛) to 𝐻2(ℝ𝑛).  𝑊(−∆ − 𝑧)−1 is compact by Theorems 3.6 and 3.7. We deduce that 𝑃1 

and 𝑃2 have the same essential spectrum by perturbation theorem of Weyl. 

3.14. Example: Let 𝑃𝛼 , 0 < 𝛼 < 1, be the operator with domain 𝐻2(ℝ) in 𝐿2(ℝ) defined by: 

𝑃𝛼𝜑 = −
𝑑2

𝑑𝑥2
+ sin|𝑥|𝛼𝜑(𝑥). Clearly, 𝑉(𝑥) = sin|𝑥|𝛼 is bounded on ℝ and 𝜎(𝑃𝛼) ⊂ [−1,+∞[ 

since −1 ≤ 𝑉 (𝑥) ≤ 1. 

Firstly, we show that [−1,1] ⊂ 𝜎𝑒𝑠𝑠(𝑃𝛼). Since  𝑉 is even and 𝑉 ′(𝑥) = 𝛼𝑥𝛼−1cos𝑥𝛼 →

0, as 𝑥 → ∞, finite-increments formula ensures that for 𝜆 ∈ [−1,1] and 휀𝑘 =
1

𝑘
, 𝑘 ∈ ℕ∗, there 

exists 𝑥𝑘 >  0 so that |𝑉(𝑥) − 𝜆| < 휀𝑘 for all 𝑥 ∈ 𝐵2𝑘(𝑥𝑘). (𝑥𝑘)𝑘∈ℕ∗ is monotonically 

increasing sequence and 𝑥𝑘 → ∞. We can also assume that 𝐵2𝑘(𝑥𝑘) ∩ 𝐵2(𝑘+1)(𝑥𝑘+1) = ∅. Let 

𝜓𝑘 ∈ 𝐶𝑐
∞ (ℝ) be a cut-off function with 0 ≤ 𝜓𝑘 ≤ 1,𝜓𝑘 = 1 on ] − 𝑘, 𝑘[ and Supp𝜓𝑘 ⊂ ] −

2𝑘, 2𝑘[. Let 𝜑𝑘 =
𝜓𝑘(𝑥−𝑥𝑘)

‖𝜓𝑘(𝑥−𝑥𝑘)‖
. Clearly, 𝜑𝑘 → 0 weakly and ‖(𝑃𝛼 − 𝜆)𝜑𝑘‖ ≤ ‖−

𝑑2𝜑𝑘

𝑑𝑥2
‖ +

‖(𝑉 − 𝜆)𝜑𝑘‖ ≤ ‖−
𝑑2𝜑𝑘

𝑑𝑥2
‖ + 휀𝑘 → 0, 𝑘 → ∞, we see that 𝜆 ∈ 𝜎(𝑃𝛼). 

Secondly, we show that [1, +∞[ ⊂ 𝜎(𝑃𝛼). Let 𝜆 ∈ [1,+∞[, again we choose points 𝑥𝑘 

on the positive half-axis such that |𝑉(𝑥)| < 휀𝑘 for all 𝑥 ∈ 𝐵2𝑘(𝑥𝑘).  Let 𝑢𝑘, 𝑘 ∈ ℕ
∗, be the 

singular sequence of (−
𝑑2

𝑑𝑥2
) and 𝜆 obtained in the proof of Proposition 2.1. Then, 𝑣𝑘(𝑥) =

𝑢𝑘(𝑥 − 𝑥𝑘) satisfies ‖𝑢𝑘‖ = 1 for all 𝑘 ∈ ℕ∗,  and 𝑣𝑘 → 0 weakly as 𝑘 → ∞,  

‖(𝑃𝛼 − 𝜆)𝜐𝑘‖ ≤ ‖(−
𝑑2

𝑑𝑥2
− 𝜆) 𝜐𝑘‖ + ‖𝑉𝜐𝑘‖ ≤ ‖(−

𝑑2

𝑑𝑥2
− 𝜆) 𝜐𝑘‖ + 휀𝑘 → 0, 𝑘 → ∞,  thus 𝜆 ∈

𝜎𝑒𝑠𝑠(𝑃𝛼).  Finally, 𝜎(𝑃𝛼) = 𝜎𝑒𝑠𝑠(𝑃𝛼) = [−1,+∞[. 
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3.4. Periodic Potentials 

