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 Objective: The aim of the present study was to isolate and identify mold species from 

poultry farms with detection of their virulence potential, biofilm formation capability 

and to perform antifungal susceptibility testing to some representative isolates. 

Design: Observational study. 

Animals: Fifty, freshly dead broiler chicks.  

Procedures: A total of 250 samples were collected from 50 diseased chicks (5 samples 

each), including lung, liver, kidney, heart, and tracheal swap. In addition, litter samples 

were collected from 7 poultry farms and were subjected to mycological examination. 

The isolated mold species have been tested for hemolytic activity, catalase, amylase, 

lipase, and biofilm production activity; besides,  detection of virulence genes (rhbA, fos-

1, and pskB) using PCR assay.  .  

Results: A total of 208 mold isolates were identified, with five genera; Aspergillus 

(84.6%), Zygomycetes (12.9%), Acremonium (0.96%), Penicillium (0.96%) and Alternaria 

(0.48%). Mold isolates displayed various degrees of fungal activities on blood agar 

plates, catalase activity, amylase activity, lipase activity, and the ability for biofilm 

production in vitro. Regarding the selected virulence genes, fos-1 was detected in 

A.fumigatus (3 isolates) and A.flavus (2isolates).  While pksP gene was detected in 

A.fumigatus (7 isolates) and A.niger (2 isolates) and rhbA detected in A. fumigatus (8 

isolates) and one isolate of A. flavus of the total evaluated species. The MIC 

determination provide evidence for the high resistance of all evaluated isolates to 

nystatin, and a relatively higher sensitivity was displayed by clotrimazole followed by 

ciclopiroxolamine and tioconazole.  

Conclusion and clinical relevance: The results reveal that most of the fungal isolates 

tested displayed enzymatic activity, which are the most effective virulence factors 

contributing to fungal pathogenicity and high resistance to antifungal, which 

represents a potential public health concern. 
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1. INTRODUCTION 

Fungal/mycotic diseases cause significant economic 
losses to the poultry industry either due to their direct 
infectious nature or due to the production of mycotoxins. 
They induce high morbidity and mortality in young birds, 
stunted growth, and diarrhea. Mycotic infections in poultry 
are frequently associated with immunosuppression, which 
predisposes many bacterial and viral infections [1]. In 
addition, some fungi such as Aspergillus species have 
significant public health importance, especially in 
immunocompromised patients [2]. 

The source of infection to poultry farms occur either via 
using of a moldy litter or from hatcheries facilities when one-
day-old birds have retained conidia arrived at the farms. 
Other sources of farm contamination may occur through poor 

quality feedstuffs, improper bedding management, the 
entrance of air loaded with conidia [3, 4]. In poultry farms, 
humidity, and temperature conditions stimulate the hyphal 
growth and multiplication of fungi leading to the huge 
production of conidia, which are subsequently spread and 
inhaled by the birds [5]. 

Virulence factor is a microbial element causing host 
damages and considered a determinant of pathogenicity [6]. 
Fungi produce an array of extracellular hydrolytic enzymes, 
such as lipases, proteases, and phospholipases. These 
enzymes play an essential role in fungal pathogenicity, such 
as in fungal nutrition, tissue damage, iron acquisition fungal 
dissemination within the human body, and overcoming the 
host immune system [7]. Fungal hydrolytic enzymes not only 
facilitate easier tissue invasion but also they could impair 

https://doi.org/10.35943/mvmj.2020.21.102


  7in poultry farm                                                          of mold Virulence potential S. Mohamed et al. 2020/                                                                       
 

. 
Mans Vet Med J 21: 1 (2020) 6-13 

 
 

 

some mechanisms of the immune system and assist in 
obtaining nutrients, subsequently causing damage to the host 
[8]. Additionally, fungi possessing several genes and proteins 
associated with their pathogenicity [9], fos-1 is a gene 
encoding a putative two-component histidine kinase which 
responsible for osmotic change adaptation regulation, while, 
pksP, a putative polyketide synthase encoding gene, involved 
in pigment biosynthesis [10]. The expression of pksP detected 
in vitro and in vivo has been previously studied by Tsai et al. 
[11] who found transcripts of pksP only during conidiation 
and not in the hyphal stage by northern blot. The Rheb 
proteins comprise a family of Ras-related proteins that 
exhibit deviations from the consensus amino acid sequence 
in the first GTP-binding domain, as well as in the effector 
domain [12]. In a previous study, Panepinto et al. [13] 
created a strain that lacks rhbA gene, the ΔrhbA mutant 
displayed a considerable reduction in virulence compering 
with the wild virulence type.   

