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Abstract 

Understanding the environmental trajectory over the recent (ca. 200 years) of shallow 

inland water bodies is key to sustainable management of the fisheries industry that is 

facing severe challenges. Paleolimnological techniques using multiple proxies 

provide valuable insights into the drivers and responses of these delicate systems 

currently threatened by environmental degradation and climatic extremes. Until the 

latter part of the 20th Century, Lake Chiuta used to be an important ground for 

fisheries. The cause of the collapse of the fisheries industry is mostly assumed to be 

overfishing although there are pointers of water quality change and environmental 

degradation within the riparian catchment of the lake. This study used a multiple 

proxies such as LOI, grain size analyses and diatoms for mapping recent 

environmental changes of Lake Chiuta. Results of the study indicate that the lake is 

periodically affected by near decadal variability of climate in the short term but is on 

a medium to long term trajectory of declination affected by a shrinking lake and rapid 

incursion of marshland onto the open water. These may pose serious challenges not 

only to the fishery, but long term survival of the water body for other uses. It is 

recommended that integrated watershed management programs be used as a medium 

to long term solution to the water quality problems that impact the lake at various 

scales. 

Keywords: Diatoms, Lake Chiuta, Marshland, Palaeolimnology.  

1.0 Introduction 

Wetlands are unique ecosystems characterised by hydrology, soils, and vegetation 

seasonally or perennially wet and occupying some 7million km2 of the world’s 

landmass (Aselmann and Crutzen, 1989). They are important sources of water and 

economic activities such as agriculture, fisheries and conservation e.g. water fowls. 

They also play a significant role in biogeochemical cycles such as moderation and 

production of methane, greenhouse gases and water nutrients.  

Wetlands offer the potential for the application of multi-proxy palaeolimnological 

analysis in order to reconstruct the timing, magnitude and drivers of environmental 
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change (Battarbee, 2000; Smol, 2008). This is partly because of their 

geomorphometric and hydrological characteristics, which make wetlands good at 

sediment preservation and thus form important archives for past environmental 

changes. However, as with other forms of aquatic ecosystems, wetlands are faced with 

various threats such as eutrophication, clearing for agricultural activities and other 

forms of environmental degradation. Due to buffering effects, nutrients that go in 

wetland ecosystems can remain for hundreds or thousands of years thereby causing a 

lot of damage to the ecosystems. For example, it was demonstrated in the Netherlands 

that P remained in the water system for up to 150-1700 years (Schippers et al, 2006). 

Climate change poses an added dimension to these threats due to shrinkage and/ or 

inundation as a result of increasing or decreasing aridity respectively with 

consequences of diminished biodiversity or overall disappearance of the wetlands. 

Wetlands have often been regarded as marginal lands and clearly a sound knowledge 

about these ecosystems is lacking in most areas of the world. With concerns over 

widespread environmental impact in terrestrial and aquatic ecosystems, 

environmental monitoring and restoration have become a major focus for 

environmental research over the past few decades (Lotter et al, 1999; Barbour et al, 

2000; European Community, 2000; Keller and Cavallaro, 2008).  

Diatoms (Bacillariophyceae) are one of the most commonly used in 

palaeoenvironmental reconstruction owing to their rapid response to environmental 

change, their ease of identification and preservation in a wide range of lacustrine 

habitats (Stoermer and Smol, 1999; Bellinger et al, 2006). A sound knowledge of 

diatom ecology is necessary to disentangle diatom response to a variety of 

environmental forcing functions. On the one hand, diatoms are sufficiently diverse 

(species richness being estimated as ranging from 104 to 105 species; Stoermer and 