The case where 𝑉 does not have a limit as |𝑥| → ∞ in any direction one might expect the 

analysis of periodic Schrödinger operators to be difficult. Consider a particle moving in a 

periodic potential. A primary example of this situation is an electron moving in the potential 

created by ions or atoms of a solid crystal lattice. Linear operators with periodic coefficients 

arise in many problems both of classical mechanics, mathematics and modern mathematical 

physic. Such operators appear, e.g. in solid state physics. More details can be found in Cycon 

et al. (1987). The possible energies of a free electron, corresponding to the free Schrödinger 

operator −∆ form a straightforward continuum [0, +∞[. The introduction of the periodic 

perturbation 𝑉 “opens up” gaps in this spectrum. This is called the band structure. In fact the 

operator 𝑃 = −Δ + 𝑉 can be broken into a family of operators 𝑃𝜃 on a n-torus, each 𝑃𝜃 having 

discrete spectrum. More precisely, the spectrum of 𝑃𝜃 consists of an increasing sequence of 

eigenvalues 𝜆1(𝑘) ≤ 𝜆2(𝑘) ≤ ⋯ tending to infinity. The manner in which the operators 𝑃𝜃 are 

obtained is not quite unique. Here, we only skim some results for periodic Schrödinger 

operators. A classical example is the Mathieu operator −
𝑑2

𝑑𝑥2
+ 𝜇cos𝑥 in 𝐿2(ℝ𝑛), 𝜇 ≠ 0. 

In 𝐿2(ℝ3) we study the Schrödinger operator 𝑃 = −∆ + 𝑉 where the potential 𝑉 is a 

periodic, bounded, real-valued function on ℝ3. The periodicity of 𝑉 is defined as follows.   

Let {𝛾1, 𝛾2, 𝛾3} be a set of 3 linearly independent vectors in ℝ3. Construct a crystal by 

fixing identical particles at the points of the lattice: 

Γ = {𝑝1𝛾1 + 𝑝2𝛾2 + 𝑝3𝛾3 ∶  𝑝1, 𝑝2, 𝑝3 ∈ ℤ}. 

For example, if the 𝛾𝑗 ′𝑠 are the standard basis for ℝ3, then Γ = ℤ3.  𝑉 is said periodic 

with respect to Γ if 𝑉(𝑥 + 𝛾) = 𝑉(𝑥), for all 𝑥 ∈ ℝ3 and γ ∈ Γ.  Γ is called the period lattice of 

the potential 𝑉. In that case, 𝑃 is self-adjoint and lower semibounded on its natural domain, the 

Sobolev space 𝐻2(ℝ3).  𝑃 commutes with the lattice translations, 𝑇𝛾𝑃 =  𝑃𝑇𝛾,  for all 𝛾 ∈ Γ, 

where 𝑇𝛾 ∶ 𝐿
2(ℝ3) → 𝐿2(ℝ3) and (𝑇𝛾𝜑)(𝑥) = 𝜑(𝑥 + 𝛾).  𝑇𝛾 are unitary operators on 

𝐿2(ℝ3) satisfying 𝑇𝛾(𝐻
2(ℝ3)) ⊂ 𝐻2(ℝ3), 𝑇𝛾𝑇𝜇 = 𝑇𝛾+𝜇, 𝛾, 𝜇 ∈ Γ. 

This will permit us to decompose 𝑃 as an hilbertian integral. More precisely, we first 

define Ω to be the basic lattice cell of the lattice Γ, i.e. the cell spanned by the basis vectors 

𝛾1, 𝛾2, 𝛾3 of ℝ3. Let Γ∗ be the lattice dual to Γ, i.e. the lattice with basis 𝛾1
∗, 𝛾2

∗, 𝛾3
∗ satisfying 

𝛾𝑗
∗(𝛾𝑙 ) = 𝛿𝑗𝑙 , the Kronecker symbol, and let Ω

∗
 be a basic lattice cell of Γ∗.  Now for each 𝜃 ∈

Ω
∗
, we define the Hilbert space 𝐻𝜃 = 𝐿

2(Ω) and we then define the Hilbert space 𝐻 to be the 

direct fiber integral, 𝐻 = ∫ 𝐻𝜃
⊕

Ω∗
𝑑𝜃 where 𝑑𝜃 is the standard Lebesgue measure on Ω

∗
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normalized so that ∫ 𝑑𝜃
⊕

Ω∗
= 1. In fact, 𝐻 = 𝐿2(Ω∗, 𝑑𝜃, 𝐿2(Ω)) is the Hilbert space of square 

integrable 𝐿2(Ω)-valued functions and if 𝜓 ∈ 𝐻, 𝜓 =  (𝜓𝜃)𝜃∈Ω∗ .  

