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Abstract 

World human population has grown very rapidly in the past century. In Malawi‟s 

Capital City (Lilongwe) it increased by more than 3000% between 1966 and 2008 

(from 19,425 to 674,448). Such rapid population growth might contribute to Land 

Use and Land Cover Changes (LULCC) due to pressure on land resources to meet 

diverse livelihoods, which in turn significantly affects the flow of water in river 

catchments. This study was thus conducted to evaluate LULCC in Lilongwe 

between 1989 and 2004 in view of the exponential population increase, and to assess 

the effects of LULCC on the streamflow of Lilongwe River. To evaluate LULCC, 

change detection analysis was carried out on Landsat imagery of the Lilongwe River 

catchment for the years 1989 and 2004. Data on land cover classifications, soil, 

rainfall, temperature, elevation and water reservoir levels in the catchment were 

modelled using the Soil Water Assessment Tool (SWAT) to assess the effects of 

LULCC on streamflow in Lilongwe River. Results showed that between 1989 to 

2004, a 10.7% decrease in forest cover occurred (from 63,112.6  ha to 51,034.3  ha). 

Furthermore, there was an increase in cropland (8.6%, from 19,249 ha to 28,911.3 

ha), and a 3.5% increase in land use for settlement (from 23,535.9 ha to 27,526 ha). 

The resultant changes in average monthly streamflow were -0.058 m
3
/s during the 

dry season (August –November) and +1.432 m
3
/s during the wet season (December–

March). The results establish the link between LULCC and streamflow in the 

catchment. Integrated catchment management practices are therefore recommended 

to ensure that further LULCC does not adversely affect streamflow in Lilongwe 

River, and the livelihoods of its beneficiaries    

Key words: Land use and land cover change, Lilongwe, Lilongwe River, Streamflo, 

Soil Water Assessment Tool. 
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1 INTRODUCTION 

Integrated catchment management is an essential resource management approach in 

the modern era as it recognizes the full cycle of processes which affect natural and 

human systems in a watershed (Alemayehu et al., 2009; Heathcote, 2009). 

Implementation of the approach, however, faces many challenges especially in 

developing countries, such as climate change, over-reliance on agricultural 

livelihoods, and population growth (IWMI, 2005; Bahri et al., 2011; United Nations, 

2017). 

Malawi is one such country facing difficulties in realising the goals of this approach 

with issues ranging from deforestation in areas such as the Mulanje Forest Reserve 

(Shanmugaratnam & Kafakoma, 2014), to climate induced disasters and subsequent 

encroachment of protected areas in Dzalanyama forest reserve (Munthali, 2013). 

One persistent issue exacerbating such challenges has been the rapid population 

growth in the country. This is most evident in the country‟s most populous city, 

Lilongwe, where NSO (2008) reported a more than 3000% increase in population 

between 1966 and 2008, from 19,425 to 674,448 people respectively. 

Population growth of this kind greatly contributes to land use and land cover change 

(LULCC) as land is required for various purposes such as agriculture, and industry 

(Pimentel, 1997; Singh, 2017). Land cover simply refers to the physical features that 

cover a land surface, such as crops, whilst land use refers to the purpose for which 

humans use land cover, such as agriculture (Di Gregorio & Jansen, 2005). 

Since land and water resources are intimately linked through the hydrological cycle 

(Guo & Jiang, 2008; Mbano, 2009; Palamuleni, 2009; Geremew, 2013), the 

population growth in Lilongwe has been a major cause of concern in the 

environmental sector (Munthali, 2013, GoM, 2017). The Lilongwe River which runs 

through the centre of the district is currently the only sanctioned source of water for 

the city‟s residents and as a result, has in recent years noticeably felt the pressure of 

the growing population (GoM, 2012). Low water levels in the river especially during 

the dry season have led to rationing of water by the city‟s water supply utility, 

Lilongwe Water Board (LWB), and a push for new or improved sources to be 

developed (World Bank, 2017). 