Smol, 1999) that their taxonomy is not yet fully understood, particularly for regions, 

which have not been the object of sustained research. On the other hand, the issue of 

equifinality may arise, and it may be difficult to interpret the ecological response in 

terms of a single environmental parameter (Digerfeldt, 1986). Development of 

organic sediment accretions from macro-vegetation and very productive sessile 

periphytic microflora can cause shift in lake response from the littoral zone to the 

open waters (Wetzel, 1990). Presence of macrophytes in the littoral zone tends to 

buffer nutrients from the catchment making the littoral zone very productive. This 

response may mask the overall lake response to nutrient loading and other 

environmental signals like climate and hydrology. A classic example is the ambiguity 

of a relative increase in planktonic diatoms, which may arise either from increased 

productivity, or from increased lake level (Wilson et al 2008). For reasons such as 

this, it is well recognised that the multi-proxy approach has greater potential to 

generate reliable palaeo-environmental reconstructions than undue reliance on a 

single proxy, however powerful it may be (Sayer et al., 1999; Annadotter et al., 1999; 

Ryves et al., 2011). 
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Despite the Lake Chiuta’s importance to the riparian community, the lake is faced by 

the twin problem of environmental degradation and climate variability (Dulanya et 

al., 2013). The lake is surrounded by a marshy wetland and is a source of livelihood 

to the artisanal fishermen, bird hunters and rice farming communities. It is known to 

be responsive to decadal climate variability while its upper catchment basin is widely 

used for agriculture including tobacco, maize and rice cultivation. Different 

hypotheses are proposed for the collapse of the fisheries industry in Malawi including 

the Lake Chiuta region (GOM/FAO/UNDP, 1993; Msiska and Lwanda, 2008). One 

hypothesis is overfishing; others are eutrophication and climate change. The study 

tests the multi-proxy technique using diatoms, loss-on-ignition and sediment 

characteristics to disentangle the recent environmental history of Lake Chiuta. The 

lake occupies  a very flat pan-shaped basin and located in a rain-shadow area. 

Therefore, understanding its overall response to various cultural and natural forcing 

factors is necessary for sustainable management and projection of future 

environmental trajectories (Dearing et al., 2007). 

2.0 LOCATION 

The study region covers Lake Chiuta in Malawi which is situated between latitudes 

14o42’S and 14o53’S and longitudes 34o47’E and 34o55’E (Figure 1a). 

 

Figure 1: Location map of the study area (a), the hydrology around Lake Chiuta and 

core location (b) 
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2.1 Geology and geomorphology 

The study area lies within the Mozambique mobile belt (~700-500 my BP) within the 

Malawi rift, which forms part of the western branch of East African Rift System 

(EARS). The geology is dominated by Precambrian to lower Palaeozoic metamorphic 

gneisses of (semi-)pelitic parentage with intercalations of calc-silicate rocks and 

marbles (Kroner et al, 2001; Carter and Bennett, 1973).  A suite of intrusive alkaline 

rocks and granitoids of upper Jurassic to Cretaceous age ascribed to the Chilwa 

Alkaline Province are also found (Garson, 1960; Manyozo et al, 1984). The lake lies 

within the broad Phalombe-Chilwa plain of Miocene age covered by alluvium and 

residual soils of varying compositions (Pike and Rimmington, 1965; Dill et al, 2005).  

2.2 Climate, hydrology and limnology 

Malawi has two main seasons namely the cool dry season between May and October 

with mean temperatures of around 13°C in June and July and the hot wet season 

between November and April with temperatures between 30°-35 °C. The climate of 

the region is largely influenced by the seasonal migration and intensity of the 

Intertropical Convergence Zone (ITCZ), a low pressure belt within the Congo basin 

caused by tropical high pressure belts over both the Indian and Atlantic Oceans 

(Nicholson, 2001) and the Congo Air Boundary (CAB), that is controlled by sea-

surface temperature (SST) anomalies such as the Indian Ocean Dipole (IOD) and El 

Niño/Southern Oscillation (ENSO) system (Abram et al, 2007; Saji et al, 1999). Local 

differences in rainfall are caused by complex topography causing deflections of 

moisture-bearing winds that are responsible for precipitation and rain-shadow effects 

in various areas. The study area lies near the southeastern end of the ITCZ belt and 

therefore sensitive to climate variability (Castañeda et al, 2007). The study area lies 

within one of Malawi’s low rainfall belts with means between 600-800mm per annum 

making the lake sensitive to climate variability over both short (decadal) and long-

time scales (Dulanya et al., 2013; Msiska, 2001; Thomas et al., 2009). The lake is also 

affected by similar climatic forcings that impact the nearby Lake Chilwa, which dries 

up despite the former being classified as a fresh water lake (Garson, 1960; Msiska, 

2001).  