Let 𝑃𝜃 be the restriction of the operator 𝑃 to 𝐻𝜃 with domain consisting of functions 

𝜓𝜃 ∈ 𝐻𝜃 ∩ 𝐻
2(ℝ3) satisfying the boundary conditions 𝑇𝛾𝜓(𝑥) = 𝑒

𝑖𝜃𝛾𝜓(𝑥) for the basis 

elements 𝛾 = 𝛾1, 𝛾2, 𝛾3. Define now the operator  𝜓𝜃(𝑥) ↦ 𝑃𝜃𝜓𝜃(𝑥) on 𝐻 = ∫ 𝐻𝜃
⊕

Ω∗
𝑑𝜃 and 

denote it 𝐻 = ∫ 𝑃𝜃
⊕

Ω∗
𝑑𝜃. Let us consider the Floquet transform [𝐹𝜑]𝜃(𝑥) = ∑ 𝑒−𝑖𝜃𝛾𝑇𝛾γ∈Γ 𝜑(𝑥) 

from 𝐿2(ℝ3) into 𝐻. The properties of such operators are summarized in the following. 

3.15. Theorem: 1) 𝑃𝜃 and ∫ 𝑃𝜃
⊕

Ω∗
𝑑𝜃 are self-adjoint on 𝐻𝜃 and 𝐻 respectively, for all 𝜃 ∈ Ω

∗.  

2) The operator 𝐹 extends uniquely to a unitary operator and 𝐹𝑃𝐹−1 = ∫ 𝑃𝜃
⊕

Ω∗
𝑑𝜃. 

3) The spectrum of 𝑃𝜃 is purely discrete for all 𝜃 ∈ Ω
∗
 and 𝜎(𝑃) = ⋃ 𝜎(𝑃𝜃)𝜃∈Ω∗ . 

Proof: 1) is automatic by construction. 

2) 𝐹 is an isometry on 𝐶𝑐
∞(ℝ3). Indeed, using Fubini’s theorem one has: 

‖𝐹𝜓‖𝐻
2 = ∫‖𝐹(𝜓)𝜃‖𝐻

2

Ω∗

𝑑𝜃 = ∫ ∫ |∑𝑒−𝑖𝜃𝛾𝑇𝛾𝜓(𝑥)𝑑𝑥

γ∈Γ

|

2

ΩΩ∗

𝑑𝜃 

= ∫ (∑ 𝑇𝛾𝜓(𝑥)𝑇𝛼𝜑(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅

γ,𝛼∈Γ

∫ 𝑒−𝑖𝜃𝛾

Ω∗

𝑒−𝑖𝜃𝛼)

Ω

𝑑𝑥 

= ∫∑|𝑇𝛾𝜓(𝑥)|
2
𝑑𝑥 = ∫|𝜓(𝑥)|2

ℝ3γ∈ΓΩ

𝑑𝑥 = ‖𝜓‖𝐿2(ℝ3)
2 .  

Hence, ‖𝐹𝜓‖𝐻 = ‖𝜓‖𝐿2(ℝ3) and by density 𝐹 extends to an isometry on all of 𝐻. To 

show that 𝐹 is in fact a unitary operator, we naturally define 𝐹∗: 𝐻 → 𝐻 by the formula: 

𝐹∗𝑔(𝑥 + 𝛾) = ∫ 𝑒𝑖𝜃𝛾

Ω∗

𝑔𝜃(𝑥)𝑑𝜃, 𝛾 ∈ Γ 𝑎𝑛𝑑 𝑥 ∈ Ω.  

It’s clear that a direct computation shows that 𝐹∗ is the adjoint of 𝐹 and is also an 

isometry, so 𝐹 is a unitary operator and 𝐹𝑃𝐹∗ = ∫ 𝑃𝜃
⊕

Ω∗
𝑑𝜃. 

3) The resolvents of 𝑃 and 𝑃𝜃 are related by 𝐹(𝑃 − 𝑧)−1𝐹−1 = ∫ (𝑃𝜃 − 𝑧)
−1⊕

Ω∗
𝑑𝜃. 

Then, (𝑃 − 𝑧) is boundedly invertible if and only if each operator (𝑃𝜃 − 𝑧), 𝜃 ∈ Ω
∗
, is too, 

which means that 𝜎(𝑃) = ⋃ 𝜎(𝑃𝜃)𝜃∈Ω∗ . On the other hand, we know that the spectra of 

Schrödinger operators on bounded domains with Dirichlet boundary conditions is purely 

discrete accumulating at +∞ (Cycon et al., 1987). 
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This is the case of operators 𝑃𝜃, 𝜃 ∈ Ω
∗
, so the spectrum of each 𝑃𝜃, 𝜃 ∈ Ω

∗
, is discrete 

composed from a sequence of eigenvalues with finite multiplicity 𝜆0(𝜃) ≤ 𝜆1(𝜃) ≤ ⋯ ≤

𝜆𝑙(𝜃) ≤ ⋯ and lim
𝑙→+∞

𝜆𝑙 (𝜃) = +∞. This shows that the spectrum of 𝑃 is union of the sets 

{𝜆𝑙(𝜃) ∶ 𝜃 ∈ Ω
∗}. In fact, 𝜎(𝑃) = ⋃ [ inf

𝜃∈Ω
∗
𝜆𝑙(𝜃), sup

𝜃∈Ω
∗
𝜆𝑙(𝜃)]𝑙∈ℕ  this is the so-called band structure 

of spectrum in solid state physics. 