Studies show that LULCC such as deforestation can lead to higher streamflow after 

rainfall events by facilitating runoff and vice versa (Palamuleni, 2009; Geremew, 

2013). This raises the question of whether there have been significant changes in 

land use and land cover in the Lilongwe River catchment that may have adversely 

affected the quantity of water flowing in Lilongwe River. 
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Considering the importance of using up-to-date information in integrated catchment 

management (Pahl-Wostl, 2005; Stewart, 2015), this study aimed at evaluating the 

extent of LULLC that has occurred in the Lilongwe River catchment and assessing 

how these changes are linked to streamflow changes in the Lilongwe River using 

remote sensing and hydrological modelling techniques. 

2 MATERIALS AND METHODS 

2.1 Description of Study Area 

The study was conducted using data from part of the Lilongwe River which 

originates from the Dzalanyama catchment (also known as Catchment 4D) located 

in the south western part of Lilongwe (Figure 1). The catchment generally exhibits a 

warm tropical climate with mean annual rainfall ranging between 800 and 1000 mm 

(Malawi Department of Climate Change and Meteorological Services (MDCCMS), 

2014). The Lilongwe River has two main tributaries, Likuni, and Lisungwi River. 

The river also has two reservoirs, Kamuzu Dam 1 and 2, which were constructed 

along its path in 1966 and 1989 respectively for municipal water supply purposes. 

The gauging station officially known as 4D4 (located at 4.04 
°
S, 33.71 

°
E) was taken 

as the outlet for the catchment. This was done due to the relatively extensive 

availability of data at station 4D4, and to minimize the influence of unquantified 

water abstractions on the results of the study by downstream users. 
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Figure 1: The study area showing all its major rivers, and reservoirs Kamuzu Dam 

1 and 2. 

2.2 Data Collection 

Climatic Data 

Climatic data recorded at Chitedze Meteorological Station from 1970 to 2004 was 

obtained from the Malawi National Meteorological Services Department. Due to 

lack of complete data, only four measured historical data sets namely: daily 

precipitation, maximum and minimum temperature, and wind speed; were input into 

the Soil Water Assessment Tool (SWAT). Other climatic variables, namely, solar 

radiation, and relatively humidity, were thus left out to be simulated by the model. 

Land Cover and Soil Data 

ArcGIS 10.1 was used for all processing of geospatial data in this study. Landsat 5 

images from 1989 and 2004 were used to identify changes in land use and land 

cover within part of the Lilongwe River watershed. To ensure that observed changes 

in vegetation cover were not as a result of seasonal variations, all Landsat images 

acquired were captured around the same time of the year during the dry season 

which normally occurs between the months of June and October. The images were 

downloaded from the United States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov). 



Sibande et al. (2020) 
__________________________________________________________________________ 

5 

 

For lack of a higher resolution source, the soil data for the watershed was extracted 

from a global soil map (Daggupati et al. 2018; Kangsabanik & Murmu, 2017) 

obtained from the Food and Agriculture Organisation (FAO) archive (FAO, 2007). 

Due to its low resolution, this soil map only shows three major soil types within the 

study watershed. 

Digital Elevation Model and Reservoir Data 

The Shuttle Radar Topography Mission (SRTM) archive was used to obtain a 90 x 

90 m Digital Elevation Model (DEM) raster from the USGS online database (Jarvis 

et al., 2008). The DEM was necessary for delineation of sub-basins and 

identification of stream networks in the study area (Arnold, 2012a). 

Lilongwe River has two dams that were constructed along it mainly to serve as a 

water storage facility and ensure adequate water supply for the population in 

Lilongwe. Therefore, to properly model flow within the river, parameters referring 

to the structural design of the reservoirs such as size, height of spillways, average 

daily outflow and beginning year of operation of the dam were required by the 

model. This data was acquired from survey reports provided by the Lilongwe Water 

Board (NIRAS, 2001; Aurecon, 2013). 