Lake Chiuta is at an altitude of 620 m a.s.l., with a mean depth of 5m and a surface 

area of around 200 km2, of which about 49 km2 lie in Mozambique (Greboval et al, 

1994). It is the northerly extent of the Lake Chilwa wetland with which it is separated 

by a sandbar since  ca. 44 Ka BP Lake Chilwa ceased to have an outlet (Lancaster, 

1981; Nicholson, 1998; Thomas et al, 2009).  On the Malawian side, Lake Chiuta is 

fed by a number of seasonal streams that rise from its western highlands whose 

primary perennial source is Mpili River (Figure 1b). Most of these rivers disappear 

into a broad flat plain and marshes before getting into the lake. The lake formed due 
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to crustal warping thus the lake may also be influenced by neotectonics (Pike and 

Rimmington, 1965). The lake basin is open, flowing northwards into Lake Amaramba 

in Mozambique and eventually into the Indian Ocean. Little is known about the 

hydrological balance of this lake related to groundwater flow.Similarly, very little 

work has been done in terms of fisheries and palaeolimnology compared to other lakes 

(Dobson and Lynch, 2003; Njaya et al, 1999; Greboval et al, 1994). 

2.3 Vegetation 

The open waters of Lake Chiuta are dominated by macrophytes such as Nymphaea 

spp. that float on the open water in this area. The lakebed is covered by a dense mat 

of Utricularia spp., which forms the substratum of the lake. A distinct lateral zonation 

of vegetation types is observed. Typha domingensis covers an area tens of metres wide 

on the western shore of Lake Chiuta followed by a zone of Cyperus alopecuroides 

and Vossia cuspidata, with the occasional occurrence of Aeschynornene pfundii and 

Cyperus papyrus. Other vegetation species include Ceratophyllum demersum, 

Nymphaea spp. and Ottelia ulvifolia and these are common in canoe channels (Njaya 

et al, 1999). The southern area of the lake supports a diverse community of emergent 

vegetation. 

3.0 Methodology 

3.1 Sediment Coring and water quality assessment 

A sediment core was obtained during the calm, dry season, in August 2009 from Lake 

Chiuta. A plank boat hired from the artisanal fishermen at the lake’s shores for 

navigation. Due to absence of lake bathymetry data, the core sample sites were 

identified with the help of a hand-held echo sounder used for measuring the water 

depth. Geographic coordinates were recorded using a Garmin Etrex GPS receiver and 

turbidity was estimated using a Secchi disk . After anchoring the boat, the soft 

sediment was retrieved from the lakebed by coring using an Uwitec gravity corer with 

1m-tube attachment (http://www.uwitec.at/). Samples were extruded in the field into 

1 cm thick subsamples except for the topmost 1cm, which was sampled at 0.5cm 

resolution for investigation of modern ecological changes. Samples were stored in 

sterile Whirlpak bags, and kept refrigerated during most of the field season prior to 

storage at 4oC in the UK. 

Various water quality parameters were also measured as to understand the modern 

limnological conditions of the lake (Table 1). 
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Table: Physico-chemical parameters and instrumentation used in water quality 

assessment 

 

Parameter Measuring 

Instrument 

Unit Purpose of 

measurement 

Manufacturer 

EC conductivity 

meter model HI 

98311 

µS cm-1 Conductivity Hanna 

Instruments 

pH a pH meter 

DiST model 

HI98127 

 Acidity/ 

alkalinity 

Hanna 

Instruments 

Temperature Thermometer oC Water 

temperature 

 

Dissolved 

Oxygen 

Hanna 

instruments test 

kit HI 3810 

mg/L Amount of 

Oxygen 

Hanna 

Instruments 

Images and optimum environmental conditions for Eastern Africa diatom samples 

(Gasse et al, 1995) obtained from the European Diatom Database (EDDI, 

http://craticula.ncl.ac.uk/Eddi/jsp/) were used for comparison and inferring 

environmental conditions that have prevailed in the study region. 

