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 Objective: The present study was designed to evaluate the toxic effect of sublethal concentration of  

mercuric chloride (0.3 mg/L HgCl2) on histopathological lesions in the kidney of Nile tilapia (O. niloticus)  
and the protective effect of microalgae, Nannochloropsis oculata (N. oculata) against the induced tissue 
alterations for 3 weeks.  
Design: Randomized controlled study 

Animals: Nile tilapia  
Procedures: Fish were randomly assigned to 4 groups, group1: control (basal diet), group 2 (Hg/ exposed 
to HgCl2 at a dose of 0.3 mg/L (1/4 of LC50), and fed basal diet), group 3: (Hg+N5, similar to group2, but 
fed diet supplemented with N. oculata 5% and group 4 (Hg+N10, similar to group2, but fed diet 
supplemented with N. oculata 10 %. Two fish from each aquarium tank (6 fish/group) were sampled at 

weeks 1, 2, and 3 of the experiment. The posterior kidney was dried out in a graded ethanol series and 
then embedded in paraffin. Each block of tissue was cut into serial sections (5 μm thick) and stained with 
hematoxylin and eosin (H&E). 
Results: Histopathological alterations were induced following mercuric exposure in a time-dependent 
manner. The kidney showed congestion, hemosiderosis, and hemorrhage with vacuolated tubula r 

epithelium, hyaline droplet degeneration, and necrosis of the tubular epithelium. Supplementation with 
N. oculata, particularly at 10 %, succeeded in alleviating the histopathological induced lesions in the 
kidney. 
Conclusion and clinical relevance: Our findings demonstrate that HgCl2 has nephrotoxic properties that 
led to severe histopathological alterations in the kidney of Nile tilapia, while dietary supplementation 

with N. oculata was able to alleviate the induced kidney alterations.  
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1. INTRODUCTION 

Aquaculture is one of the fastest-growing animal-food-
producing sectors [1], which accounts for nearly half of the 
fish consumed across the world [2]. Tilapia (Oreochromis 
niloticus), is one of the most important farmed species 
commercially traded worldwide [3]. It is the most commonly 
inhabiting and consumed freshwater fish in Africa [4] and the 
second most farmed fish in the world [5]. Tilapia is commonly 
used as a pollution bioindicator in toxicological investigations 
[6-9]. 

In the last few decades, the increase in population 
growth, massive industrialization, and economic activities 
have resulted in increased wastes discharge in the aquatic 
environment with a wide range of pollutants, including heavy 
metals [10, 11]. Mercury (Hg) is one of the most toxic heavy 
metals entering water sources. It is highly toxic, non-
biodegradable, and persistent in the environment with high 
potential to bioaccumulate and biomagnify through the food 
chain [12]. 

 Mercury has been previously reported to induce 
deleterious damage to many body systems biomarkers, 
including the immune [13, 14], reproductive [15, 16], 

hematological [17-19], and nervous biomarkers [20, 21]. 
Mercury induces its toxicity mainly through reactive oxygen 
species (ROS) production, which induces significant damage 
to the molecular components of proteins, l ipids, and DNA of 
cells resulting in protein degeneration, l ipid peroxidation and 
enzymatic inactivation [22]. Oxidative stress under mercuric 
toxicity has been numerously investigated [23-26]. 

Mercury is highly bio-accumulative. Its concentration in 
marine fish tissues can be significantly elevated to levels up 
to 100,000 ppm [27]. Organic Mercury has high 
bioaccumulation potential (up to 5000-times higher than its 
concentration in the surrounding water) [28]. 

