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ABSTRACT 

In this paper a new class of arithmetic Cayley graphs, namely, divisor Cayley graphs 

associated with the divisor function  d n , 1n  ,an integer is introduced. It is shown that this 

graph is regular, hamiltonian, connected and not bipartite, and when n  is odd it is eulerian. 

The enumeration of triangles in this graph is also presented  
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1.  INTRODUCTION 

Nathanson  1980  was the pioneer in introducing the concepts of Number Theory, 

particularly the theory of congruences in Graph Theory, thus paving the way for the 

emergence of a new class of graphs, namely, arithmetic graphs. An arithmetic graph is the 

graph whose vertex set V  is the set of first n  positive integers 1,2,3,...,n  and two vertices x

and y  are adjacent if and only if  modx y z n   where z S , a pre-assigned subset ofV . 

There is another class of graphs, called, Cayley graphs. A Cayley graphs is the graph whose 

vertex setV is the set of elements of a finite group  ,.X  and two vertices x  and y  of X  are 

adjacent if and only if 1x y or 1y x  is in some symmetric subset S  of X  ( a subset  S  of a 

group  ,.X  is called symmetric subset of X  if 1s  is in S  for all s  in S ). This Cayley 

graph is denoted by  ,G X S  and it is S -regular and contains 2X S  edges.(see pp 

15,16,Madhavi, 2002).  If the group  ,.X   is the additive group  ,nZ   of integers 

0,1,2,..., 1n  modulo n  and the symmetric set S  is associated with some arithmetic 

function, then the Cayley graph may be treated as an arithmetic graph and such graphs are 

called arithmetic Cayley graphs. 

Dejter and Giudici (1995); Berrizabeitia and Giudici (1996) and others have studied the cycle 

structure of Cayley graphs associated with certain arithmetic functions. Madhavi and 

Maheswari (2009, 2010) studied the Hamilton cycles and triangles (the cycles  of longest and 
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shortest length)  of the arithmetic Cayley graphs associated with Euler totient function 

  , 1n n  , an integer and quadratic residues modulo a prime p . The cycle structure of these 

graphs has many applications in Engineering and Communication Networks.  Madhavi 

(2002) also studied the arithmetic Cayley graph associated with divisor function  d n , 1n  , 

an integer. This paper is devoted for the enumeration of triangles in these graphs. In this 

study we have followed Bondy and Murty (1979) for graph theory and Apostol (1989) for 

number theory terminology and notations not explained here. 

 

2. DIVISOR CAYLEY GRAPH AND ITS PROPERTIES  

In this section we introduce the notion of the divisor Cayley graph associated with the divisor 

function  d n , 1n  ,an integer (Apostol, 1989) and briefly outline its basic properties that are 

given in Madhavi (2002).                                                               

2.1. Definition 

 Let  1n   be an integer and let S  be the set of divisors of n . The set * { , : }S s n s s S   is 

a symmetric subset of the additive abelian group  ,nZ  of integers modulo n . The Cayley  

graph of  ,nZ  associated with the above symmetric subset *S is called the divisor Cayley 

graph and it is denoted by  *,nG Z S . That is, the graph  *,nG Z S  is the graph whose 

vertex set is {0,1,2,..., 1}V n   and the edge set  E  is the set of all ordered pairs of vertices 

,a b  such that either * *, ,a b S or b a S    . 

2.2. Example 

 The divisor Cayley graphs  *

6 ,G Z S and  *

9 ,G Z S are given below.
 

 

 *

6 ,G Z S  *

9 ,G Z S
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For  *

9 ,G Z S ,  1,3S  ,  * 1,3,8,6S  . There is an edge between 0  and 1; 0  and 3 ; 0  and 

6 ; 0  and 8 since 1 0 1  ,3 0 3  , 6 0 6  ,8 0 8   are elements in *S . Similarly there is 

an edge between 1 and 2 ; 1 and 4 ;1 and 7 ; 2 and 3 ; 2 and 5 ; 2 and8 ;3 and 4 ; 3  and 6 ; 4  

and 5 ; 4  and 7 ; 5  and 6 ; 5  and 8 ; 6  and 7 ; 7 and 8 . But there is no edge between 0  and 

4 ; 0  and 5 ; 0  and 7 since 4 0 4  ,5 0 5   and 7 0 7   are not in *S . Similarly there is 

no edge between 1and 5 ; 1and 6 ; 1and 8 ; 2 and 4 ; 2 and 6 ; 2 and 7 ;3 and 5  ; 3 and 7  ; 3

and 8 ; 4 and 6 ; 4 and 8 ; 5 and 7  ; 6 and 8 .        
 