Biofilms are defined as a community of microorganisms 
that are attached to a surface and embedded in an 
extracellular polysaccharide matrix, which facilitates the 
adherence of these microorganisms to biomedical surfaces 
concentrate the enzymes produced during the growth which 
helps in further tissue invasion and protect them from host 
immune system and antimicrobial therapy and associated 
with a variety of chronic and persistent infections. The 
infections associated with biofilm formation are difficult to be 
cured with existing drug therapies which leads to a high 
mortality rate [14]. 

Antifungal susceptibility tests are very important tools to 
direct the treatment of fungal diseases, to detect antifungals 
resistance, and to recognize disease epidemiology [15]. The 
resistance in fungi may be developed due to excessive use of 
drugs in farm or due to genetic mutation of the drug target in 
fungi- or due to secretion of the fungal enzyme such as 14- α-
sterol demethylase which are responsible for the resistance 
to azole drugs.  In addition, there are other mechanisms of 
antifungal resistant include increased efflux pump activity 
and decreased target enzyme affinity, also in vivo, there are 
mechanisms of antifungal resistance such as biofilm 
formation, which protects fungi from the action of antifungals 
[16-20]. 

Thus, the current study was planned for the mycological 
examination of diseased chicks as well as poultry litter to 
recognize the possible occupational exposure of poultry 
farmworkers to fungi and their metabolites from poultry 
farms located at Dakahalyia governorate, Egypt with 
detection of its virulence determinants and to determine its 
susceptibility to antifungal agents. 

2. MATERIALs AND METHODS 

2.1. Samples collection 

Tissue samples including liver, lungs, heart, kidneys as 
well as tracheal swab samples were collected from 50 freshly 
dead chicks collected from seven different chicken poultry 
farms located in the district of Mansoura City, Egypt, during 
the period from July to December 2017. On necropsy, the 

most common lesions detected were congestion in the lung 
associated with the presence of nodule in lung tissue. In 
addition, litter samples were collected from the visited farms. 
Each sample was kept separately in a sterile plastic bag, and 
the bags were labeled and kept on ice containers and 
transported to the laboratory for mycological examination. 

2.2. Isolation and identification of fungal isolates 

From each chicken visceral organ, tissue specimen was 
cultured after being touched by flamed spatula then 
homogenized before inoculation. Tracheal swabs were 
streaked with the cotton swaps and litter samples directly 
streaked onto SDA (cat. No. CM2497E) and PDA (was made 
by mixing 200gm potato infusion, agar (15 g) and dextrose 
(20g) plates supplemented with chloramphenicol to inhibit 
bacterial growth, each sample was cultured onto two plates 
to be incubated at 25°C and 37°C and checked daily for any 
fungal growth until ten days [21]. The isolated fungi were 
identified macroscopically by observing colony characters 
and colony reverses in the inoculated plates and 
microscopically using scotch tape preparation stained with 
lactophenol cotton blue stain [22]. 

2.3. Blood Hemolysis test:  

Determination of hemolysin activity was evaluated with 
a blood plate assay, according to Manns et al. [23] using PDA 
supplemented with 7% fresh sheep blood and 3% glucose 
[24]. 

2.4. Detection of mold enzymatic activity 

Amylase production was evaluated using the starch agar 
plate method, as described by SB et al. [25]. In brief, fungal 
isolates were inoculated into potato dextrose agar 
supplemented with 1g of starch. Lugol’s iodine solution was 
added to the culture plate to identify the zones around the 
cultures. Additionally, Catalase activity was assessed by using 
the H2O2 solution, according to Zohri et al. [26]. Furthermore, 
lipolytic activity was determined, as described by Alapont et 
al. [27]. In brief, agar plates containing Tween 80 were 
prepared. Positive results were observed by the formation of 
white precipitation along the periphery of the colony. 

