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ABSTRACT

The Levenberg-Marquardt algorithm has become a popular method in nonlinear curve fitting
works. In this paper, following the steps of Levenberg-Marquardt algorithm, we extend the
framework of the algorithm to two and three dimensional real and complex functions. This work
briefly describes the mathematics behind the algorithm, and also elaborates how to implement it
using FORTRAN 95 programming language. The advantage of this algorithm, when it is
extended to surfaces and complex functions, is that it makes researchers to have a better trust
during fitting. It also improves the generalization and predictive performance of 2D and 3D real
and complex functions.

Keywords: Levenberg-Marquardt algorithm, Nonlinear curve fitting and Least square fitting
technique.

1. INTRODUCTION

Levenberg-Marquardt (LM) algorithm is an iterative technique (Levenberg, 1944; Kelley, 1999;
Avriel, 2003; Marquardt, 1963; Bates & Watts, 1988; Box, et al., 1969; and Gill, et al., 1981)
which helps in locating the discrepancy between a given model and the corresponding data. Such
functions are usually expressible as sum of squares of nonlinear functions. The LM algorithm
has become a standard technique for nonlinear least-square problems (Lourakis, 2005; Lampton,
1997; Arumugam, 2003; Coope, 1993; and Madsen, et al., 2004) and can be thought of as a
combination of steepest descent and the Gauss-Newton methods. The paper is presented as
follows: In section one, we present a brief introduction about the LM algorithm. In section two
we discuss about the least square fitting technique. Section three elaborates Vanilla Gradient
descent method. In the fourth section we present Newton’s method. A more detailed discussion
of LG algorithm is presented in section five. Section six discusses about the implementation of

the LM algorithm. In the last section we present a brief summary of the paper.
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1.1. Least-Square’ Fitting Technique

Suppose we have a set of N experimental data points{X;, Y, -+, f;, o, }, where i =1,..., N for
which we need to make a fitting. Here X, = (Xi, yi,...) are the data coordinates, f, is the data
value and o, [is the data error bar. Next we take a model which can estimate the values of f as

a function of X, E(Xi,yi,...) and a set of internal variable parametersP E(pl,pz,..., pM):

f(X,P).
Let us construct the chi-square function:
2
3 fi - f (X i P) S
ZZ(P)EZ( j = r’(P) (1)
i=1 O i=1
where i c)= o is called residue function. The goal of the least square

i
method is to determine the parameters P of the regression function f(X ,P) so as to minimize

the squared deviations between f, and f(X,,P) for all data points: i =1---N . If we assume

that all measured values of f, are normally distributed with standard deviations given

by o, then ‘statistically-the-best’ match would correspond to the minimal value of 5 2 . Thus,

the suitable model is essentially the one which gives the minimum value of the chi-square with
respect to the parameters. That is why the method itself is called the ‘least-square’ technique. Of
course, the error bars are determined not only by a statistical noise, but also by systematic
inaccuracies, which are very difficult to estimate and are not normally distributed. However, to

move on, we assume that they are some how accounted for by the valueso,. Other approaches

that are useful in determining the best-fit parameters for non-linear functions f(X,P) by
minimizing y? iteratively include Newton’s method and Gradient descent method.

1.2. Vanilla Gradient Descent Method
The Gradient descent method is simply an instinctive moving in the ‘steepest descent’ direction,

which is apparently determined by the minus-gradient:

Loy’ (P) _ on(P) f—f(X.,c)af(

Bu= g Py sy et

xl’ c
2 apk i=1 apk =1 )
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or
(Bl [on(P) ar (P  ary (PO ][ ri (P ]
op, op, op,
ﬂz _ arl(Pc) 6r2(Pc) arM(I:)(:) rz(pc) (2)
IR op, . op,
- or (P ar,(P)  ar, (P) -
_ﬁM_ | opy 0P 0P | L wm (Pc)_

In compact form g = —%V;/ =[] r(P),

Where J is called Jacobian matrix of the residue I;( P, ) which is defined in Eqn. 1. The one-

half coefficient is put to simplify the formulas. To improve the fit, we can shift the parameters

Pee = Pic 5Pk, where o, = constant x S,

P, B

+ i ®

=cons tan t x
P B

The steepest descent strategy is justified, when one is far from the minimum, but suffers from

slow convergence in the plateau close to the minimum, especially in the multi-parameter space.