3.2 Sediment stratigraphy and grain size analyses 

Stratigraphy was described in terms of colour, grain size, mineralogy and structure 

which included layering (bedding), contacts, texture and inclusions within the 

sediment. These were useful in deciphering the form and nature of depositional 

regimes such as water energy, sediment provenance and the depositional environment 

in terms of sediment facies to reconstruct the geography and processes affecting the 

sediment and environment.  

Dry sediment colour was described using Munsell colour charts. Sediments samples 

taken at an interval of every second centimetre were weighed in crucibles before and 

after oven drying overnight (approx. 12hours)  and lightly crushed to loosen the 

crumbs. The loose sediments were sieved using sieves of 212 and 63-micron 

apertures. The hydrometer method was used for the residual fine particles that passed 

through both sieves. The grain sizes were converted to the phi-scale because grain-

size hydraulics is a function of the diameter (d) squared (Krumbein, 1936) as follows: 

phi (φ) = -log2d        (1) 

where d is the diameter in mm. 
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The three main grain size classes (based on the sieves used in this work) in Wentworth 

scale are related to the phi-unit scale (Table 2). The results of the analysis were used 

for plotting grain size-depth profile for the core. 

Table 2: Grain sizes description using two different classification schemes 

 

3.3 Loss-on-ignition (LOI) 

LOI analyses were carried out in the laboratory by weighing subsamples of ca 0.5 g 

wet weight. The subsamples were placed in weighed crucibles and re-weighed to three 

decimal places. Weight loss was measured after heating at 105ºC overnight to remove 

water. For carbon and carbonate estimation, the dried subsamples were oxidized at 

500-550ºC and 900-1000ºC respectively (Dean, 1974; Heiri et al, 2001). Percent 

organic content was estimated by dividing the difference between the mass of dry 

sediment sample mass and the sediment heated sediment by the weight of the dry 

sediment (Dean, 1974; Heiri et al, 2001). Carbonate content was estimated by 

dividing percent LOI at 950ºC by 0.44 assuming a CO2 molar weight of 44g mol-1 

(Dean, 1974; Heiri et al, 2001). 

3.4 Diatom preparation, identification and counting 

Diatoms were prepared using standard techniques according to Battarbee (1986) from 

approximately 0.2g of wet sediments. Hot 30% hydrogen peroxide and 10% 

hydrochloric acid were added to the sample in order to remove organic matter and 

carbonates respectively. The remaining sample was neutralised and cleaned with de-

ionised water and centrifuged 3-5 times at 1200rpm. Residues were dried on cover 

slides and microscope slides were prepared using Naphrax©. The diatom taxonomy 

used followed Krammer and Lange-Bertalot (1986-1991a, b) and Gasse (1986), with 

updated nomenclature. An Olympus BX45 light microscope was used with oil 

immersion and magnification at 1000x for counting diatom assemblages along a 

transect; 500 valves per slide were counted where preservation permitted. Diatom data 

were presented using Tilia and TgView (Grimm, 1991). Stratigraphic zone boundaries 

were defined using constrained incremental sum of squares (CONISS) software 

(Grimm, 1987). 

 

Size 

range 

(µm) 

Size 

Range  

( φ units) 

Wentworth 

classification 

   

31-63 4-5 Coarse silt    

63-125 3-4 Very fine sand    

125-250 2-3 Fine sand    
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3.4.1 Estimation of Diatom Dissolution Indices (DDI) 

Poor diatom preservation can cause a bias in species assemblage composition towards 

more robust, heavily silicified valves, affecting the reliability of paleo-ecological 

reconstruction (Barker, 1992). The degree of dissolution can also be useful in 

deducing environmental conditions during sediment transportation and deposition.  