2.5. Biofilm production 

The ability of biofilm formation was determined by tube 
adherence test, according to Dag et al. [28], by using 2% 
safranin. They were then examined for the presence of an 
adherent layer. Biofilm production was scored as negative (-
), weakly positive (+), or strong (++) positive.     

2.6. Determine Minimal inhibitory concentration (MIC)  

The activity of fungal isolates was evaluated against 
clotrimazole, tioconazole, ciclopiroxolamine, fluconazole, 
and nystatin. A stock solution was prepared from each 
antifungal drug to get a final concentration of 1000 μg /ml 
and kept at 4◦C until assayed. MIC for each fungal isolate was 
evaluated according to the method described by Ochei et al. 
[29] and Agbulu et al. [30]. 
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2.7  PCR amplification and gel electrophoresis 

  In total, 49 fungal isolates were screened for the 
presence of three virulence-associated genes. The isolates 
including, A. fumigatus (9 isolates), Zygomycetes (9 isolates), 
A.niger (8 isolates), A. flavus (9 isolates), A. terreus (5 
isolates), A. glaucus (3 isolates), A. nidulans (one isolate), 
Acremonium (Two isolates), Penicillium (Two isolates); and 
Alternaria (Two isolates). Fungal DNA was extracted by the 
QIAamp DNeasy Plant Mini kit (Catalogue no. M501DP100). 
PCR was carried for detection of three virulence genes 
including, fos-1 encoding a putative two-component histidine 
kinase, PksP encoding Polyketide synthase (DHN-melanin 
synthesis) and rhbA is a Ras-related protein. Primer pairs used 
[31]. (target genes, sequences, and PCR products) are 
summarized in Table 1.  PCR was performed in a volume of 25 
µL consisting of 12.5 µL of 2X ABT Red Master Mix (Cat. No 
ABT003), 1 µL of each diluted primer, and 5 µL DNA template, 
nuclease-free water was used for complete the volume into 
25 µL. PCR program was conducted, as mentioned by the 
referred authors for each gene (Table 1).  The PCR products 
were fractionated on a 1.2% agarose gel using a 1X TBE buffer 
containing 3 µL ethidium bromide and using ABT100bp plus 
DNA ladder (Cat. No ABT011) and were visualized under UV 
light, and the gels were photographed using a UV gel 
documentation system. 

3. RESULTS 

 In total, 208 isolates were identified by macroscopic and 
microscopic examination including, 196 isolates from the 
diseased birds and 12 isolates from litter samples. Five genera 
were identified: Aspergillus (84.6%), including six species (A. 
fumigatus (32.69%), A. flavus (20.6%), A. niger (26.9%), A. 
terreus (2.4%), A. glaucus (1.4%), and A.nidulans (0.48%), 
Zygomycetes (12.9%) including Mucor and Rhizopus, 
Acremonium (0.96%), Penicillium (0.96%) and Alternaria 
(0.48%) (Table 2). 

 The distribution of fungal isolates in different samples is 
presented in Table 2, Nineteen A. fumigatus isolates were 
recovered from the lung tissue. The prevalence of A. 
fumigatus was higher in winter than in hot climate followed 
by A. niger (15 isolates) and A. flavus (11 isolates), 
Zygomycetes (6 isolates), A. terreus and A.glaucus (2 isolates 
each), Acremonium, A. nidulans and Penicillium spp (one 
isolate each). In tracheal swaps, A. niger was the most 
prevalent isolates (8 isolates) followed by A. Fumigatus (6 
isolates), A.flavus (5 isolates), Zygomycetes (3 isolates) and 
one isolate of Penicillium. In the examined heart samples, A. 
fumigatus (16 isolates) was the most common isolates 
followed by A. flavus (6 isolates), then A. niger (5 isolates), 
zygomycetes, A. terreus and A. glaucus (one isolate each). 
Regarding liver samples, A. fumigatus (14 isolates) was the 
most prevalent, followed by A. flavus (10 isolates), A. niger (9 
isolates), and Zygomycetes (4 isolates). Finally, in kidney 
samples, A. niger was the most prevalent isolates (16) 
followed by A. fumigatus (9 isolates) and A. flavus (9 isolates), 
then Zygomycetes (6 isolates), Acremonium, A. terreus, and 
Alternaria (one isolate each). 