Logically we would like large steps down the gradient at locations where the gradient (slope) is

small (near the plateau) and small steps when the gradient is large not to rattle out of the

minimum. Moreover, it has no information about the scale or the value of the constant and one
can see that &, =constant x £, has a problem with the unit dimensions.

1.3. Newton’s Method

Newton's method is an algorithm used for finding roots of equations in one or more dimensions.

Let us expand V y?(P) wusing a Taylor’s series around the current points,

Pc = (plc’ p2c9"' pMc ),Weget
Vy*(P)=Vy*(P)+[sP] -V ?y%(P,) + higher order terms 4)

Mekelle University 97 ISSN: 2073-073X


http://en.wikipedia.org/wiki/Newton%27s_method
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Root_(mathematics)
http://en.wikipedia.org/wiki/Equation
http://en.wikipedia.org/wiki/Dimension

Daniel & Alem (MEJS) Volume 1 (1): 95 -112, 2009

oy Qo ot Oy o)
EAGIEIEA NCAL AL L P | igher
ap1 apz apM ’ : ’ '
Ay Ayy 0 Oy | [Py
order terms,
T
where 0P = Py — Py, OP =[5p1> My, v, Oy ] and
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op,0p, 0p,0p, 0p10Pwm
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82‘;(2 82‘;(2 52'}(2
L OPm 0P, 0Py 0P, opyOPm |
Note that 22°(P) s the gradient vector of y * with respect to p, evaluated at P, and
opy
_ 13777 (P) | | .
Xy = is the second order gradient vector of y * (is called Hessian
2 ap xapl

matrix) evaluated at P _ .
Near the current points P,, we can approximate the value of y >(P) up to the second order, as

Vy (P)=Vx (P)+[6PT -viy2(P,).

Assuming the chi-square function is quadratic around P, and solving for the minimum values of

the parameters P by settingVy*(P) =0, we get the update rule (the next iteration point) for

Newton’s methods:
M

[a][&P]T =—V}(2(PC)<:>IZ:05k|5p| = B %)
=1

[PT = -[a]'Vz*(P) = P=P -[a]'VZ*(P). ©)
The chi function (which is quadratic) to be minimized has almost parabolic shape. The Hessian

matrix, which is proportional to the curvature of y * , is given by
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af(xn c) af(xw c) [__ f(X P)]azf(xu c)
op, op, | Tt apeop,

(7
(the one-half here is also added for the sake of simplicity). The components «,, of the Hessian

matrix in Eqn. (7) depends both on the first derivative, of (X ;,P.) , and second derivative,
op

0 f (X i.P.) , of the basic function with respect to their parameters. The Second derivative can
op,op,

be ignored when it is zero, or small enough to be negligible when compared to the term
involving the first derivative. In practice, this is quite often small enough to neglect. If one looks
at Eqn. (7) carefully, the second derivative is multiplied by [ f.— f(X;,P, )] For the successful
model, this term should just be the random measurement error of each point. This error can have
either sign, and should in general be uncorrelated with the model. Therefore, the second
derivative terms tend to cancel out when summed over time I . Inclusion of second derivative
term can in fact be destabilizing if the model fits badly or is contaminated by outlier points that

are unlikely to be offset by compensating points of opposite sign. So, instead of Eqn. (7) we shall

define the a-matrix simply as: , - ZN: L of(X;,R) f (Xi,R) which is equivalent to

2

i-1 O; opy op,
(& 1 af (X,,P) af (X,,P) & 1 af(X,,P) af (X,,P.) NCoaf (X, P) of (X, P ]
gcff op, op, gcff op, ap, 217 ap, Py
Z[J]TJZ N oof(X,,P) of (X,P) & 1 af(X,,P.) af(X,,P,) N1 oof(X,,P,) of (X,,P.) |-
; O'i2 5p2 op, ; O-i2 apz op, ; 0'7 op, . Py
ZN: of (X, P)af(x P) ZN: 1 8f(X,,P,) of (X,,P.) ii 8t (X,,P,) of (X,,P.)
| i= Opy op, i=1 Uiz Opy op, i=1 O Py Py J

®)
After computing, numerically or analytically, the gradient and Hessian matrices for the current

set of parameters, one can immediately move to the minimum by shifting the parameters

P, = P + P, where the displacement vector o, is determined from the linear system

derived in Eqn. (5), i.e.,
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)

One of the problems associated with Newton’s method (Levenberg, 1944; Kelley, 1999; Madsen,
et al., 2004; and Lawson & R.J. Hanson, 1974) is its divergence after successive iterations. At

the instant when 42 (p, + sP) diverges we would like to retreat to its previous value , > (p ) and

then decrease the steps, oP and try again.