3.16. Remark: One can prove similar results in one dimensional case (Gherib and Messirdi, 

2005). 

3.17. Example: A classical example is the Mathieu operator –
𝑑2

𝑑𝑥2
+ 𝜇 cos 𝑥 in 𝐿2(ℝ), 𝜇 ≠ 0. 

𝑉(𝑥) = 𝜇cos𝑥 is 2𝜋-periodic continuous function on ℝ. Let’s take the previous constructions 

for 𝑉 on ℝ, using the approach of Gherib and Messirdi (2005). Let 𝐻′ = 𝐿2]0, 2𝜋[ and 𝐻 =

∫ 𝐻′
⊕

[0,2π [

𝑑𝜃

2𝜋
. Consider the operator 𝐹 ∶ 𝐿2(ℝ) → 𝐻 defined by: 

(𝐹𝜓)𝜃(𝑥) =∑𝑒−𝑖𝜃𝑘

𝑘∈ℤ

𝜓(𝑥 + 2𝑘𝜋), 𝜃 ∈ [0, 2𝜋[. 

𝐹 is well-defined for 𝜓 ∈ 𝐶𝑐
∞(ℝ) since the sum is convergent, and has a unique extension to a 

unitary operator on 𝐿2(ℝ). Denote by 𝑃0 = −
𝑑2

𝑑𝑥2
 the self-adjoint operator in 𝐿2(ℝ) with 

domain 𝐻2(ℝ). For 𝜃 ∈ [0,2𝜋[, we consider the self-adjoint operator 𝑃0,𝜃 = 𝑃0 in 𝐿2[0, 2𝜋[ 

with the boundary conditions 𝜓(2𝜋) = 𝑒𝑖𝜃𝜓(0) and 𝜓′(2𝜋) = 𝑒𝑖𝜃𝜓′(0). We have: 

𝐹𝑃0𝐹
−1 = ∫ 𝑃0,𝜃

⊕

[0,2π [

𝑑𝜃

2𝜋
.          (3.6) 

Since, if 𝜓 ∈ 𝐶𝑐
∞(ℝ), then 𝐹𝜓 ∈ 𝐶∞ on ]0, 2𝜋[ with (𝐹𝜓)𝜃

′ = (𝐹𝜓′)𝜃(𝑥) (similarly 

for higher derivatives), moreover (𝐹𝜓)𝜃(2𝜋) = 𝑒
𝑖𝜃(𝐹𝜓)𝜃(0), (𝐹𝜓)𝜃

′ (2𝜋) = 𝑒𝑖𝜃(𝐹𝜓)𝜃
′ (0) 

and 𝑃0,𝜃(𝐹𝜓) = 𝐹(−𝜓
′′)𝜃, for all 𝜃 ∈ [0,2𝜋[. 

Now let 𝑃𝜃 = 𝑃0,𝜃 + 𝑉(𝑥) as an operator in 𝐿2[0,2𝜋[. Then, 𝐹𝑃𝐹−1 = ∫ 𝑃𝜃
⊕

[0,2π [

𝑑𝜃

2𝜋
. 

Indeed, in view of (3.6), it is enough to show that 𝐹𝑉𝐹−1 = 𝐹(𝜇cos𝑥)𝐹−1 = ∫ 𝑉𝜃
⊕

[0,2π [

𝑑𝜃

2𝜋
, 

where (𝑉𝜃𝜓)(𝑥) = 𝜇cos𝑥𝜓(𝑥) on 𝐿2[0, 2𝜋[.  

One has for all 𝜃 ∈ [0, 2𝜋[, 

(𝐹𝑉𝜓)𝜃(𝑥) = ∑𝑒−𝑖𝜃𝑘𝑉(𝑥 + 2𝜋𝑘)𝜓(𝑥 + 2𝜋𝑘) = 𝑉(𝑥)∑𝑒−𝑖𝜃𝑘𝜓(𝑥 + 2𝜋𝑘)

𝑘∈𝑍

= 𝑉𝜃(𝐹𝜓)𝜃(𝑥)

𝑘∈𝑍

 

and thus, 𝐹𝑃𝐹−1 = 𝐹𝑃0𝐹
−1 + 𝐹𝑉𝐹−1 = ∫ (𝑃0,𝜃 + 𝑉𝜃)

⊕

[0,2π [

𝑑𝜃

2𝜋
= ∫ 𝑃𝜃

⊕

[0,2π [

𝑑𝜃

2𝜋
. 
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Remark that the operator 𝑃0,𝜃 is positive, so 𝑃0,𝜃 + 𝐼 is boundedly invertible. The inverse 

𝐾𝜃 = (𝑃0,𝜃 + 𝐼)
−1 is easily and explicitly determined as: 

1. (𝐾𝜃𝑓)(𝑥) = ∫ 𝐺𝜃(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦,
2𝜋

0
 

𝐺𝜃(𝑥, 𝑦) =
𝑒−|𝑥−𝑦|

2
+

𝑒𝑥−𝑦

2(𝑒2𝜋−𝑖𝜃 − 1)
+

𝑒𝑦−𝑥

2(𝑒2𝜋+𝑖𝜃 − 1)
. 