Fungal isolates were plated on a blood agar plate for the 
detection of their hemolytic activity. Fungal isolates displayed 
various degrees of fungal activities on blood agar plates, 22% 
of A. fumigatus 39% A. niger 18.6%, A. flavus 33% 
Zygomycetes displayed hemolysis on blood agar plates. 
Catalase activity has been revealed by A. fumigatus (45.5%), 
A. niger (57%), A. flavus (60%), A. terreus (20%), Zygomycetes 
100%, Penicillium 50%. While, amylase activity was displayed 
by A. fumigatus 66%, A. niger (64%), A. flavus (46.8%), A. 
glaucus (33%), Acremonium (100%), Penicillium 50%. In 
addition, lipase activity was detected by A. fumigatus (47%), 
A. niger (66%), A. flavus (58%). A.terreus (20%), Zygomycetes 
(11%). Biofilm production in vitro has been displayed by A. 
fumigatus (86.7%), A. niger (78.5%), A. flavus (79%), A. 
terreus 20%, Acremonium (50%), Penicillium (50%), 
Zygomycetes (14.8%) (Table 3).  

Regarding litter samples, A. fumigatus, A. flavus, A. niger, 
and mucor spp were isolated. Interestingly, A. niger and A. 
fumigatus were common isolates from both birds samples 
and litter samples.  A. fumigatus was isolated from straw, 
deep litter, and rice husk type, while, A. niger was isolated 
from the same samples as well as sawdust. On the other 
hand, Zygomycetes were isolated from deep litter and 
sawdust, while A. flavus was isolated from rice husk litter. The 
prevalence of fungi was higher in straw, deep litter, hay than 
sawdust.  

In total, Aspergillus species were the most predominate 
isolates including, A.  fumigatus (68; 32.69%), A. niger (56; 
26.92%), A. flavus (56; 26.92%), A. terrus (5; 2.4%) A. glaucus, 
A. nidulans (1; 0.48%), followed by Zygomycetes (27; 12.9%); 
while the prevalence of Penicillium, Alternaria, and 
Acremonium were 0.96%, 0.96%, and 0.48 %, respectively 
(Table 3). 

In total, 49 representative isolates were screened for the 
presence of three virulence genes. A. fumigatus (9 isolates), 
Zygomycetes (9 isolates), A. niger (8 isolates), A. flavus (9 
isolates), A. terreus (5 isolates), A. glaucus (3 isolates), A. 
Nidulans (one isolate), Acremonium (Two isolates), 
Penicillium (Two isolates), Alternaria (Two isolates).  
Regarding fos-1 gene, it was detected in A. fumigatus (3 
isolates) and A.flavus (Two isolates), rhbA was detected in A. 
fumigatus (8 isolates) and one isolate of A. flavus, while, Pksp 
2 was determined in A. niger (2 isolates) and seven isolates of 
A. fumigatus (Table 4). 

The susceptibility testing of antifungal drugs was carried 
out using the agar dilution method.  As it shown in Table 5, 
Minimum Inhibitory concentration (MIC) for clotrimazole 125 
μg /mL with A. niger and A. flavus and 500 μg /ml on A. 
fumigatus and 250 μg /mL on A. glaucus and 1000 μg /mL on 
Acremonium and Zygomycetes, while, ciclopiroxolamine 125 
μg /mL on A. niger and A. terrus and 1000 μg /ml on A. flavus, 
and 500 μg /mL on A. fumigatus and A. niger, tioconazole 
1000 μg /mL A. glaucus, A. nidulans and A. flavus 125  μg /mL 
on A. terreus, fluconazole only affect Acremonium with a 
concentration of 1000μg /Ml. All fungal isolates were 
resistant to nystatin. Aspergillus species and Zygomycetes 
were resistant to fluconazole. While Acromonium isolates 