___A_xz(pl,p )

'Steepest Descent'
is efficient far
from the minimum

is efficient near
the minimum

Figure 1. Graph of the chi function: The chi-square () function versus two arbitrary
experimental parameters P, and P,.

1.4. The Levenberg-Marquardt Algorithm

In order for the chi-square function to converge to a minimum rapidly, one needs a large step in
the direction along with the low curvature (near the minimum) and a small step in the direction
with the high curvature (i.e. a steep incline). The gradient descent and Gauss-Newton iterations
provide additional advantages. The LM algorithm is based on the self-adjustable balance
between the two minimizing strategies: the Vanilla Gradient Descent and the Inverse Hessian

methods.
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Coming back to the steepest descent technique y* is dimensionless but £, has the same

dimension as _! __, as indicated in Eqn. (3). The constant of proportionality between S, and

P«

Jp , must therefore have the dimension of p? . For instance, if the parameter Py is measured

. : . -1 . . -2
inkg , then ¢ has obviously the units of kg so the constant must have a dimension of kg .
Therefore the unit cannot be the same for all parameters since they are generally measured in

different units ( P; in Seconds, P, in Meter... p, in Ampere). Marquadt surmised that the

M
components of the Hessian matrix must hold at least some information about the order-of—

magnitude scale and dimension. Among the components of « -matrix the reciprocal of the

. -1 . . .
diagonal elements &y  have these dimensions. Hence he suggested that this must set the scale

of the constant. To avoid the scale becoming too large, it is divided by a dimensionless positive

damping term, A (being positive ensures that é‘pk is a descent direction). Eqn. (3) is then

replaced by
_5p1_ _al_ll 0 0 W_ﬂl_
sp, | 1|0 al 0 || A,
2 B oo : (10)
K2 0 0 - a_ |[Bu]
In more compact form, sp, = _r B .
Ao

In order to combine Eqns. (9) and (10), Marquardt defined a diagonally-enhanced new & '

matrix: & |:| = ay (1 + oyl ), where the value of the Kronicker delta function is given by

0 f k I
Oy = { or ” | such that

1 for k =
Cal,  al, - aly | [a,0+2) a a |
11 12 1M 11 12 1M
[ [ ’
a, asy o Oy Ay, 0{22(1+/1) 223
a, a, Ay o a ooy 1+ )
L M1 M 2 MM ] L M1 M2 MM o
(1)
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where 4 is a dimensionless constant, and « ,, is replaced with « |, in Eqn. (5) which yields

M
Z ayop, = By or
=1

I 5p1 | all(l"'/?’) a, Ay a 'Bl |
op a a(1+1) - a B
:2 = :21 22(: ) . 2:M :2 (12)
KUY 20 2V aMM(l—i_l) | B

For very small value of 1, the displacement vector OPy , obtained from Eqn. (12) is close to the

one, obtained by the pure Inverse Hessian technique, Eqn. (9), which is a good step in the final

stages of the iteration, near the minima. If y*> =0 (or very small), then we can get (almost)

: : . : ro. :
quadratic final convergence. However, if 1 is very large, then the matrix & |, is forced in to

being diagonally dominant, so Eqn. (12) goes over to be identical to Eqn. (10), this is good if the
current iterate is far from the solution. It means that, by increasing the parameter 4 we approach
the ‘steepest descent’ limit (i.e. a short step in the steepest descent direction). Thus, the damping
term A influences both the direction and the size of the step, and this leads us to make a method
without a specific line search. To reduce the computational errors (especially near the minimum

point), it is recommended to find the derivatives of the model function z*(X,P) analytically.