2.3 Data Processing and Analysis 

Data analysis was carried out in two phases, the first of which involved assessment 

of land use and land cover change while the second phase involved modelling 

streamflow in Lilongwe River Catchment. 

2.3.1 Land Use/Cover Change Detection 

To detect changes in land cover, the spectral signatures of different land cover types 

had to be classified and analysed in the acquired Landsat images. There are two 

main categories of image classification techniques, these are; unsupervised 

(calculated by software) and supervised (human-guided) classification (Al-doski et 

al., 2013). This study used unsupervised image classification because it is useful for 

detecting land use/cover when and where primary data of the site is considered 

insufficient and/or of low quality for use in training classifiers in supervised 

classification.  

After a review of literature on land cover classes in the area, five main classes were 

identified using the Isodata clustering algorithm to perform unsupervised image 

classification in ArcGIS. These classes were Forest; Water; Marshland/Cultivated 

Dambo; Cropland; and Grassland/Settlements. The latter class also included areas 
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with bare ground or unused cropland since such areas were spectrally 

indistinguishable from dry grasslands. 

Using a 2004 Google Earth image, the land use/cover present at 56 random points 

within the study watershed was checked against that of the classified 2004 image. 

Correct classifications were thus measured using a common accuracy assessment 

technique known as a confusion matrix (Congalton & Green, 2009; Geremew, 

2013). The overall accuracy of the classified image determines the validity of the 

classification process and in this context determined whether the produced images 

were worth using as valid data to evaluate changes in streamflow (Congalton & 

Green, 2009; Al-doski, 2013). Cohen‟s kappa coefficient was also calculated from 

the confusion matrix to measure the classification performance (Pontius, 2000; Liu 

et al., 2007; Congalton & Green, 2009). According to Muzein (2006), the accepted 

level of accuracy for any classification process is determined by the users 

themselves depending on the type of application the map product will be used for. 

Accuracy levels accepted by some users may not be accepted by others for specific 

tasks. Considering resource constraints, an overall accuracy of at least 80% was 

considered sufficient for this study. 

2.3.2 Hydrological Modelling 

Several factors can affect streamflow in a river apart from LULCC. Therefore, to 

single out LULCC as the only causative factor of potential streamflow changes, the 

SWAT model was used. The SWAT model is a semi-distributed physically based 

simulation model that can predict the impacts of land use change and management 

practices on hydrological regimes in watersheds with varying spatial conditions 

(Arnold, 2012a). The model was selected for this study because it is open source, 

has been widely used in semi-arid regions (Palamuleni, 2009; Geremew, 2013), and 

always produces the same output for any given input. Being semi-distributed and 

deterministic, the model is also less demanding on input data than fully distributed 

models (Gassman et al., 2012; Arnold et al., 2012a), and allows objective 

comparison of model outputs arising from different land-cover scenarios 

Model Run 

The DEM was loaded into SWAT to enable identification of stream networks and 

delineation of sub-basins in the study watershed. The location of the two Kamuzu 

Dams were then identified on the rendered stream networks. Climatic and reservoir 

data were then entered, and the model was run on a monthly time step from 1970 to 

2004. 
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Model Calibration and Validation 

The next step in the modelling process was calibration of the model to ensure that it 

was able to adequately emulate conditions in the studied watershed. An auto-

calibration program known as SWAT-CUP version 5.1.5.4, specifically designed to 

be used with SWAT, was used for calibration and validation in this study because it 

produced very quick and detailed results (Abbaspour, 2013). 

This study used the Sequential Uncertainty Fitting version 2 (SUFI2) calibration and 

uncertainty program in SWAT-CUP which only allowed auto-calibration of up to 

four parameters at a time. To ensure calibration of only the most sensitive 

parameters, multiple flow parameters listed in SWAT-CUP were set four at a time 

for calibration. Several trial iterations were done to reveal the most sensitive 

parameters used for final calibration. The tool was then run for 1000 simulations for 

calibration using recorded streamflow data from a 6-year period (1970–1976). The 

same approach was later followed (Arnold, 2012b), for validation of the model using 

streamflow data from the same gauging station for a 4-year period (1977–1981) 

without making further adjustments to any input parameters. More data was used for 

calibration to ensure the model captured a wider range of streamflow scenarios, and 

due to the persistence of streamflow data gaps after 1981. 