https://www.google.com/search?q=A.+Nidulans&spell=1&sa=X&ved=2ahUKEwih3drR7eTmAhXK8uAKHabmC70QkeECKAB6BAgRECU
https://www.google.com/search?q=A.+Nidulans&spell=1&sa=X&ved=2ahUKEwih3drR7eTmAhXK8uAKHabmC70QkeECKAB6BAgRECU
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were susceptible to fluconazole (1000μg/mL). Zygomycetes 
showed more resistance to clotrimazole, tioconazole, 
ciclopiroxolamine than the relatively more 
susceptible Aspergillus spp. (MIC 125–1000 μg/mL).  

 

Table 1. Oligonucleatide primers sequences used in this study. 

Amplicon Primer sequences Target gene Protein 

424 
 

ATGCACATATTGCTGGTGGA fos-1-F Histidine kinase 

AATCAGGTCTTGTCCCAACG fos-1-R 

 
398 

AGCGACGACTACCGTGAGAT pksP-F Polyketide synthase 

AGAATGGGATCGTTGTCAGC pksP-R 

 
414 

TGGGCAAATCGTCTCTTACC rhbA-F Ras-related protein 
AGTCGAGACGAGCACTAGCC rhbA-R 

 

 

Table 2. Prevalence of different fungal isolates in the tested birds and litter samples. 
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 % 

Lung 19 15 11 2 2 1 1 6 1 0 58 27.88 

Tracheal swap 6 8 5 0 0 0 0 3 1 0 23 11 
Liver 14 9 10 1 0 0  0 4 0 0 38 18.26 
Kidney 9 16 9 1 0 0 1    6 - 1 43 20.6 
Heart 16 5 6 1 1 0 0    5 0 0 34 16.34 
Litter  4 3 2 0 0 0 0 3 0 0 12 5.76 
Total 68 56 43 5 3 1 2 27 2 1 208  
% 32.7  26.9  20.6 2.4 1.4 0.48 0.96 12.9 0.96 0.48   

 

 

 

Table 3. Screening of fungal isolates for Heamolysin, catalase, lipase, amylase, biofilm production in a total of 208 fungal isolates. 

Fungal isolates Number 
isolates 

Hemolysis Catalase Amylase Lipase Biofilm 
No. % No. % No. % No. % No. % 

A.fumigatus 68 15 22 31 45.5 45 66 32 47 59 86.7 

A.niger 56 22 39 32 57 36 64 37 66 44 78,5 
A.flavus 43 8 18.6 26 60 21 46.8 25 58 34 79 
A.terrus 5 0 0.0 

buy0 
1 20 0 0.00 1 20 1 20 

A.nidulance 1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 
A.glaucus 3 0 0.00 0 0.00 1 33 0 0.00 0 0.00 
Total aspergillus 177 45 25.42 90 50.85 103 58.19 95 53.67 139 78.53 
Acremonium 2 0 0.00 0 0.00 2 100 0 0.00 1 50 
Zygomycetes 27 9 33 27 100 9 33 3 11 4 14,8 

Penicillium 2 0 0.00 1 50 2 100 0 0.00 1 50 

Alternaria 1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 
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Table 4. The distribution of virulence genes in the tested fungal isolates (49) tested 

SPP Number  of isolates fos-1 pksP rhbA 

A. Fumigatus 9 3 7 8 
A. Flavus 9 2 - 1 
A. Niger 8 - 2 - 
A. Terrus 5 - - - 
A. Glaucus 3 - - - 
A. Nidulance 1 - - - 
Acremonium 2 - - - 
Zygomycetes 9 - - - 
Penicillium 2 - - - 
Alternaria 1 - - - 

 

Table 5. Minimal inhibitory concentration of the tested isolates against antifungal agents. 