In this work, diatoms valves were categorized into different groups depending on the 

state of dissolution using different criteria for centric and pennate diatoms. For the 

centric diatoms, valves with dissolved centres were counted as one valve while for the 

pennate diatoms, dissolved long ends with preserved centres were counted as half of 

a valve. DDI (F) was calculated from ratios between dissolved and pristine diatom 

frustules (Ryves et al, 2001) as follows: 

m

ij

j

i m

ij

j

n

F

N






       (2) 

where Fi = F index of sample i, n = pristine valves of species j in sample i, N 

= sum of pristine and dissolved valves (girdle views are excluded) 

Values range from 0 to 1 where a 0-value signifies complete dissolution and a value 

of 1 means that the values are pristine. Dissolution index values above 0.5 were 

interpreted as good preservation. 

3.5 Dating  

Due to the extensive marshes that cover the lake and the huge volumes of organic 

matter present, it was difficult to date the core and make estimates on the sediment 

accumulation rates and ages for the core. Therefore, the timing of the major events 

that have affected the lake can only be speculated based on some episodic events that 

have affected the region from time to time. Therefore the age on the core should be 

treated as tentative subject to further confirmation after reliable dates are obtained. 

The hard dry surface at the base of the core may be related to a major drought that 

affected the region. From historical droughts and lake level records, sediment 

accumulation rates, and the nature of the dessication in the sediment record, the 1920-

30 drought may perhaps have been the closest (Nicholson, 1998; 2001; Owen et al, 

1990).    Although there have been other dessication events post-1930’s, the part of 

the lake where the core was obtained still contained some water and so could not 

register this dessication event (Dulanya et al, 2013). Based on this assumption 

therefore, the base of the core is assumed to be in the 1920/30’s. 
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4.0 Results 

4.1 Stratigraphy and Grain Size 

The stratigraphy of Lake Chiuta is dominated by brown and dark clay soil (Munsell 

colours Gley1, 2.5/N) at the bottom and partly-decomposed and decomposed organic 

matter at the upper sections. The depth to pure dark grey clays varies from one core 

to the other and the contacts between the two are not clearly defined. The following 

sequence is observed: dark plastic clay (Munsell colours Gley1, 2.5/N) from depths 

greater than 25cm (lithology d); a mixture of decomposed organic and minerogenic 

matter from 25–14cm depth (lithology e); and partly decomposed greenish yellow 

plant matter at the topmost parts of the core (lithology f). 

Three main zones (I, II and III) have been demarcated based on the grain sizes 

analyses (Figure 2). Zone I lies at the bottom of the core from depths greater than 

25cm. Zone III is shallower than 15cm with the major transition in grain sizes taking 

place around the 15-25cm depth interval and designated Zone II. Results of grain size 

analysis indicate a decreasing trend for the coarser (<2.5φ) and a corresponding 

increase for the finer (>4φ) sediment fractions from the bottom of the core. In Zone I 

fine sand is the most dominant compared to silty material accounting for 40-60% of 

the sediment. In Zone III silty sediment becomes the most dominant accounting for 

60-80% of the sediment in the upper part of the sequence. The results from the 

intermediate sieve indicate rather stable values for the greater part of the lower core 

except for the top 10cm. Apart from these major changes in grain sizes, there are other 

notable changes in the core at about 32cm and 10 cm for all the curves. 
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Figure 2: Downcore variations of sediment grain sizes (grey tones are used to 

highlight areas where major variations exist)  

4.2 Loss on Ignition 

Three main zones (I, II, and III) can be observed clearly based on the water, carbon 

and carbonate content in the sediment (Figure 3). The main changes are observed in 

the curves are consistent with the ones observed in the stratigraphy and grain size 

curves i.e. Zone I at > 25cm depth, Zone II between 14 and 25cm and Zone III below 

15cm. Some minor fluctuations are observed at depths of about 33cm. In Zone I, water 

comprises about 65% of the core and about 30% carbon. In Zone II and III, water 

content increases to over 80% with carbon content of over 60%. Carbonate contents 

are generally stable throughout the core with values of less than 7% and small peaks 

at 41, 38, 34, 16, 8 and 2cm. These results indicate that the upper parts of the core are 

in general saturated with water and have higher carbon content than the lower parts. 
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Figure 3:  LOI results compared to the main lithological units 

4.3 Modern limnology 

Basic limnological data obtained from the study are presented in Table 3. 