Model validation is a crucial step in the modelling process that allows a user to 

determine the accuracy of their model by statistically comparing observed and 

simulated variable outputs (Arnold, 2012b). Two statistical parameters were used for 

validation, namely: the coefficient of determination (R
2
) and the Nash-Sutcliffe 

Efficiency coefficient (NSE) (McCuen et al., 2006). According to Moriasi et al. 

(2007) and Santhi et al. (2001), values of R
2 

greater than 0.6 can be considered as 

acceptable indicators of good model performance. The Nash-Sutcliffe Efficiency 

coefficient indicates how well the plot of observed versus simulated data fits the 1:1 

line. According to Moriasi et al. (2007), the acceptable values for NSE based on 

reported performance ratings from several other studies are Satisfactory (NSE > 

0.5); Adequate (NSE = 0.54 – 0.65); and Very Good (NSE > 0.65). 

2.3.3 Evaluation of Streamflow Change Due to Land Use/Cover Change 

To evaluate the effect of LULCC on streamflow, the calibrated SWAT model was 

run from 1989 to 2004 with the different land cover maps of 1989 and 2004, while 

keeping all other parameters constant. Since SWAT is a deterministic hydrologic 

model, any differences in the model output from the two runs were a direct result of 

the LULCC only. LULCC can cause the model to produce ambiguous results if 

streamflow is analysed on an annual time scale, hence streamflow changes were 

evaluated by examining seasonal differences (i.e. from dry and wet season months) 
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from the two model outputs since these are the periods in which the effect of 

LULCC is most prominent (Palamuleni, 2009; Geremew, 2013). 

3 RESULTS AND DISCUSSIONS 

3.1 Land Use/Cover Detection 

The classification process yielded a satisfactory overall accuracy of 82%. The 

Cohen‟s kappa coefficient calculated also revealed that the classification process 

performed 74% better than if it had been done by randomly assigning values to land 

cover classes. 

Figure 2 shows the map outputs of the unsupervised classification carried out on the 

Landsat imagery acquired for 1989 and 2004. Table 1 summarises the results of the 

land cover changes between 1989 and 2004. The image classification showed the 

largest change in forests compared to all land cover classes in the watershed in the 

years between 1989 and 2004. This reduction in forest cover represented 11% of the 

total catchment land area. Although the reduction appears to be small, such a 

percentage translates to astounding 12,078 hectares of Dzalanyama forest reserve. 

Similar results have been reported by FAO (2012) and Munthali (2013). 

 

Figure 2: Land cover classification outputs for 1989 and 2004. 
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The results also showed that marshland/cultivated dambo areas had decreased by 

1.84%, translating to 2,078.73 hectares. Crops grown in dambo areas usually include 

vegetables and short crops which are often cash crops. Therefore, this land class 

may have been converted to cropland where crops such as maize and sorghum are 

grown mainly for subsistence farming. Conversely, results also showed that 

cropland, and areas featuring grassland, bare ground and or settlements had 

increased quite significantly by 8.55% (9,662.33 ha) and 3.53% (3,990.08 ha), 

respectively. This might be the result of the rapid population growth experienced in 

Lilongwe in the 1990‟s (with a population of 223,318 people in 1987 to 440,471 in 

1998, (NSO, 2008) which increased the demand for land for settlement and farmland 

since a large number of people in Malawi rely on agriculture for subsistence and 

sourcing of income.  

From the findings, it is evident the area covered by the water bodies also increased 

by 0.45% or 504.58 ha in the 15-year period. The increase could be attributed to the 

expansion of the Kamuzu Dam 2 reservoir‟s area of inundation which resulted from 

raising of the dam by 5 meters in 1999.This could also be attributed to the 

interference of a few clouds which were present in the Landsat imagery and caused a 

few areas in the Dzalanyama forest to be classified as water and bare ground. 