Zygomyc-
etes 

Acremo-
nium 

Aspergillus Drug 

Nidiulance Glaucus Terrus Flavus Niger Fumigatus 

1000μg /ml 1000μg /ml resist 250μg /ml resist 125μg /ml 125μg /ml 500μg /ml Clotrimazole 

Resist resist 1000μg /ml 1000μg /ml 125μg /ml 1000μg /ml Resist Resist Tioconazole 

Resist resist resist Resist 125μg /ml 1000μg /ml 500μg /ml 500μg /ml Ciclopiroxola
mine 

Resist 1000μg /ml Resist Fluconazole 

Resist Nystatine 

 

 

4. DISCUSSION  

 Mycotic infection in poultry is considered one of the 
most severe problems affecting poultry resulted in high 
economic losses due to high morbidity and mortality in young 
chicken as well as immunosuppression in birds. Mycotic 
diseases can be expected due to the extensive use of 
antibiotics preparations in the treatment of many diseases 
and as feed additives, which enhance mycotic complications.         

Litter is one of the primary sources responsible for fungal 
contamination in poultry farms [32]. The process of spreading 
of litter or after being used and removed from poultry farms 
represents a serious hazard to the farmworker due to 
frequent exposure to dust, fungi, and their metabolites 
during their task [33, 34]. Therefore, it is crucial to identify 
mycoflora of poultry litter to recognize the possibility of 
occupational exposure of poultry workers to the pathogenic 
fungal species.  

By mycological examination of chicken samples, 196 
fungal isolates have been recovered. The prevalence of fungi 
was higher in lung tissue (27.88%) comparing to the other 
examined samples, similar to what obtained by Sajid et al. 
[35] and Abdeltawab et al. [36]. Aspergillus was the most 
common genus recovered (84.61%), followed by 
Zygomycetes (12.9%). In addition to previously mentioned 
species, other genera were also isolated, namely, 

Acremonium, Penicillium (0.96 % each), and Alternaria 
(0.48%) (Table 2). Among Aspergillus genus isolates, A.  
fumigatus was the most frequent (32.96%) followed by A. 
niger (26.92%) then A. flavus (20.6%). The reason for the 
variations in different studies may be due to sample size, 
environment factors, seasonal variation, nutrition 
requirements, and virulence factors of these fungi [37]. 

Aspergillus fumigatus was common isolates from both 
chicks' organs and litter samples. Aspergillosis has been 
described either as an acute infection leading to severe 
outbreaks in young birds or as a chronic condition responsible 
for low productivity and economic losses in adult birds. 
Aspergillosis should be suspected when birds suffered from 
debilitation, respiratory distress, without response to 
antibiotics treatment .  The incidence of A. 
fumigatus infection is usually higher in poultry as the spores 
of this species are smaller than those of other species of 
Aspergillus [38]. But the role of other Aspergillus species that 
may affect birds couldn’t be ignored [39]. 

Concerning litter, out of Seven litter samples collected 
from 7 poultry farms, twelve fungal isolates were recovered, 
including four fungal species identified as A. fumigatus (4 
isolates), A. niger (3 isolates), A.flavus (3 isolates) and three 
isolates of Zygomycetes. These findings were in line with 
Anbu et al. [40], who stated the most prevalent species 
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isolated in the litter were Fusarium solani, A. nidulans A. 
flavus, A. niger, and other fungal genera. On the other hand, 
Viegas et al. [41] reported Penicillium as the most prevalent 
isolate from poultry litter in addition to Aspergillus species. 
The diversity of litter mycoflora may be contributed to the 
material choice, litter aging, and handling techniques [42]. 

The presence of virulence factors confirmed the 
pathogenicity of the isolates. Pathogenesis of aspergillosis is 
dependent on various factors of the host (immune status) 
and virulence factors of the pathogen.  The principal mode of 
action of these virulence factors is as follows cause 
degradation of tissue carbohydrate (α–amylase) and lipids 
(lipase), Haemolysin causes lysis of red blood cells [43]. 
Catalase helps in detoxification of reactive oxygen species 
(ROS) produced by macrophages and neutrophils [44]. 
Aspergillus catalase plays a potential role in allowing the 
organism to escape or to minimize hyphal damage by 
inactivating hydrogen peroxide [45]. Higher prevalence of 
enzymatic activity was recorded in a study conducted by Zohri 
et al.  [26], where out of eighty isolates of Aspergillus species, 
all of the tested isolates were able to produce catalase and 
peroxidase enzymes. Meanwhile, 82.5-90% of the fungal 
isolates could produce protease, lipase, urease, and 
phospholipase. Whereas 70% of isolates exhibited hemolytic 
activities. In another study, out of 110 tested isolates 73, 92, 
and 78 produced protease, lipase, and urease, respectively; 
meanwhile, 77 of the tested isolates exhibited some 
hemolytic activities [46]. 