Table 3: Some physico-chemical characteristics of lake water 

 

These results indicate that the lake is shallow (ca. 3m deep) generally dipping in a 

northerly direction, very alkaline with mean pH of 8.9, fresh to mesotrophic (compare 

Dobson and Frid, 2009) based on EC and Secchi disk measurements respectively. The 

pH and water clarity is lowest near the littoral zone. 

4.4 Diatom Stratigraphy 

A total of 26 different diatom species were counted from Lake Chiuta (Figure 4). In 

general benthic diatom taxa are the most abundant compared to cosmopolitan and 

planktonic taxa. Staurosirella pinnata is the only cosmopolitan species that was 

observed in the lake. Aulacoseira distans O. Muller are by far the most abundant 

lithology 

f 

e 

d 

Core  

length 

(cm) 

Water  

Depth 

(m) 

Secchi  

Depth (m) 

Temp 

(oC) 

pH Ec (µS cm-1) Dissolved  

Oxygen 

(mg/L) 

44 2.7 2.4 30.2 8.9 334 9 
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species in the lake comprising over 70% of all the diatom species counted in the core. 

Other Aulacoseira species observed in Lake Chiuta were A. granulata Ehr and A. 

italica. Stephanodiscus hantzschii and Cyclotella meneghiniana Kutz are the only 

other planktonic taxa observed apart from the Aulacoseira species. Zones I (with 

subzone d1 and d2) and II (subzones e1, e2i and e2ii) were defined using CONISS 

and are described as follows: 
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Figure 4:  Zoned diatom stratigraphic diagram 
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Zone I  

The zone is characterised by the presence of Aulacoseira distans (70-80%), A. italica 

(10%), A. granulata, S. pinnata (5%) Luticola mutica (<5%) and small Navicula 

species (identified as Navicula minima in this work < 5%). Also present in smaller 

amounts (0.5-2%) in this zone are Stauroneiss phoenicenteron, Eunotia pectinalis, 

Cyclotella meneghiniana, Sellaphora pupula, Pinnularia gibba, P. maior, P. 

Microstauron, P. tropica, Gomphonema augur, G. gracile, G. parvulum, G. 

lanceolatum and Achnanthes species which increase towards the upper part of the 

zone. Hantzschia amphioxys and Nitzschia palea are restricted to the bottom part of 

the zone. Other species present in the core include Neidium species (N. iridis and N. 

dubium), E. curvata, E. tchirchiana, E. soleirolii, E. flexuosa and E. subarcuatoides. 

Presence in the upper part of Stephanodiscuss hantzschii is also noted. 

Zone II 

Aulacoseira distans O. Muller is still the dominant species (~80%). There is a 

decrease in A. italica to about 5% with a corresponding increase in the small Navicula 

species to about 10% together with a persistent but gradual decrease in E. pectinalis 

and Stauroneiss phoenicenteron up the zone and sporadic presence of Luticola mutica. 

S. pinnata decreases to about 5% at the lower part gradually increasing to about 10% 

at the upper part of the zone. In general, variations in Aulacoseira italica, Navicula 

minima and Luticola mutica have been used as the main marker horizons for this core. 

 4.5 Diatom preservation and Diatom Dissolution Index (DDI) 

The dissolution diagram for the same core shows good preservation of the valves 

(0.9) and a repetitive cycle of high and low dissolution but with a generally 

decreasing dissolution trend (Figure 5). Due to their overall dominance in the core, 

the planktonic species make up the bulk of dissolved species. Considering the low 

dissolution indices obtained in this study, no attempts have been made to compare the 

dissolution of the planktonic from the benthic diatoms. 
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Figure 5: Diatom dissolution indices with trend line (dotted) 

5.0 Discussion 

Palaeolimnological reconstructions from Lake Chiuta have highlighted various 

processes and mechanisms responsible for environmental conditions prevalent  nearly 

a decade ago. As stated earlier, lack of dates is a major flaw which fails to constrain 

the specific environmental changes observed to time periods. Among the notable 

changes observed are the expansion of the wetland (denoted by higher organic carbon 

content at the upper parts of the core), siltation and the roles and responses of the 

marsh in climatic, hydrological conditions of the lake and water quality in general. 