In a similar way the graph  *

6 ,G Z S  can be drawn.  

The following lemma is immediate since the graph  *,nG Z S is the Cayley graphofthe group 

 ,nZ   with respect to the symmetric set *S . This is useful in finding the basic properties of 

the divisor Cayley graph  *,nG Z S . 

2.3. Lemma  

The graph  *,nG Z S  is *S - regular and the number of edges in it is 2n S . 

2.4. Lemma   

(a) Degree of each vertex in  *,nG Z S  is odd if and only if n is even. 

(b) Degree of each vertex in  *,nG Z S  is even if and only if  n  is odd.  

(c)  *,nG Z S  is Eulearian if and only if n is odd. 

Proof:  Here * , :S d n d  d  is a divisor of n . Let us pair the elements of *S as  ,d n d ,

|d n . 

For some |d n , d n d  if and only if dn 2 , or , n is even. In this case *S contains the 

distinct ordered pairs  ,, dnd  dnd  and 
2

n
 so that *S  is odd. 

On the other hand d n d   for all |d n  if and only 2n  d for all |d n , or , n  is odd. In 

this case *S is even since the elements of each pair  ,d n d , |d n  in *S  are distinct .  

By the Lemma 2.3 the degree of each vertex of  *,nG Z S  is *S . From these (a) and (b) 

follow. Part (c) follows from the fact that a connected graph is eulerian if and only if the 

degree of each of its vertex is even (see pp 51,52 of Bondy and Murty,1976). 
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2.5. Lemma  

 The Graph  *,nG Z S  is hamiltonian and connected but not bipartite. 

Proof: For 
ni Z ,   *1 1i i S    . So  1,2,3,..., ,1C n  is a Hamilton cycle  of  length n .  

So  *,nG Z S  is Hamiltonian and hence connected. 

Suppose n   is odd. Then the cycle C  is an odd cycle.  

On the other hand if n is even, then *1,2 S . So *1, 2n n S   . These show that  0,1, 1,0n  

is a 3 -cycle, which is an odd cycle in  *,nG Z S . In either case  *,nG Z S contain an odd 

cycle and thus it is not bipartite, since a graph is bipartite if and only if it contains no odd 

cycles (see pp 14, 15, Bondy and Murty (1976)). 

2.6. Definition  

The Cycle  0,1,2,..., 1,0n  is called the outer Hamilton Cycle.  

2.7. Lemma  

If n is a prime then the graph  *,nG Z S  is the outer Hamilton Cycle. 

Proof: Suppose that n  is a prime. Then  1 is the only divisor of  n  other than n , so that 

 * 1, 1S n  . Hence by the Lemma 2.3, the graph  *,nG Z S  is 2 -regular and each vertex is 

of degree 2 . So the only edges in  *,nG Z S  are  , 1i i   for 0 1i n   and  *,nG Z S is the 

outer Hamilton cycle. 

2.8. Example 

For the prime 11 the divisor Cayley graph  *

11,G Z S is given below. 

 

 *

11,G Z S  
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3. ENUMERATION OF TRIANGLES IN A DIVISOR CAYLEY GRAPH 

In this section we present a criterian for the enumeration of triangles in the divisor Cayley 

graph  *,nG Z S . 

3.1. Definition 

i. In a graph a 3-cycle is called a triangle. 

ii. For the vertices , ,a b c in a graph G the triangle formed by the distinct vertices , ,a b c  is 

denoted by the triad (a, b, c).  

iii. In  *,nG Z S the triangle (0, a, b) iscalled a fundamental triangle and it is denoted by

ab . 

3.2. Remark 

The triangle 
ab   is a fundamental triangle in  *,nG Z S if and only if * *0 , 0a S b S     

and *, ,b a S or  *, ,a b b a S  . In the same way  0, ,b a  is a triangle in  *,nG Z S  if and 

only if  *, ,a b b a S  . By the definition of adjacency in  *,nG Z S  the triangle ab  is same 

as ba . 