𝐾𝜃 is Hilbert-Schmidt and so compact operator anlytically dependent on 𝜃 in a neighborhood 

of [0, 2𝜋]. Thus, 𝑃𝜃 depends analytically on 𝜃 and has a compact resolvent. 

Hence, the spectrum of 𝑃𝜃 is discrete and consists of eigenvalues 𝜆0(𝜃) ≤ 𝜆1(𝜃) ≤ ⋯ ≤

𝜆𝑙(𝜃) ≤ ⋯ and 𝜎(𝑃) is a union of intervals [ inf
𝜃∈[0,2𝜋[

𝜆𝑙(𝜃), sup
𝜃∈[0,2𝜋[

𝜆𝑙(𝜃),]. Moreover, 𝜆𝑙(𝜃) =

𝜆𝑙(2𝜋 − 𝜃),  𝜆𝑙(𝜃) are nondegenerate, hence, depend analytically on 𝜃 ∈]0, 𝜋[ and for 𝑙 odd 

(respectively, even) 𝜆𝑙(𝜃) is strictly monotone increasing (respectively, decreasing) on ]0, 𝜋[.  

Therefore, 𝜆0(𝜋) < 𝜆0(0) ≤ 𝜆1(0) < 𝜆1(𝜋) ≤ ⋯ ≤ 𝜆2𝑙−1(0) < 𝜆2𝑙−1(𝜋) ≤ 𝜆2𝑙(𝜋) < 𝜆2𝑙(0). The 

bands [𝜆2𝑙−1(0), 𝜆2𝑙−1(𝜋)] and [𝜆2𝑙(𝜋), 𝜆2𝑙(0)] form the spectrum, precisely: 

𝜎 (−
𝑑2

𝑑𝑥2
+ 𝜇cos𝑥) = ⋃ [𝑎𝑙 , 𝑏𝑙]

∞
𝑙=0  with 𝑎𝑙 = {

𝜆𝑙(0) 𝑖𝑓 𝑙 𝑖𝑠 𝑜𝑑𝑑

𝜆𝑙(𝜋) 𝑖𝑓 𝑙 𝑖𝑠 𝑒𝑣𝑒𝑛
; 𝑏𝑙 = {

𝜆𝑙(𝜋) 𝑖𝑓 𝑙 𝑖𝑠 𝑜𝑑𝑑

𝜆𝑙(0) 𝑖𝑓 𝑙 𝑖𝑠 𝑒𝑣𝑒𝑛
. 

−
𝑑2

𝑑𝑥2
+ 𝜇cos𝑥 has no eigenvalues, it has purely essential spectrum. It is also shown by Reed 

and Simon (Volume 4, 1978) that for all  𝑙 ∈ ℕ, 𝑎𝑙+1 ≠ 𝑏𝑙, so every gap occurs. 

3.5. Stark Potentials 

The Hamiltonian describing a quantum mechanical particle in a constant electric field 𝑘 ∈ ℝ𝑛 

is given by 𝑃(𝑘) = −∆ + 𝑥. 𝑘, where 𝑉(𝑥) = 𝑥. 𝑘 is the Stark potential for the constant electric 

field 𝑘. The self-adjoint extension of 𝑃(𝑘) on 𝐿2(ℝ𝑛) with its natural domain 𝐷(𝑃(𝑘)) =

𝐻2(ℝ𝑛) ∩ {𝜑 ∶  (𝑥. 𝑘)𝜑(𝑥) ∈ 𝐿2(ℝ𝑛)} is called the Stark-Hamiltonian. We can consider here 

only the case of one-dimensional electric field. In fact, for example low-dimensional 

hydrogenic systems are realized in nature in the form of electron-hole pairs (“excitons”) in low-

dimensional quantum structures such as quantum wells, quantum wires, and carbon nanotubes 

(Pedersen, 2007). The multi-dimensional case is easily exploited via the spectral properties of 

self-adjoint operators, in particular the physical case 𝑛 = 3. 