Comparison of some of the proxies used is shown in Figure 6. 
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Figure 6: Comparison of diatom dissolution indices, grain sizes and LOI (grey tones 

are used to highlight areas where major variations exist) 

5.1 Stratigraphy, Grain size analyses and LOI  

The stratigraphy of the sediments indicates dark minerogenic clays at the bottom with 

less carbon content. These observations reflect anoxic conditions prevalent at the 

bottom part of the core. These conditions have persisted for a large part of the lake’s 

recent (<100 years) environmental history. 

Grain sizes from the lake indicate an increase of the coarse silt and clay (>4φ) with a 

corresponding decrease of the fine sand (<2.5φ) at the upper parts of the core and the 

vice versa for the lower parts. This is probably a reflection of a basin, which was 

deprived from sediment influx for some time as a result of the advancement of the 

marsh. Only the smaller grain sizes (very fine sand and silt fractions), which move as 

suspended solids probably, get deposited within the basin at the expense of the coarser 

material This observation is supported by increasing carbon content from LOI data, 

which seems to suggest that the lower parts of the core were relatively more stable 

having less carbon and water than the upper parts. These two pieces of evidence imply 

reduced levels of interaction between the catchment and the lake during the period 

represented by the upper part of the core (Zone III). Due to the stability of water and 

C values at the base of the core it is suggested that the incursion of and expansion of 
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the marsh in the Lake Chiuta wetland had stalled earlier in the core sequence probably 

reflecting a major dry episode when most of the marsh dried up. 

5.2 Diatom dissolution and stratigraphy 

Diatom dissolution may be related to the physico-chemical conditions in the water 

body e.g. salinity, pH, conductivity, sediment texture and accumulation rate species 

related resistance to wear, water depth and permanence (Flower and Nicholson, 1987; 

Flower and Ryves, 2009). Considering that the water in Lake Chiuta is fresh to 

mesotrophic, the repetitive cycles seen on the diatom dissolution diagram probably 

indicate short-term high and low water stands. High stands were associated with a lot 

of wear of the diatom frustules thus higher dissolution indices compared to the low 

stands. In general, an increasing dissolution trend can be regressed through the 

dissolution curve. This is probably a reflection of the marsh progression in the long 

term in general which effectively is cutting off the diatom fossil interference from 

water currents and other possible agents which could destroy the frustules. This 

interpretation is supported by grain size and LOI data presented above. 

Diatom assemblages have indicated presence of diatom flora that are acidophilous, 

epipelitic or epiphytic such as Pinnularia spp. Eunotia pectinalis (Krammer, 1991a). 

These floras are also common in swampy environments and rivers (Nguestsop et al, 

2004). These assemblages probably reflect lateral habitat variations that occur across 

the wetland. For example, acidity tends to increase within the marshes, which are less 

oxygenated together with the release of humic acids from decaying plants. Acidity 

might also increase along the edges of the swamp due to lack of buffering due to the 

hard basement complex rocks that surround the Lake Chiuta catchment area as erosion 

takes place. Thus species within these habitats might be acidophilous. As a further 

adaptation to this, the diatom flora requires to have attachments to the macrophytes 

or slowly moving water. This is different to the open water area of the lake where 

water is oxygen-rich and lotic.  