The following lemma gives a formula for the number of fundamental triangles in  *,nG Z S              

corresponding to a fixed element in *S . This is useful in finding the total number of 

fundamental triangles in  *,nG Z S  .  

3.3. Lemma   

For a given *a S  the number of fundamental triangles ab  in  *,nG Z S  is * *( )S a S 
 

 where  * *:a S a s s S    .                       

Proof:  Let *a S .For any nb Z  suppose that  0, ,a b  is a fundamental triangle. Then by 

the Remark 3.2, *, ,a b b a S  ,or, a , *b S  and *b a S  , or , *a S  and 

* *( )b S a S   . 

On the other hand let 
* *( )b S a S   . Then *b S  and *b a S  ,or, *b S  and *b a S   

That is, *a S , *b S  and *b a S  . Again by the Remark 3.2,  0, ,a b  is a fundamental 

triangle in  *,nG Z S . 
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That is, for a given  *a S  and for each * *( )b S a S    the triad  0, ,a b is a fundamental  

triangle in  *,nG Z S  so that the number of fundamental triangles 
ab  in  *,nG Z S  is 

* *( )S a S  . 

3.4. Example  

For the Cayley Divisor Graph  *

10 ,G Z S the fundamental triangles are determined below.  

Here  1,2,5S   and  * 1,2,5,8,9S  . 

i. For 1a  ,  *1 2,3,6,9,0S  ,and     * *1 2,9S S    so that 2b  ,or,9  and

 * *1 2S S   .So there are two fundamental  triangles  corresponding to *1 S , 

namely 12   0,1,2 and 19   0,1,9 . 

ii. For 2a  ,  *2 3,4,7,0,1S  and    * *2 1S S   so that 1b   and

 * *2 1S S    .This shows that there is only one fundamental  triangle  

 21 0,2,1  . 

iii. For 5a  ,  *5 6,7,0,3,4S   and  * *5S S     .This shows that there is no 

fundamental triangle corresponding to *5 S . 

iv. For 8,a   *8 9,0,3,6,7S  and    * *8 9S S   so that there is only one 

fundamental triangle  89 0,8,9  corresponding to *8 S . 

v. For 9,a   *9 0,1,4,7,8S  and    * *9 1,8S S   . This shows that there are two 

fundamental triangles corresponding to *9 S and they are  91 0,9,1   and 

 98 0,9,8  . 

3.5. Remark   

Since ab ba    for *,a b S , the distinct fundamental triangles of the graph  *

10 ,G Z S  are

12 19,  and 89  which are represented by thick lines in the figure given below. 
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 *

10 ,G Z S
 

The following lemma gives a formula for the total number of fundamental triangles in 

 *,nG Z S  .              

3.6. Lemma 

The number of fundamental triangles in  *,nG Z S is  
*

* *1

2 a S

S a S


  . 

Proof:  By the Lemma 3.3, for a given *a S  the number of fundamental triangles in  

 *,nG Z S  is  

 * *S a S  . So the total number of fundamental triangles in  *,nG Z S is

 
*

* *

a S

S a S


  .  

However for  *,a b S  we have seen that  ab  and ba represent the same fundamental 

triangle. So the number of fundamental triangles in  *,nG Z S  is  
*

* *1

2 a S

S a S


  . 

We now prove the main theorem which gives the total number of trianglesin  *,nG Z S . 

Using this formula one can find the number of triangles in  *,nG Z S  for any positive integer

n . 

3.7. Theorem  

The number of triangles in the Cayley Divisor Graph  *,nG Z S  is   
**

*6

1
SaSZ

Sa
n 


. 

Proof:  The graph  *,nG Z S  is vertex symmetric, that is, for any g G there is an 

automorphism    of  *,nG Z S  given by  

 x g x    for all x G . 

Clearly,  0 0 g g    . 
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Since an automorphism preserves incidence, that is, it maps adjacent vertices into adjacent 

vertices and non -adjacent vertices into non -adjacent vertices, the fundamental triangle

 0, ,a b  is taken to the triangle  , ,g g a g b  . 

So for each g G  the number of triangles of the form  , ,g x y  is also )(
2

1 **

*
SaS

Sa



  

and the total number of triangles in  *,nG Z S is given by )(
2

1 **

*
SaSZ

Sa
n 


. 