ROS induced cellular damage and bioaccumulation of Hg 
eventually result in morphological alterations in fish tissues 
[11], which on the gross level can be visualized through 
histopathology. Liver, kidney, and gil ls are the main target 
organs for mercury accumulation [4, 29-31] and 
histopathological alterations [32-34]. Monitoring 
pathological alterations in tissues and organs dealing with 
bioaccumulation, biotransformation, and excretion are 
essential to understand the toxic effects of chemicals in fish 
[35]. 
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Microalgae are autotrophic, photosynthetic 
microorganisms that have the ability to synthesize 
biologically complex components such as l ipids, proteins, 
carbohydrates, pigments, and polymers [36]. Most 
microalgae have a high content of bioactive compounds, 
including protein, polysaccharides [37], and vitamins such as 
vitamins A, C, E, K, thiamine, pyridoxine, riboflavin, nicotinic 
acid, biotin, and tocopherol [38, 39].  N. oculata cellular 
composition is highly rich in bioactive compounds as proteins, 
polysaccharides and polyunsaturated fatty acids [40] along 
with its pigment content of violaxanthin with β-carotene, 
vaucheriaxanthin, all have antioxidant, anti -inflammatory, 
antimicrobial and immune-stimulant properties [41] making 
N. oculata a potential dietary supplement with high 
nutritional and immune stimulant values [42, 43]. However, 
their potential impact against the metals induced 
histopathological damage hasn’t yet been investigated. 

The present investigation has been carried out to 
investigate the histopathological alterations in the kidney 
following mercury intoxication and to elucidate the 
ameliorative role of the dietary supplementation of the 
microalgae N. oculata against mercury-induced toxicity in 
Nile ti lapia. 

2. MATERIALS AND METHODS 

2.1. Fish maintenance 

Nile ti lapia were procured from a private fish farm in Kafr 
El-sheik. After 2 weeks acclimation period, a total of 120 fish 
(45-50 g) were allocated into 12 glass tanks fi lled with de-
chlorinated tap water, in triplicate (10 fish/tank, 30 
fish/group). Fish were fed twice daily at 2% of their body 
weight. Daily water changes, and removal of fecal matter and 
wastes were carried out to maintain water quality. Water 
quality parameters were maintained during the experiment 
(24 ± 2 °C, dissolved oxygen 6.5–7.8 mg /L, pH 7.1–7.3) . The 
photoperiod was 12 h l ight: 12 h dark. 

2.2. Mercury exposure 

A technical grade mercuric chloride (HgCl 2), (99% purity, 
El-Gomhoreya Chemical Company Cairo, Egypt) was used to 
induce fish toxicity. A stock solution of 1000 mg/L mercury 
was prepared by dissolving the calculated quantity of HgCl2 in 
one Littre of distilled water, then the desired concentration 
in part per million (ppm) was prepared by adding a known 
volume of the stock solution into the glass aquaria. The 
control group was handled similarly, adding distilled water 
without Hg and under identical conditions like other groups.  

2.3 Determination of median lethal concentration (LC50) 

A 96-hr toxicity assay was performed according to 
Organisation for Economic Co-operation and Development 
(OECD) 203 guidelines for testing chemicals [44]. A 
preliminary series of static toxicity tests (0.3, 0.7, 1, 1.5, 3 
mg/L HgCl2) was applied to determine the appropriate range 
of Hg toxicity for Nile ti lapia. Based on these preliminary 
tests, five concentrations (0.9, 1.2, 1.4, 1.5, and 1.7 mg/L) of 
HgCl2 (each in triplicate, ten fish/tank, 30 fish/group) were 

selected, while the control tank was kept without mercuric 
exposure and no food was supplied during the experiment to 
maintain water quality. Test solutions of the chosen 
concentrations were prepared by diluting a 1000 mg/L HgCl2 
stock solution. Mortalities were recorded at 24, 48, 72, and 
96 hrs of exposure, and dead fish were removed regularly 
from the aquaria. The obtained data were statistically 
analyzed using Probit analysis for estimating the LC50 [45], 
and ¼ LC50 was taken as the safe Hg concentration [46]. 

2.4. N. oculata powder 

N. oculata dried powder was purchased from the 
National Research Institute of Cairo, Egypt. 

2.5. Diet preparation  

Diets composition are presented in Table 1. All  ration 
components were mixed with oil, and then water was added 
until  a stiff dough is formed. Diet for each treatment was then 
extruded through a mincer forming strands, and allowed to 
dry in shadow, broken up, sieved into pellets, and stored in 
clean dried plastic bags at 4oC until  use. 