Considering that this misclassified area constitutes less than 0.5% of the catchment, 

this false positive was simply ignored as an insignificant error. 

Table 1: Land cover change results for the study watershed from 1989 to 2004 

Land Cover Type 
Area 1989 Area 2004 

Area 

(2004 – 1989) 

km
2
 % km

2
 % km

2
 % 

Forest/Trees 631.13 55.86 510.34 45.18 -120.78 -10.69 

Grassland/Settlements 235.36 20.83 275.26 24.37 39.90 3.53 

Cropland 192.49 17.04 289.11 25.59 96.62 8.55 

Marshland/Cultivated 

Dambo 
64.63 5.72 43.84 3.88 -20.79 -1.84 

Water 6.06 0.54 11.10 0.98 5.05 0.45 

3.2 Hydrological Modelling 

The results of the SWAT model calibration showed that there is an acceptable 

agreement between average monthly observed flow and simulated flow with a 

coefficient of determination (R
2
) of 0.65 and Nash-Sutcliffe Efficiency coefficient 

(NSE) of 0.6. These values are well within the accepted value minimum of 0.5 for 

the Nash-Sutcliffe efficiency and 0.6 for the coefficient of determination (Santhi et 

al., 2001). In addition, Figure 3 also illustrates these results with a line chart 

describing simulated and observed average monthly flow from the calibration 
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period. The chart also depicts the 95% prediction uncertainty (95PPU) band which is 

a distribution of parameter prediction uncertainty measured between the 2.5th and 

97.5th percentiles. 

 

Figure 3: Calibration results for average monthly streamflow. 

Model validation was performed with the same calibration parameters using 

streamflow data for a 4-year period from 1977 to 1981. According to the results 

(Figure 4), the simulated data also show an acceptable correlation with observed 

data with a Nash-Sutcliffe Efficiency coefficient of 0.57 and coefficient of 

determination of 0.60. 

 

Figure 4: Validation results for average monthly streamflow. 

Table 2 shows the comparison of observed and simulated average monthly flow 

from calibration and validation periods. From this data, the table shows that the 

model performance values for calibration and validation of the flow simulations 

were satisfactory according to the NSE and R
2
 values. This confirms that the 
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physical processes involved in generation of streamflow in the watershed were 

adequately captured by the model. The model could thus be used to make fairly 

accurate conclusions about changes in streamflow.  

Table 2: Comparison of observed and simulated average monthly flow from 

calibration and validation periods 

Period 

Mean Monthly Flow 

NSE R
2
 

Observed 

m
3
s

-1
 

Simulated 

m
3
s

-1
 

Calibration period (1970-1976) 8.46 9.998 0.60 0.65 

Validation Period (1977-1981) 13.63 10.94 0.57 0.60 

The mean monthly flow change for the dry season (July, August, September, and 

October) and for the wet season (December, January, February, and March) was 

used to compare the two model outputs (Table 3). The percent change was 

calculated using Equation 1. The results confirm that LULCC is indeed linked to 

streamflow change in the Lilongwe catchment as flow during the wet season months 

increased by 1.432m
3
/s, which is 6.50% of the original value (Equation 2), and 

decreased during the dry months by 0.058m
3
/s, which is 4.80% of the original value 

(Equation 3). 

_______________ (1) 

________________ (2) 

____________ (3) 

 

Table 3: Changes in mean monthly flow for wet and dry season months using 1989 

and 2004 land use/cover maps. 