3.18. Theorem: Let 𝑃(𝑘) = −∆ + 𝑥. 𝑘, 𝑘 ∈ ℝ𝑛 ∖ {0}, be the Stark-Hamiltonian in 𝐿2(ℝ𝑛). 

Then, 𝜎(𝑃(𝑘)) = 𝜎𝑒𝑠𝑠(𝑃(𝑘)) = ℝ, and the operator 𝑃 does not have eigenvalues. 
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Proof: First note that 𝜎(𝑃(𝑘)) ≠ ∅. Otherwise the associated spectral family 𝐸(𝜆) of 𝑃(𝑘) 

would be constant which would be in contradiction with lim
𝜆→+∞

𝐸(𝜆) = 𝐼 and lim
𝜆→−∞

𝐸(𝜆) = 0. 

As 𝜎(𝑃(𝑘)) ⊆ ℝ, let 𝜆 ∈ 𝜎(𝑃(𝑘)) and some 𝜂 ∈ ℝ. We want to show that 𝜂 ∈ 𝜎(𝑃(𝑘)). 

Consider, for 𝜑 ∈ 𝐿2(ℝ𝑛) ∶  (𝑈𝑡𝜑)(𝑥) = 𝜑(𝑥 − 𝑡𝑘), 𝑡 ∈ ℝ, 𝑥 ∈ ℝ
𝑛 the group of 

translations on functions of 𝐿2(ℝ𝑛).  {𝑈𝑡 ∶  𝑡 ∈ ℝ} is a family of unitary operators, thus 

𝑈𝑡(𝐷(𝑃(𝑘))) = 𝐷(𝑃(𝑘)) and 𝜎(𝑃(𝑘)) = 𝜎(𝑈𝑡𝑃(𝑘)𝑈𝑡), for all  𝑡 ∈ ℝ. 

Furthermore, for 𝜑 ∈ 𝐷(𝑃(𝑘)), we have: 

𝑈𝑡𝑃(𝑘)𝑈−𝑡𝜑(𝑥) = 𝑈𝑡(−Δ + 𝑥. 𝑘)𝜑(𝑥 + 𝑡𝑘) = 𝑈𝑡(−Δ𝜑)(𝑥 + 𝑡𝑘) + 𝑈𝑡((𝑥. 𝑘)𝜑(𝑥 + 𝑡𝑘)) =

(−Δ𝜑)(𝑥) + ((𝑥 − 𝑡𝑘). 𝑘)𝜑(𝑥) =  𝑃(𝑘)𝜑(𝑥) − 𝑡|𝑘|2𝜑(𝑥), 𝑡 ∈ ℝ, where |𝑘|2 = 𝑘1
2 +⋯ + 𝑘𝑛

2 if 

𝑘 = (𝑘1, . . . , 𝑘𝑛). So, 𝑈𝑡𝑃(𝑘)𝑈−𝑡 = 𝑃(𝑘) − 𝑡|𝑘|
2, for all 𝑡 ∈ ℝ. Let’s take =

𝜆−𝜂

|𝑘|2
, then:  𝜂 =

𝜆 − 𝑡|𝑘|2 ∈ 𝜎(𝑃(𝑘)) − 𝑡|𝑘|2 = 𝜎(𝑃(𝑘) − 𝑡|𝑘|2) = 𝜎(𝑈𝑡𝑃(𝑘)𝑈−𝑡) = 𝜎(𝑃(𝑘)), thanks to 

spectral mapping theorem. We deduce that 𝜎(𝑃(𝑘)) = ℝ. 

Now, if we assume that 𝜆 is an eigenvalue of 𝑃(𝑘) with eigenvector 𝜑 ∈ 𝐷(𝑃(𝑘)), 𝜑 ≠

0, then 𝑃(𝑘)𝑈−𝑡𝜑(𝑥) = 𝑃(𝑘)𝜑(𝑥 + 𝑡𝑘) = 𝜆𝜑(𝑥 + 𝑡𝑘) = 𝜆𝑈−𝑡𝜑(𝑥), and for all 𝑡 ∈

ℝ, 𝑈𝑡𝑃(𝑘)𝑈−𝑡𝜑(𝑥) = (𝑃(𝑘) − 𝑡|𝑘|
2)𝜑(𝑥) = 𝜆𝜑(𝑥), so, 𝑃(𝑘)𝜑(𝑥) = (𝜆 + 𝑡|𝑘|2)𝜑(𝑥). 

We find that 𝜆 + 𝑡|𝑘|2 is also an eigenvalue of 𝑃(𝑘) for any 𝑘 ∈ ℝ𝑛 ∖ {0}. This yields 

an over-countable orthonormal system of 𝐿2(ℝ𝑛) which contradicts the fact that 𝐿2(ℝ𝑛) is 

separable. Therefore, 𝜎(𝑃(𝑘)) = 𝜎𝑒𝑠𝑠(𝑃(𝑘)) = ℝ. 