Let’s first prepare the LM algorithm, with flow chart. The minimization process is iterative. One
starts with a reasonably small value of 4 . At every successful iteration: (}( éew <y Czur ), it is

reduced by a factor of 10, moving towards the ‘inverse Hessian’ regime. Otherwise it retreats to
the ‘steepest descent’ regime by being increased by a factor of 10. The stop criteria are necessary
to avoid an endless iteration cycle. When one or more combination of the following stopping
criteria are satisfied, then the fitting process stops:

1. When the total number of iterations entered by the user attains.

ii. When the minimum value of »*(P,) to exit iteration attains.

iii. When the absolute shift of the chi square,

72 (P, +5P)—7(2(Pc)| below some a certain

threshold or decreases by negligible amount. The program can also be set to ‘PAUSE’ when

7 2(P, + 6P) astart to diverge then continues after press enter key.
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Read ¢.-N. M. X, .. f _..Iter min

Guess initial parameters P

!

Take an appropriate small
value of A
(e.g. 1=00012)
v

Compute 7~ () I‘

Is
stopping criteria

satisfied 2 No

Compute
Gradient, 8, (Eq.2) and
Hessian, < (Eq. 6)

-

Solve Equation 12 to get

OoFP and calculate
Modify parameters 2P+ SP)
P —r+ar 1104
A
A—>0.14 . : Is .-
t Yes 22 (P.+8P) < x(P.) No
2
A A °
Print

P, f(X, y.P), x> (P), Iter

Figure 2. The LM Algorithm with a flow chart.

The update rule is used as follows. If the error goes down following an update, it implies that our

quadratic assumption on 4> is working and reduce A (usually by a factor of 10) to reduce the

influence of gradient descent. On the other hand, if the error goes up, we would like to follow the

gradient more and so 4 is increased by the same factor. If the initial guess is good but y * does

not fall down to the required minimum value, we have to change the initial value of A slightly.
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In this paper Gauss’s elimination and Gauss’s Jordan matrix inversion methods are used to

determine the shift parameters. Among the several tests made on real and complex non linear

functions, only three examples are illustrated to see how much this method is effective and faster

than the other methods.

2.1. Test on real three dimensional wave function

The first test is applied to two dimensional data coordinate (Xi,yi)

wherel =1-210,e.g,at i=7 (x, =-7,y, =—1,f, =6.452).

Table 1. Experimental data for irregularly shaped surface.

and data value

X -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

Yi - ) ) -

-7 -1.029 6.743 133 15.99 14.91 12.72 19.56 | 33.59 | 14.18 | 3.027 291 | 2546 | 2389 | -8.428
-6 -7.211 0.544 6.464 7.324 2.644 -6.841 -20.33 | 4.615 | 5203 | 10.67 | 13.85 | 11.29 | 4.334 | -3.384
-5 -9.661 -5.837 -3.782 -5.371 -10.97 -22.67 -49.52 | 4049 | 21.73 | 18.62 | 17.54 | 13.99 8.64 3.572
-4 -7.136 -8.94 -11.96 -15.41 -18.64 -26.28 -52.52 | 5498 | 26.54 | 16.56 | 12.09 | 9.181 | 8.176 8.796
-3 -1.112 -6.983 -13.68 -17.6 -16.22 -15.65 -27.89 | 40.53 | 1697 | 5.508 | 0.567 | 0.605 | 3.058 9.637
-2 4.853 -0.665 -7.916 -11.2 -4.794 3.837 10.87 | 5.224 | 2.158 | 8.837 | 10.48 | 10.26 -4.33 5.997
-1 6.452 7.76 2.596 -0.96 10.17 22.71 41.83 | 30.86 | 21.57 | 19.46 | 13.81 1499 | 11.16 0.942
0 1.905 14.72 12.53 6.545 21.22 31.66 4746 | 4746 | 31.66 | 21.22 | 6.545 12.53 | 14.72 | -1.905
1 -0.942 11.16 14.99 13.81 19.46 21.57 30.86 | 41.83 | 22.71 10.17 0.96 | 2.596 -7.76 | -6.452
2 -5.997 4.33 10.26 10.48 8.837 2.158 -5.224 | 10.87 | 3.837 | 4.794 11.2 | 7916 | 0.665 | -4.853
3 -9.637 -3.058 0.605 -0.567 -5.508 -16.97 -40.53 | 27.89 | 15.65 | 16.22 17.6 | 13.68 | 6.983 1.112
4 -8.796 -8.176 -9.181 -12.09 -16.56 -26.54 -54.98 | 52.52 | 2628 | 18.64 | 15.41 11.96 8.94 7.136
5 -3.572 -8.64 -13.99 -17.54 -18.62 -21.73 -40.49 | 49.52 | 22.67 | 1097 | 5371 | 3.782 | 5.837 9.661
6 3.384 -4.334 -11.29 -13.85 -10.67 -5.203 -4.615 | 2033 | 6.841 | 2.644 | 7324 | 6.464 | 0.544 7.211
7 8.428 2.389 -2.546 -2.91 3.027 14.18 3359 | 19.56 | 12.72 | 14.91 15.99 -13.3 | 6.743 1.029
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Unfitted graph for the computed

EDi

Figure 3 (a). Graphs of experimental values f; (blue) and numerical or computed values

f (X, P,) (yellow) before iteration.