Mean Monthly Flow (m
3
/s) 

Mean Monthly Flow Change 

(m
3
/s) 

Land use/cover map 

1989 

Land use/cover map 

2004 2004 – 1989 

Wet Season Dry Season Wet Season Dry Season Wet Season Dry Season 

22.05 1.21 23.48 1.15 + 1.43 - 0.06 

A critical aspect of this study was to establish the link between LULCC and 

hydrologic responses of the Lilongwe River. This is well demonstrated by the results 

which showcase the significant role played by forests and vegetated areas in 
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reducing runoff after precipitation events in the catchment. Results show an increase 

in runoff over crop land and bare land converted from forest. This runoff collects in 

streams and subsequently increases streamflow in the Lilongwe River during the wet 

season. The lack of infiltration during the wet season as a result of this phenomena 

consequently also reduces the amount of water stored underground to feed streams 

through base flow and this leads to reduced streamflow in the dry season. 

Comparing the simulation outputs using the 2004 and 1989 land use maps (Figure 

5), the above assertions are apparent with increases in peak flows as high as 4.53 

m
3
/s during the wet season and decreases in streamflow as much as -1.57 m

3
/s 

afterwards. The decreases are most apparent immediately after the end of the wet 

season in April, likely because this is when the highest volume of subsurface water 

is available to replenish streams and the differences in infiltration rates between the 

two model outputs is reflected in the baseflow maintaining streamflow. 

 

Figure 5: Streamflow simulation outputs produced using 2004 and 1989 land use 

maps. 

Since climatic conditions were kept constant, the changes in streamflow detected 

from the 1989 and 2004 land cover model outputs were a direct result of LULLC 

alone. These results are potentially of high socio-economic significance to the 

people of Lilongwe. According to the LWB Annual Report of 2004, a peak water 

demand of 0.971m
3
/s (83,919.5m

3
/day) was observed during the dry season of the 

same year. This therefore implies that the change in average streamflow in the 

Lilongwe River between 1989 and 2004 could have supplied Lilongwe City with 

water for a complete 2 days during that same season. This lost water is particularly 

significant in recent years with the water shortage problems facing the city since 

2016, especially during the dry season (World Bank, 2017). On the other hand, the 
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city has also been experiencing flooding during the wet season in 2017, 2018, and 

2019 (UNICEF, 2017) which may have been exacerbated by the effects of LULCC 

since streamflow in the wet season increased. 

Further changes to streamflow are likely to occur considering the trend of LULCC 

implied by this study, as well as predicted in a study by Munthali (2013) which 

revealed that the Dzalanyama forest reserve may lose up to 26, 721 ha of forest 

between 1990 and 2030. Such a large change can greatly affect the hydrology of a 

watershed and has the potential to induce very high and low river flows in the wet 

and dry season respectively. It is worth noting however, that lack of enough data to 

model the catchment more accurately may have affected the results of this study. 

This data includes soil, and climatic data current data sets of which are not spatially 

detailed enough to truly represent the heterogeneity of the study watershed. The 

results may have also been affected by inaccuracies in image classification since 

according to the accuracy assessment performed, 18 percent of land cover was not 

accurately classified and as LULCC over those areas was missed. 

4 CONCLUSIONS AND RECOMMENDATIONS 

This study evaluated the changes in streamflow that resulted from the changes of 

land use and land cover (LULCC) in the 15-year period between 1989 and 2004. An 

integrated approach coupling the use of the SWAT hydrological model along with 

other GIS based methodologies was used in the study. The study revealed changes in 

land use and land cover had indeed occurred in the catchment resulting in changes in 

streamflow. These streamflow changes bear great significance to the Lilongwe 

Water Board and the residents of Lilongwe especially in terms of water losses in the 

dry season due to the LULCC as the city faces water scarcity problems. An 

integrated approach to management of the catchment is therefore recommended to 

ensure that the effects of escalated LULCC are foreseen and mitigated or enhanced 

accordingly. Considering that this study was conducted using limited secondary 

data, some variables governing streamflow may not have been fully accounted for. 

Further research is therefore recommended with regards to use of more detailed data 

about the catchment, and advanced land use detection techniques, such as object-

based image classification, which may yield better land classification accuracies. 

Coupling land change modelling with streamflow modelling may also facilitate 

prediction of changes in land cover and streamflow over an extended period of time.  
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