2.6. Experimental design 

Fish were randomly assigned to four groups, namely 
group1: control (basal diet), group 2 (Hg/ exposed to HgCl2 at 
a dose of 0.3 mg/L (1/4 of LC50), and fed basal diet), group 3: 
(Hg+NC5, similar to group2, but fed diet supplemented with 
N. oculata 5%) and group 4 (Hg+NC10, similar to group2, but 
fed diet supplemented with N. oculata 10 %). Fish were fed 
twice daily at 2% of their body weight for 3 weeks. Water was 
changed daily up to 80%, with the addition of a new daily 
stock solution of HgCl 2 to the exposed aquaria, waste 
material, and fecal matter that were siphoned off daily to 
maintain water quality. 

2.7. Sample collection 

Six fish were sampled from each group (2 fish/ tank) at 
weeks 1, 2, and 3 of the experiment. Fish were euthanized 
with 200 mg/L of buffered tricaine methanesulfonate 
(MS222, Argent). The kidney was dissected out of fish and 
subjected to fixation in neutral buffered formalin for 
histopathological examination. 

2.8. Histopathological examination 

The posterior kidney was dried out in a graded ethanol 
series and then embedded in paraffin. Each block of tissue 
was cut into serial sections (5 μm thick) and stained with 
hematoxylin and eosin (H&E) according to the method 
described by Bancroft and Gamble [47]. 

3. RESULTS 

3.1. Determination of LC50 

LC50 was estimated to be 1.2 mg/L Hg, and ¼ LC50 (0.3 
mg/L) was taken as safe sublethal Hg concentration.  

 

 



                             A. Mamdouh et al 2020/ Protective effect of N. oculata on Mercuric-induced toxicity                                                       69 

 

 
Mans Vet Med J 21:3 (2020) 67-73 

Table 1. Ingredients of basal and experimental diets. 

Diet ingredients (g/kg 

diet) 

Control NC 5 NC 10 

Yellow corn 126 146 133 

Soya bean meal 203 200 190 

Fish meal 200 160 150 

Corn gluten 10 30 0 

Gelatine 20 20 20 

Oil 30 35 45 

Wheat bran 400 350 350 

Minerals and vitamins 
premix 

5 5 5 

Salt 3 3 3 

Dicalcium phosphate 1 1 1 

Methionine 2 3.2 3.2 

Algae 0 50 100 

*Trace minerals & vitamins premixes were prepared to cover the levels 
of the microminerals &vitamins for tilapia fish. Vitamins premix (IU or 

mg/kg diet); vit. A 5000, Vit. D3 1000, vit. E 20, vit. k3 2, vit. B1 2, vit. 
B2 5, vit. B6 1.5, vit. B12 0.02, Pantothenic acid 10, Folic acid 1, Biotin 

0.15, Niacid 30. Mineral mixture (mg/kg diet); Fe 40, Mn 80, Cu 4, Zn 
50, I 0.5,Co 0.2 & Se 0.2. 

 

3.2. Histopathology of the kidney 

Kidney at all-time points in the control group showed 
normal glomeruli, renal tubules, and normal capillary system 
in the interstitium (Plate.1). Higher magnification of the 
control kidney showed well developed renal corpuscles with 
normal glomeruli surrounded by Bowman’s capsule, normal 
renal tubules with contact round or oval nuclei, and 
characteristic tall  columnar epithelium. Also, interstitial 
hemopoietic tissue appeared normal (Plate.2). However, the 
kidney of Hg exposed group was in-time dependent manner, 
being more severe at Week 2 and 3 compared to week 1, 
where congestion and hemorrhage in the interstitial tissue 
were observed at week 1, but, more progressive lesion, 
including congestion and necrosis, were more evident at 
week 2 and 3 (Plate.1). Higher magnification of the kidney at 
week 1 showed congestion, hemosiderosis, and hemorrhage 
with vacuolated tubular epithelium. The lesions became 
more progressive than earlier at weeks 2 and 3 showing 
vacuolated tubular epithelium, hyaline droplet degeneration, 
and necrosis of the tubular epithelium at week two while, at 
week three the kidney showed vacuolated tubular epithelium 

with edema, hemorrhage, hemosiderosis and severe necrosis 
(Plate.2). 