Fitted graph for the computed

; values after iteration
6

Figure 3 (b). Graphs of experimental values f; (blue) and numerical or computed values

f (X, P,) (yellow) after iteration
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From the above results (Table.1), one can easily see that the data (surface) follows the wave

function having the form

' X .
f(xa P) = f(X, Y, Pis Py, pS) =p S(lng Ps ) - P, COS(y) - P Sln(y)COS(X) .
y +1) X

We have then made a fitting, using the LM approach, in order to find the values of the
parameters (p;, p,, p;) that best fit f(X;,P) with f; (see Fig. 3 (a) and (b)).

In this case the dimension is = 2 and the numbers of parameters are M =3 . After initializing
(pi» P2, p;) the values found from the iteration are y* =0.0, p,=7.0, p,=11.0 and py =54.0.

sin(11x)

The function now have the from f(X,y) =7 ( . 1) 54 cos(y)
y©+

—11sin(y)cos(X) .

As one can see from the above results, the LM model is highly useful when it is implemented to
complicated-shaped surfaces. What is also important here is here that selecting an appropriate
type of function (such as sine, power, decay, etc functions) and lambda. The shift parameters are
not that much changed by normalized random errors only minimum of chi-function increases.
Hence, based on the above two figures (Figs. 3 (a) and (b)), one can conclude that new
equations/relations and modifications to the already existing formulas can be obtained from
experimental data having disturbed/complicated surfaces.

2.2. Test made on complex two dimensional function

: : r o
In ellipsometery the complex ratio p = —E = tan ¥ e !* is measured, commonly

T
expressed in terms of the two real parameters ¥ and A i.e. p = tanWe'*. The inversion of this

formula to get suitable value of real and imaginary part of the refractive index is some what
difficult to do analytically, and even numerically inversion of complex functions using LM
algorithm is not yet well developed.

Let us consider an oblique reflection and transmission of optical plane wave at the planner

interface between two semi-infinite homogeneous optically isotropic media air and glass with

complex index of refraction 1 =N, + JK'. The ratio of the complex reflection coefficient, p, is

related to the angle of incident by

2
[sin >0 — cos 6?0\/(nr + jk )* - sin 29}

sin 28 —(n, + jk ) cos @

p = tan Pel* =
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The algorithm has been tested on an actual data taken in a PSA-ellipsometry on acrylic glass
sample for a wave length of light 450nm. After successive iterations the following results has

been recorded.

Table 2. Experimental data and computed values of pand n.

Values found from the successive iterations

Data Experimental
it coordinate | data values Computed values Actual error
measuremert | (6 /deg) It = 2 f(Xi,R) = p(,n) P, —p(6.n)
-0.11726- -1.1721756E-01- -4.2445958E-05-
1 52+j0 §0.00134 i1.3177083E-03 2.2291672E-05
-0.06301- -6.2998131E-02- -1.1868775E-
2 54+j0 j0.00135 j1.3587392E-03 05+18.7391818E-06
-0.03577- -3.5782781E-02- 1.2781471E-
3 55+j0 j0.00135 j1.3766416E-03 05+j2.6641530E-05
-0.00847- -8.5111084E-03- 4.1108578E-05-
4 56+i0 j0.00143 i1.3926749E-03 13.732508 1E-05
N=4
q=1, m=1, CHI= 1.1195837E -09 -j7.0279005E -10
Witialization Pie =N=3+03 ABS(CHI) = 1.32188E -9
n = 150009620 + j2.90234271E -3

The real and imaginary part of the refractive index of the glass found from the iteration is
n. = 1.500096Z and k =0.00290234 271 respectively. The fitted values of the reflection

coefficient have up to 5 decimal precision (one can also get high precision by selecting
appropriate lambda till the errors arise only form the experiment imperfection and machine error.