 

4. RESONANCES OFSCHRÖDINGER OPERATORS 

Recently, substantial progress has been given in the analysis of the Schrödinger operator with 

perturbations going to 0 or ∞ as |𝑥| → ∞, or with periodic perturbations, and the works concern 

the calculation of spectra or resonances of these operators. We now examine the resonances of 

multi-dimensional Schrödinger operators and we apply our results to those created by the 

Schrödinger operator for the hydrogen atom. 

4.1. General Framework 

We have studied the discrete and essential spectrum of a self-adjoint operator 𝑃 = −∆ + 𝑉 on 

𝐿2(ℝ𝑛), according to different behavior of 𝑉. The quantum resonances of 𝑃 appear as the poles 

of a meromorphic continuation of the resolvent of 𝑃, they also constitute the discrete spectrum 

of a spectral deformation family 𝑃𝜇 of 𝑃. In this section, we just recall the basic definitions and 

results and we sketch briefly the mathematical theory of resonances and apply it to the analysis 
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of the important physical phenomenon of hydrogen atom (Aguilar and Combes, 1971; Balslev 

and Combes, 1971; Messirdi, 1994). Let 𝑈𝜇, 𝜇 ∈ ℝ, be the one-parameter group of dilatations: 

(𝑈𝜇𝜑)(𝑥) = 𝑒
𝑛𝜇 2⁄ 𝜑(𝑒𝜇𝑥), 𝜑 ∈ 𝐿2(ℝ𝑛). 

It is easy to check that {𝑈𝜇 ∶  𝜇 ∈ ℝ} forms a one-parameter unitary group and that 

𝑈𝜇(𝐷(−∆)) = 𝐻
2(ℝ𝑛) for all 𝜇 ∈ ℝ. Thus, 𝑈𝜇(−Δ)𝑈𝜇

−1 = −𝑒−2𝜇Δ is well defined for real 𝜇, 

and can be analytically continued into regions of complex 𝜇. Note that if Im𝜇 > 0, the spectrum 

of 𝑈𝜇(−Δ)𝑈𝜇
−1 is 𝑒−2Im𝜇[0 + ∞[, which is the positive half-axis rotated from the origin in the 

complex plane by an angle equal to (−2Imμ). On the other hand, 

𝑃𝜇 = 𝑈𝜇𝑃𝑈𝜇
−1 = −𝑒−2𝜇∆ + 𝑉(𝑒𝜇𝑥). 

So, we want to consider a class of analytically continued potentials 𝑉 on a complex strip 

such that the same is true for the essential spectrum. Assume that 𝑉 is real and the family 𝜇 →

𝑉(𝑥𝑒𝜇) has an analytic continuation into a complex disk {|𝜇| < 휀} as operators from the 

Sobolev space 𝐻2(ℝ𝑛) to 𝐿2(ℝ𝑛), 𝑉 is called a dilation analytic potential. Thus, (𝑃𝜇)𝜇 is, in 

this case, a family of non-self-adjoint analytic operators where 𝜇 runs in the disk {|𝜇| < 휀}. 

Assume also that 𝑉(−∆ + 𝐼)−1 is compact operator, then by Weyl Theorem: 

𝜎𝑒𝑠𝑠(𝑃𝜇) = 𝑒
−2𝜇𝜎𝑒𝑠𝑠(−∆ + 𝑒

2𝜇𝑉(𝑒𝜇𝑥)) = 𝑒−2𝜇𝜎𝑒𝑠𝑠(−∆) = 𝑒
−2𝜇[0, +∞[. 

As an example of the above considerations we have the potential 𝑉(𝑥) =
−𝛾

|𝑥|
, 𝛾 > 0, of 

the hydrogen atom Hamiltonian 𝑃ℎ = −∆ −
𝛾

|𝑥|
. A complex number 𝜆 is a resonance of 𝑃 if 

Re𝜆 > 𝑖𝑛𝑓𝜎𝑒𝑠𝑠(𝑃) and if there exists 𝜇 small enough, |𝜇| < 휀, such that 𝜆 ∈ 𝜎𝑑𝑖𝑠𝑐(𝑃𝜇). It is 

well known that the resolvent operator (𝑃 − 𝑧)−1, 𝑧 ∈ ℂ ∖ ℝ, is a meromorphic function and 

its poles are precisely the resonances of 𝑃 (Messirdi et al., 2018). Furthermore, the complex 

poles of (𝑃 − 𝑧)−1 coincide with the complex poles of the scattering matrix of the system which 

are interpreted as resonances (Belmouhoub and Messirdi, 2017). 

4.1. Example: The method of complex scaling allows to compute the complex poles or 

resonances of hydrogen atom Hamiltonian 𝑃ℎ = −∆ −
𝛾

|𝑥|
, 𝛾 > 0. 

𝑃ℎ,𝜇 = 𝑈𝜇𝑃ℎ𝑈𝜇
−1 = −𝑒−2𝜇∆ − 𝑒−𝜇

𝛾

|𝑥|
, 𝜇 ∈ ℝ. 