Supplementation with N. oculata at 5 % showed less 
severe lesions in the kidney, including congestion in the 
interstitial tissue at weeks 1 and 2 only (Plate.1). Higher 
magnification of the kidney showed vacuolated tubular 
epithelium and congestion in the interstitial tissue during the 
first two weeks, while at week 3, the kidney showed 
vacuolated tubular epithelium and hyaline droplet 
degeneration of the tubular epithelium (Plate.2). Noteworthy 
that the kidney of the fish supplemented with N. oculata at 
10 % showed milder degrees of congestion at weeks 1 and 2 
(Plate.1). Higher magnification of renal sections showed 
milder degrees of congestion with tubular degeneration and 
hyaline droplet degeneration (Plate.2). 

4. DISCUSSION 

Histopathological examination is one of the most 
essential tools in the diagnosis of heavy metals toxicity. Heavy 
metals usually accumulate in specific target organs such as 
l iver, kidney, and gills [4, 29-31], and their presence causes 
tissue damage that could be emphasized by histopathological 
examination [11]. 

The kidney plays a vital role in maintaining internal body 
stability regarding electrolytes, water balance, and the 
elimination of nitrogenous metabolites. It is the leading 
trophic site for mercuric chloride bioaccumulation in chronic 
exposures  [48]. The kidney has been described as a target 
organ affected by mercuric toxicity. 

The kidney of fish from mercury exposed group was  
severely damaged showing congestion, hemosiderosis, 
hemorrhage, and vacuolated tubular epithelium at weak one 
and the lesions became more progressive at weak 2 and 3 
showing vacuolated tubular epithelium, hyaline droplet 
degeneration and necrosis of the tubular epithelium at weak 
two, while at weak three the kidney showed vacuolated 
tubular epithelium with edema, hemorrhage, hemosiderosis, 
and severe necrosis.  

Mercury has a higher affinity towards sulfhydryl groups 
on the cell  membrane, causing a disturbance in active 
transport and cell functions [48]. Therefore, the kidney has 
been reported to be target organs for mercury 
bioaccumulation and increased concentration [48-50]. All 
these reasons contribute to the damage induced by mercury 
in the function and morphology of the kidney.  
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Plate.1. Microscopic pictures of H&E stained sections of kidneys showing normal glomeruli, tubules, hemopoietic tissue (control group) at weak 1 (column A), 2 
(column B) and 3 (column C). Renal sections from Hg exposed group show congestion (red arrows) and hemorrhage (red arrowheads ) in interstitia l 

tissue at weak 1 (column A) and weak 2 (column B), congestion (red arrows) and necrosis (black arrows) at weak 3 (column C). Renal sections from 
Hg+N5 show congestion in interstitial tissue (red arrows) at weak 1 (column A) and 2 (column B) only. Milder degrees of congestion (red arrows) appear 
in renal sections from Hg+N10 at weak 1 (column A) and 2 (column B) only. X: 100 bar 100.  

 

Kidney damage on the histopathological level was also 
reported in Nile ti lapia exposed to 2 µg/g HgCl2 through semi-
static exposure where the kidney showed hydropic 
degeneration, necrosis in the tubular epithelium with hyaline 
droplets and deposition of the pleomorphic crystal [51]. 
Additionally, the kidney of Indian Major Carp (Labeo rohita) 
exposed to 0.1 mg/L HgCl 2 for 30 days showed desquamated 
epithelium, shrinked glomerulus, necrosis and pyknosis of the 
nuclei with hypertrophied cells in renal tubules [48], while 
the kidney of juvenile zebra seabream exposed to 2µg/L HgCl2 
for 28 days showed vacuolar and hydropic degeneration of 
tubular epithelium and pigment deposits around the tubules. 