However, in the above enumeration each triangle in   *,nG Z S  is counted thrice , namely , 

once, by each of its three vertices. So the total number of distinct triangles in  *,nG Z S  is             

is )(
6

1 **

*
SaSZ

Sa
n 


.     

3.8. Example  

Consider the Cayley Divisor Graph  *

15 ,G Z S .  

Here    15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 , 1,3,5Z S  and  * 1,3,5,14,12,10S  . 

For *a S , the sets  *a S  ,  * *S a S  and  * *S a S   are listed below: 

a  *a S   * *S a S    * *S a S   

1  2,4,6,0,13,11    0  

3   4,7,8,2,0,13    0  

5   6,8,10,4,2,0   10  1 

14   0,2,4,13,11,9    0  

12   13,0,2,11,9,7    0  

10   11,13,0,9,7,5   5  1 

Hence the number of triangles in  *

15 ,G Z S  

    
*

* *

15

1 15
0 0 1 0 0 1 5

6 6a S

Z S a S


         . 

The five triangles          0,5,10 , 1,6,11 , 2,7,12 , 3,8,13 , 4,9,14 in  *

15 ,G Z S  are 

represented by thick lines in its graph below. 
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 *

15 ,G Z S  

3.9. Example  

Consider the Cayley divisor graph  *

12 ,G Z S . Here  * 1,2,3,4,6,11,10,9,8S  .  For *a S

the sets *a S ,  * *S a S   and  * *S a S  are given by the following table : 

a  *a S   * *S a S    * *S a S   

1  2,3,4,5,7,12,11,10,9   2,3,4,11,10,9  6  

2   3,4,5,6,8,1,0,11,10   3,4,6,8,1,11,10  7  

3   4,5,6,7,9,2,1,0,11   4,6,9,2,1,11  6  

4   5,6,7,8,10,3,2,1,0   6,8,10,3,2,1  6  

6   7,8,9,10,0,5,4,3,2   8,9,10,4,3,2  6  

11  0,1,2,3,5,10,9,8,7   1,2,3,10,9,8  6  

10   11,0,1,2,4,9,8,7,6   11,1,2,4,9,8,6  7  

9   10,11,0,1,3,8,7,6,5   10,11,1,3,8,6  6  

8   9,10,11,0,2,7,6,5,4   9,10,11,2,6,4  6  

  So the number of fundamental triangles in  *

12 ,G Z S  

    
*

* *1 1 56
6 7 6 6 6 6 7 6 6 28

2 2 2a S

S a S


             . 
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 *

12 ,G Z S  

From the graph  *

12 ,G Z S  one can observe that the 28  distinct fundamental triangles with 

0 as one vertex are 

             0,1,3 , 0,2,4 , 0,3,6 , 0,4,8 , 0,6,9 , 0,8,10 , 0,9,11 ,  

           0,1,4 , 0,2,6 , 0,3,9 , 0,4,10 , 0,6,10 , 0,8,11 ,  

     0,1,9 , 0,2,8 , 0,3,11 ,  

   0,1,10 , 0,2,10 ,  

   0,1,11 , 0,2,11 .  

These are represented by thick lines in above figure.  

By the Theorem 3.7 the number of triangles in  *

12 ,G Z S  

    
*

* *

12

1 12
6 7 6 6 6 6 7 6 6

6 6a S

Z S a S


           2 56 112.    

3.10. Remark 

Observe that  *

15 ,G Z S has only 5  triangles where as  *

12 ,G Z S  has 112  triangles. Since 

15 3 5  and 212 2 3  , 12has more number of divisors than 15 . It will be interesting to 

investigate the relationship between the number of divisors of  n and the number of triangles 

in  *,nG Z S . 

 

4. CONCLUSION 

In Madhavi and Maheswari (2009, 2010) the enumeration of triangles in Cayley graphs 

associated with the set of  quadratic residues modulo p and the Euler function  n , 1n  , a 
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positive integer are obtained. In determining these triangles the properties of the 

multiplicative structure of the ring  , ,nZ    is also used. In this paper this aspect is not 

used in determining the number of triangles in divisor Cayley graphs. Only the fact that 

 ,nZ   is a group is used. Since a Cayley graph is associated with a group  ,X   and its 

symmetric S , the authors have investigated whether the techniques used in this paper may be 

applied to general Cayley graphs in obtaining the number of triangles. These aspects will be 

dealt with separately.  
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