The interesting thing doing with complex function is, we only solve the derivative of p (6, n)

with respect to 1 ie. w to find n, and k (not w and 2(¢.") ) . During
n dk

]
interpolation and extrapolation, unlike the Aitkens and Lagrange interpolations, graphs

interpolated using LM model follow the right path (with little regression).
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Extrapolated graph for the complex function p(é,n)

(where n=1.5000962+j0.00290234271)

* indicates experimental value

—~ 047 .
S * 5.5 -0.0010
Q 0.3+ . 'S
Y T Pl
o) I ° -
= 02F “ -
< Y N ~ +-0.0011
() I o
X .1 ? -
0.1__ ° ./- E N
I e e o
T = > +-0.0012
0.07 * =
I .\ /* g
T LS w S
0.1F ° %" @
T e & £ +-0.0013
0.2t " ;\.
I u .
03T " .. vl
I - %o o -0.0014
I " * %o o®
-0.4T L ®0000°
O05+—T——T——T——T—— . . -0.0015
40 45 50 55 60 65 70

Angle of incident 6/deg

Figure 4. Extrapolated graph for the complex function © (‘99 n) with * and = representing

experimental and numerical values respectively.

2.3. Test on complex two dimensional power function

The third test was made on complex three dimensional power functions (their derivatives are

logarithmic functions). Consider the following experimental data:

Table 3. Experimental data on 2D power functions.

I X Yi fi

1 6+j2 -1-56 151.1271 ]41.47818
2 5+18 29+ 0 -318.893 1710.7169
3 -3+-50.5 -7+ 1 34.97808 1 96.72046
4 447 2 0+5 61.8854 -]24.1816
5 -5+ 5 -99-53 260.2891 j413.5324
6 -6-j1 -4+ 1 14.13067 1120.9102

N =6
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The data is fitted with the function f (x,y, p,, p,, Py, P,) = X" + y® + pyxy + p,. For this
case the value of g =2 andM =4. During Initialization of the parameters

withy, - 2_-05j, p,=2+05j, p,=2+0jo.5 and p,=2+jo.5s (equivalent to

P. =2,2,2,-0.5,0.5,0.5,0.5), the appropriate value of A used near 0.001 is 0.0012.

Point
1 at x=6+2 y=-1-j6
at x=5+j8 y = 29+j0
at x=-3-0.5 y=-7T+j1

Imaginary of f / f(X,P) 2
3
4 at x=-4+j2 y=0+5
5
6

—— Experimental data
Computed data

at x- 545 y--09j3 rigure

x = -61

Number of lteration=1

at y =-4+j1

Real of f, / f(X.P)

5 (a). Graphs of the experimental and numerical data at different number of iterations.

Point
Imaginary of f / f(X,P 1@t x=6+2. y=-146
9 ry i ( ) 2 at x=5+8 y=29+j0
1600 Experimental data #ogh x f '3'}9'5 M f '7",'11
1500 i tad data 4 at x=-4+42 y=0+5
1400 ompuUtag dai 5 at x=-5+5 y=-9.9-3
1300 Number of lteration=3 6 at x=-61 y=-4+j1
1200 ’=.294736.3+j887763.6

Real of f / f(X,P)

Figure 5 (b). Graphs of the experimental and numerical data at different number of iterations.
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. Point
Imaginary of f / f(X,P) 1 at x=6+2 =16
2 at x=5+8 y=29+0

1500 + Experimental data 3at x=-3405 y=-7+1
1400 Computed data 4 at x=-4+2 y=0+5

Number of Iteration=5 5at x=-5+45 y=-9.93
1300 6 at x=-6-j1 y=-4+j1
1200

1100 X

’=34.63-j359.85

Real of f / f(X,P)

Figure 5 (c). Graphs of the experimental and numerical data at different number of iterations.

Point
i 1 at x=6+2 =-1-6
Imaginary of f / f(X,P) 2 at x=5+8 y=29+0
3 at x=-3§0.5 y=-T+1
:ggg + Experimental data 4 at x= .4»31'2 : = 0+j5
3206 Computed data 5at x=-5+5 y=-9.943
150 Number of Iteration=9 6 at x=-6-j1 y=-4+1
1200 +*=4.54747351E-12-j4.36557457E-11
1100 Values found from the iteration
1000 P, = 1.00000000 - j0.600000024
900 P, = 2.00000000 + j8.44851744E-09
800 P, =-5.00000678E-02 + j5.00000000
700 2 P, = -8.99999809 + j3.00000119

~100-dho -300 -200 -100 0 100 200 300

Real of f. / f(X,P)

Figure 5 (d). Graphs of the experimental and numerical data at different number of iterations.