Associated with these lateral species composition, downcore variations are also 

apparent in the core. Apart from the dominance of Aulacoseira distans, the lower part 

of the core is dominated by A. italica and Luticola mutica an aerophilous and 

alkaliphilous species (Gasse, 1986). A. italica is littoral in the large African lakes, 

neutral to pH indifferent species (Nguetsop et al, 2004). The presence of 

Stephanodiscuss hantzschii towards the upper parts of Zone I, which is a phosphate-

tolerant species, might signify a period when phosphate enrichment probably related 

to agriculture activities in the lake’s catchment started to take place. This enrichment 

might also have been responsible for the expansion of the marshland which is evident 

though LOI in Zone II. In terms of downcore variability, there is a change from 

sediments with few Navicula minima at the bottom of the core (with occasional 
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presence of brackish species such as Anomoensis sphaerophora and Cyclotella 

meneghiniana and dissolved fragments of Achnanthes granulata) to an increase in 

Navicula minima towards the upper part of the core. Navicula minima is an epipelitic 

and alkaliphilous species, gives the TP optimum and tolerant to organic pollution 

(Kelly and Wilson, 2004; 

http://craticula.ncl.ac.uk/EADiatomKey/html/taxon13521610.html). These 

observations may indicate that water became more polluted and silted up (presence of 

C. meneghiniana, N. minima, etc) probably due to an expanding population and water 

usage for both agricultural and sanitary use within the catchment. Taken together with 

other flora from the lower part of the core e.g. the presence of A. italica and A. 

granulata at the bottom, the sediment record suggests a lake, which has evolved from 

being a brackish to being organic-polluted (N. minima and C. meneghiana) before the 

encroachment of the marshes or indeed that the marsh growth around the lake might 

have been aggravated by pollution. These observations support the proposition of a 

lake once open to its catchment system but slowly being secluded due to an advancing 

marshland possibly as a result of human impacts of nutrient enrichment, which led to 

growth of macrophytes even at lakebed. 

5.3 Lake limnology and turbidity 

The sample site near the centre of the lake has less turbid water (secchi disk of 2.4) 

than the other two sites possibly due to throughflow which brings fresh, less turbid 

water from the input rivers during the dry season and might be more turbid during the 

rainy season. The modern conditions of the lake indicate that the lake could be 

classified as freshwater to mesotrophic based on EC and turbidity measurements. This 

classification is supported by botanical evidence such as the presence of Nymphaea 

spp. and Ultricularia spp., which have been described as are characteristic of 

mesotrophic conditions (Sayer et al, 1999).  However, the marshes might also be 

playing the role of filters of the water system thus maintaining is status as fresh/ 

mesotrophic. Together with the contribution of marshes to water purification, the open 

waters probably tend to be more alkaline.  

6.0 Conclusions 

Apart from temporal variability associated with downcore changes of the proxies 

within the core, disentangling environmental changes in Lake Chiuta is challenging 

because of multiple habitats present within the wetland environment ranging from 

marshes to open water. This implies that both lateral and vertical variations of fossil 

diatom flora are to be expected. The lateral variations would reflect habitat variability 

and are difficult to disentangle as they are likely to exist together with temporal 

variations in a particular sample. 
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These deductions are supported by the sediment record (grain size analyses and LOI) 

as discussed in this study. Geological evidence from the Phalombe/ Lake Chilwa plain 

point towards a silted-up palaeo-Lake Chilwa which eventually split into two to have 

Lakes Chilwa and Chiuta (Thomas et al, 2009; Garson, 1960). The interpretation is 

consistent with the theory of lake ontogeny as discussed in various areas of the world 

where lakes are formed, mature and eventually die (Whiteside, 1983; Axford et al, 

2009). The above therefore implies that Lake Chiuta might be in waning stages of its 

evolution. 

Paleo-environmental reconstructions in Lake Chiuta area have highlighted a complex 

environmental history of the lake related to both temporal and spatial heterogeneities 

driven by both climate and ecological changes within the area and the necessity of 

using the multiple proxies in disentangling this variability. Short term cyclicity 

observed in the diatom dissolution indices is driven by climate fluctuations whereas 

long term ecological changes are largely influenced by anthropogenic disturbances 

which once led to organic pollution and later by the advancement of the marshes to 

cover a wide region of the lake’s littoral habitats. 
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