Interestingly the overall prevalence of the assessed 
virulence factors, the prevalence was found more in 
Aspergillus species, especially A.fumigatus isolated from 
chicks samples then environmental samples; this could be 
due to invasiveness nature of Aspergilli.  

In addition to the evaluated extracellular hydrolytic 
enzymes in fungal isolate, we used PCR assay for the 
detection of genes responsible for the virulence of fungi. 
Three genes were targeted to be tested with PCR. (fos-1, 
pksP, and rhbA) which are involved in aspergillus infection 
such as evasion from the immune response, and the conidial 
melanin-DHN (pksP/alb1 gene). Our results revealed that fos-
1 was detected in A.fumigatus (3) and A.flavus ( 2).  While 
pksP detected in A.fumigatus (7) and A.niger (2).  rhbA 
detected in A.fumigatus (8) and A.flavus (1). The detection of 
such genes in our isolates confirms the pathogenicity of these 
species and their important role in pathogenicity.  

Many different studies have demonstrated that fungal 
biofilms show increased levels of resistance against many 
classes of antifungal drugs, especially azoles and polyenes 
[47]. Studying the ability of biofilm formation is very 
important as the incidence of mycotic infections has 
dramatically increased nowadays, which is frequently 
associated with biofilm formation on implanted biomaterials 
and/or host surfaces [48]. In this study biofilm production as 
revealed by 86.7% (59/68) A. fumigatus , 78.5% (44/56) 
A.niger,79% (34/43) A.flavus, 20% (1/5) A.terreus, 50%(1/2) 
Acremonium, 14.8%(4/27) 50% (1/2) Penicillium.  

 In this study, we investigated the in-vitro efficacy of 
antifungals against five representative fungal isolates from 
diseased chicken and litter cases using microdilution assays. 
As is the case of bacteria, no single antifungal was most 
effective for all fungi. Clotrimazole has the lowest MIC against 
A.niger and A. terreus. Tioconazole has the lowest activity 
against A.terreus. Ciclopiroxolamine also has the lowest MIC 
against A.terreus. Mostly all isolates were resistant to 
fluconazole and nystatin. Long-term use of azole drugs for 
aspergillosis is the major reason for the emergence of azole 
resistance [49]. Also, the improper use of fungicides in 
agriculture results in the increase in azole resistance [16, 50]. 
Interestingly, the high resistant to fluconazole explained also 
by Odds et al. [51] who found that in vitro susceptibility tests 
in new triazole and fluconazole did not accurately reflect the 
therapeutic efficacy while the activity of fluconazole in vivo 
animal model infection was found to be several times greater 
than the predicted in vitro measures. Besides, earlier studies 
showed that A. fumigatus that resistant to antifungals was 
observed has the capability of biofilm formation [52]. 

The MIC determination provides an evidence for nystatin 
treatment failures in clinical cases of aspergillosis and other 
isolates. The best effective drug on isolates is clotrimazole 
followed by ciclopiroxolamine and tioconazole. Following the 
current study, Guarro et al. [53] confirmed that Acremonium 
spp. are generally resistant to the most commonly used 
antifungal agents.  

Conclusion 

In conclusion, Effective prevention of mycotic infections 
throughminimization of stress factors,strict hygienic 
measures, good litter management practice, and sanitation in 
brooders and hatcheries should be considered. Control 
measures like strict biosecurity program, and regular 
monitoring of fungal infections as well as appropriate use of 
anti-fungal drugs Should be followed.  
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