Let 𝑒ℎ,𝑙  = −
1

4𝑙2
, 𝑙 ∈ ℕ∗, be the eigenvalues of the hydrogen atom. Then the spectrum 

of 𝑃ℎ,𝜇 is:    𝜎𝑒𝑠𝑠(𝑃ℎ,𝜇) = 𝜎𝑒𝑠𝑠(−𝑒
−2𝜇∆ − 𝑒−𝜇

𝛾

|𝑥|
) = 𝜎𝑒𝑠𝑠(−𝑒

−2𝜇∆) = 𝑒−2Im𝜇[0,+∞[, 

𝜎(𝑃ℎ,𝜇) = {−
1

4𝑙2
∶  𝑙 ∈ ℕ∗} ∪ 𝑒−2Im𝜇[0,+∞[. 
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The real eigenvalues of 𝑃ℎ,𝜇 coincide with eigenvalues of 𝑃ℎ, complex eigenvalues 

(resonances) of 𝑃ℎ,𝜇 lie in the complex half-plane {Im𝑧 < 0 ∶  𝑧 ∈ ℂ} and are locally 

independent of 𝜇 (see Messirdi et al., 2018). 

4.2. Resonances for Periodic Schrödinger Operators 

We review some results about the resonances for a periodic Schrödinger operator 𝑃 = −∆ + 𝑉 

on 𝐿2(ℝ𝑛). If 𝑉 is a real multiplicative potential and periodic with respect to some lattice Γ in 

ℝ𝑛, it was stated in the previous section that the spectrum of 𝑃 consists of bands, these bands 

consist of purely continuous spectrum. In a neighborhood of such a band, the resonances of 𝑃 

are defined and studied by analytic extension of the resolvent (𝑃 − 𝑧)−1. It has been shown by 

Gérard (1990) that (𝑃 − 𝑧)−1 extends across the spectrum of 𝑃 to the complementary of a 

discrete set of points, called Van Hove singularities in solid state physics. The existence of such 

an extension is interesting in the solid state physics to introduce the resonances of the studied 

system, nevertheless it is mathematically quite difficult to realize. In particular, the singularities 

of (𝑃 − 𝑧)−1 are different when we consider the local extension of (𝑃 − 𝑧)−1 in a small 

neighborhood of an energy level 𝑧0 ∈ 𝜎(𝑃), and when we consider the global extension of (𝑃 −

𝑧)−1 to a bounded open set 𝑈 in ℂ. We will assume that 𝑉 is ∆-bounded with relative bound 

strictly less than 1, so that 𝑃 is self-adjoint with domain 𝐻2(ℝ𝑛). Using the same notations of 

the section 3.4, 𝐻 = 𝐿2(Ω∗, 𝑑𝜃; 𝐿2(Ω)) = ∫ 𝐻𝜃
⊕

Ω∗
𝑑𝜃, and ∫ 𝑃𝜃

⊕

Ω∗
𝑑𝜃, where 𝑃𝜃 is the restriction 

of 𝑃 to 𝐻𝜃 = 𝐿
2(Ω).  (𝑃 − 𝑧)−1 is given by  (𝑃 − 𝑧)−1𝜑 = (2𝜋)−𝑛 2⁄ ∫

𝑀(𝜃,𝑧)

𝑓(𝜃,𝑧)

⊕

Ω∗
𝑑𝜃 where 

𝑓(𝜃, 𝑧) and 𝑀(𝜃, 𝑧) are holomorphic for 𝜃 ∈ 𝑊 a bounded set in ℂ𝑛 such that Ω
∗ ⊂ 𝑊, and 

𝑧 ∈ ℂ, as bounded operators on 𝐿2(Ω). 

Furthermore, 𝑓(𝜃 + 𝛾∗, 𝑧) = 𝑓(𝜃, 𝑧) and 𝑀(𝜃 + 𝛾∗, 𝑧) = 𝑀(𝜃, 𝑧) for all 𝛾∗ ∈ Γ, 𝜃 ∈

𝑊 and 𝑧 ∈ ℂ. Now to extend (𝑃 − 𝑧)−1 as a meromorphic function is a well-known problem 

in complex analysis (Bros and Pesenti, 1983). The poles of this extension (Van Hove 

singularities) are effectively the resonances of the operator 𝑃. 

 

5. CONCLUSIONS 

The main object of this paper is to study the spectrum of several classes of Schrödinger 

operators and to look at some important examples occurring in mathematical physics (e.g. the 

harmonic oscillator, the Stark effect, and the hydrogen atom). We also examine the resonances 

of multi-dimensional Schrödinger operators and we apply our results to periodic potentials and 
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hydrogen atom. In the proofs of our main results we make use some algebraic and spectral 

considerations. 
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