The function becomes f(X,y, p;, Py, Ps. Py )= X" + y2 4+ (= 0.05+ j5)xy -9+ j3. From the Figs. 5

(a)-(d), we can see that the LM is not affected by the order of the data (ascending or descending).
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Based on the above results we can conclude that the LM algorithm is popular method and has the

following advantages

Q) The parameters converge rapidly around the minimum in multi dimensional surfaces with
complicated landscapes.

(i) Even though the initial guess is poor, LM fits partly/most of the parameters to make
fresh start.

(ili)  The convergence speed needed to reach the minimum, is not significantly influenced by
the number of parameters.

(iv)  The shift parameters are not that much changed by normalized random errors. Only the
minimum of the chi-function increases.

(V) Normalized random errors do not bring much change on the convergence speed, etc. Like
any other non-linear optimization techniques, the LM algorithm method in finding global
minimum is not guaranteed (this however can be secured by initializing parameters with

a better guess).

3. SUMMARY

We extended the framework of the LM algorithm to real and complex multi-dimensional
functions. The results show that LM is very efficient when Gradient Descent and Newton’s
methods separately failed to converge. In this paper we developed two programs (one for real
and the other for complex or imaginary values) that work for any number of parameters, any
number of dimensions and coordinate systems: Cartesian, Curvilinear etc. We believe that the
algorithm also provides a concert support when someone wants to make a check at the instant of
a fitting or when solving complex functions. Last but not least the LM method develops user’s

trust on the algorithm during fitting complicated surfaces and/or graphs.

4. ACKNOWLEDGEMENTS

We would like to acknowledge the moral support of all our staff members at the Department of
Physics and the material support of the same department, College of Natural and Computational
Sciences, Mekelle University. We are also grateful for the referees (internal and external) and the
editors of the Momona Ethiopian Journal of Science for their critical and constructive comments

and to the opportunity the Journal has given us to publish our paper in the first volume.

Mekelle University 111 ISSN: 2073-073X



Daniel & Alem (MEJS) Volume 1 (1): 95 -112, 2009

5. REFERENCES
Arumugam, M. 2003. EMPRR: A High-dimensional-Based Piecewise Regression Algorithm. pp.

4-16.
Avriel, M. 2003. Nonlinear Programming: Analysis and Methods. Dover Publishing. ISBN 0-
486-43227-0.

Bates, D. M.& Watts, D. G. 1988. Nonlinear Regression and Its Applications. Wiley, New York.

Box, M. J., Davies D. & Swann, W.H. 1969. Non-Linear optimisation Techniques. Oliver &
Boyd.

Coope, 1. D. 1993. Circle fitting by linear and nonlinear least squares. Journal of Optimization
Theory and Applications, 76 (2), Plenum Press, New York,.

Gill, P. R., Murray, W. & Wright, M. H. 1981. The Levenberg-Marquardt Method §4.7.3 in
Practical Optimization. Academic Press, London, pp. 136-137.

Kelley, C. T. 1999. Iterative Methods for Optimization, SIAM Frontiers in Applied Mathematics,
18, ISBN 0-89871-433-8.

Lampton, M. 1997. Damping-Undamping, Strategies for the Levenberg-Marquardt Nonlinear
Least-Squares Method. Computers in Physics Journal, 11(1): 110 —115.

Lawson, C.L. & Hanson, R.J. 1974. Solving Least Squares Problems. Prentice-Hall.

Levenberg, K. 1944. A Method for the Solution of Certain Non-Linear Problems in Least
Squares. The Quarterly of Applied Mathematics, 2: 164—168.

Lourakis, I. A. 2005. A Brief Description of the Levenberg-Marquardt Algorithm Implemented
by levmar, Institute of Computer Science Foundation for Research and Technology -
Hellas (FORTH), Vassilika Vouton.

Madsen, K., Nielsen, H.B. & Tingleff, O. 2004. Methods for Non-linear Least Squares Problems,
Informatics and Mathematical Modeling. 2" edition, Technical University of Denmark.

Marquardt, D. 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters.
SIAM Journal on Applied Mathematics, 11: 431-441.

Mekelle University 112 ISSN: 2073-073X