Large necrotic areas in posterior kidney and eosinophilic 
material fi l led the tubular lumen [50]. 

In our study, supplementation with N. oculata, 
particularly at 10%, was able to diminish histopathological 
alterations in the kidney. This might be attributed to its 
bioactive constituents that have antioxidant, 
immunostimulant, and metal chelating activities, particularly 
violaxanthin and provitamin A (β-carotene [52], α-linolenic 
acid [40], and content of complex anionic sulfated hetero-
polysaccharides, particularly mannans and sul fated 
heterorhamnan [53-56]. 
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Plate.1. Hg exposed group show congestion (red arrows),  hemosiderosis (yellow arrows) with vacuolated tubular epithelium (black arrowheads) at weak 1, 
vacuolated tubular epithelium (black arrowheads), hyaline droplet degeneration (green arrows) and necrosis (black  arrows) at weak 2, vacuolated 
tubular epithelium (black arrowheads), edema (asterisks), hemorrhage (red arrowheads), hemosiderosis (yellow arrows), necrosis (black arrows) at 

weak 3. Renal sections from Hg+N5 after show vacuolated tubular epithelium (black arrowheads), congestion in interstitial tissue (red arrows) at weak 
1 and 2, vacuolated tubular epithelium (black arrowheads) and hyaline droplet degeneration (green arrows) at weak 3. Milder degrees of congestion 
(red arrows) appear in renal sections from Hg+N5 with tubular degeneration (black arrowheads) and hyaline droplet degeneration (green arrows) at 
weak 1 and 2 only. X: 100 bar 100. 

The presence of phenolics [57] and flavonoid compounds 
[55], carotenoids, namely, violaxanthin, astaxanthin, lutein, 
zeaxanthin, chlorophylls a and b and β-carotene contributes 
at a major extent to the antioxidant activity of N. oculata [53]. 
Phenolic compounds and flavonoids are electron donor 
substances that exhibit an essential role in reduction capacity 
[58] and antioxidant activity [55]. They also have metal 
chelating activities [53, 55], which help to lower Hg 
accumulation and the resulting damage. Also,  N. oculate  
have high cellular content of ω-3 poly unsaturated fatty acids 
(PUFAs, α-linolenic (ALA, C18:3 ω3) and eicosapentaenoic 
(EPA, C20:5 ω3)) which constitute about 32 % of the total 
fatty acids [40], along with ω6 fatty acids. These components 
exert vital action in the activation of the immune system; they 
act as l igands to immune cells [59]. 

Ameliorating effects of microalgae against 
histopathological alterations induced by pollutants have been 
reported on many occasions, where dietary supplementation 
with 2% Chlorella pyrenoidosa (C. pyrenoidosa) was able to 
reduce histopathological alterations in the kidney of  Prussian 
carp (Carassius gibelio) exposed to 10 mg/L CdCl 2 for 21 days 
[60]. Similarly, C. vulgaris decreased the intensity of the 
histological lesions in the kidney of  Nile ti lapia intoxicated 
with sodium arsenite (NaASo2) at 7 mg/L for 21 days [61]. 
Additionally, dietary supplementation with Thunbergia 

laurifolia leaf at a dose of 0.2 and 2 mg extract/g food 
managed to decrease morphological alterations in the kidney 
of Nile ti lapia exposed to 45 mg/L of lead nitrate (Pb(NO3)2) 
[62]. 

Conclusion  

Mercuric has nephrotoxic properties, and its toxicity 
elicited severe damage and histopathological alterations in 
the kidney of Nile tilapia, while dietary supplementation with 
N. oculate succeeded in ameliorating mercuric induced 
toxicity and relieved the histopathological lesions in the 
kidney, particularly at level of 10%.  
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