EFFECT OF ORGANIC MULCH MATERIALS ON MAIZE PERFORMANCE AND WEED GROWTH IN THE DERIVED SAVANNA OF SOUTH EASTERN NIGERIA.

*ESSIEN, B. A.; J. B. ESSIEN; J. C. NWITE; K. A. EKE; U. M. ANAELE; J.U. OGBU

Federal College of Agriculture, Ishiagu, Ebonyi State. Nigeria *e-mail: baessien2004@yahoo.com

ABSTRACT

The experiment was conducted at the Research and Teaching Farm of the Federal College of Agriculture, Ishiagu during 2008 cropping season, to assess the effect of organic mulch materials (Plant and Animal) on the performance of maize and weed growth in the derived savanna. The experiment was laid out in a Randomized Complete Block Design (RCBD) with six (6) treatments replicated three(3) times. Weeds flora, composition, growth and yield parameter of crop were collected. Results showed that Graminaea, Asteraceae and Solanaceae weeds families were predominant. Annual weed species, mostly broad leaves and grasses dominated the area. There was a significant ($P \le 0.05$) suppression of weeds in all the treatments, except on no application. Maize growth and yields were not significantly influenced by the soil amendment. Amongst the treatments however, poultry dropping and a combination of soil amendments produced the highest crop growth and yield, and no application produced the lowest. This research work proves the significance of organic mulch materials on weed suppression and crop performance.

KEYWORDS: Organic Mulch, Maize, weed

INTRODUCTION

The intensification of crop production by the farmers in the derived savanna of south eastern has caused land to become more prone to soil degradation as a result of shorter or absence of fallow period. Farmers in the area, due to enormous constraints such as weed infestation cost and unavailability of fertilizers and its effect on environment do not use chemical fertilizers (Conwey,1987) and herbicide; rather find alternative sources of increasing soil fertility and controlling of weeds (Lampkin,1990). These sources are often cheaper, efficient, sustainable and economical than inorganic compounds. The technique used by the farmer to maintain soil fertility and control weeds tends to enhance organic matter content, increase the efficiency of nutrient use by closing the nutrient cycle, by returning the exported nutrients to crop land and by minimizing nutrient loss from the agro-ecosystem (Lal and Pierce, 1991).

Improving land for production require systems that will not be detrimental to the land and the environment. The application of organic manure as mulching materials improves soil physical and chemical properties. Mulching is particularly effective in mechanical and biochemical (allelopathic) weed suppression and will reduce or even obviate the use of herbicides (Poll, 1997). It provides an energy source to soil micro and macro-organisms, which degrade the organic materials and liberate nutrients for crop use (Tian *et al*, 1994), and reduces the need for heavy application of nitrogen fertilizers thereby minimizing possible nitrate contamination of ground water, as well as improving soil water status by increasing infiltration rates, reduce evaporation and also stimulate growth of soil biota. (Gershuny and Sinottie, 1986).

In the derived savanna of the south eastern Nigeria, various organic waste materials are used knowingly or unknowingly for soil fertility improvement after decomposition thereby increasing crop growth and development (Yamoah *et al*, 1986; Shukla, 1990). The challenge facing agronomists and soil scientists is how to increase food production by better soils and weed management in the traditional farming systems (Babatola and Olaniyi, 1997); since an ideal agricultural system must be productive and sustainable (FFTC, 1997). It has been established that the type of organic resources used have an effect on the decomposition and nutrient release rates. Fast decomposers provide large amounts of nutrients in early stages of crop growth but

Niger Agric. J. 40 No. 1 (2009): 255 - 262

Essien, B. A.; J. B. Essien; J. C. Nwite; K. A. Eke; U. M. Anaele; J.U. Ogbu

may not influence soil physical conditions; whereas slow decomposers have the opposite effect (Tian *et al*, 1993).

Some green manure decompose faster and release nutrients much quicker in the early stages of plant growth thus contributing more to the initial supply of plant nutrient (Ladd *et al*, 1987). Farmyard manures on the other hand act as slow nutrient release fertilizers. This characteristic is desirable as there is a reduction in the leaching loss of nitrogen (N) due to the slow decomposition rate and slow release of ammonium (NH_4) and its resulting slow conversion rate to nitrate (Nurwira and Kirchman, 1993).

Legume residue with other wastes material suppresses weed growth and these mulching have been found beneficial in various agro-ecosystem in the tropics (IITA, 1993; Babatola and Olaniyi, 1997). A lot of work has been done on the period of weed competition on crops and considerable attention paid to various chemical and mechanical weed control method. However, studies on cultural method of weed control particularly, the use of organic mulch materials is comparatively fewer. This perhaps explains why Munger *et al* (1987) ascertained that although the effects of weed competition on crop morphology and yield are well documented, the influence of organic mulch materials in suppressing weeds to achieve minimum weed competition is still poorly understood. Against this background, the study was design to assess the contribution of organic mulch materials on maize performance and weed suppression in the derived savanna agroecosystem of southeastern Nigeria.

MATERIALS AND METHODS

Location:-

The experiment was conducted at the Teaching and Research Farm of the Federal College of Agriculture, Ishiagu, Ebonyi State during 2008 cropping season. The area lies within latitude $05^{\circ}56^{\circ}N$ and longitude $07^{\circ}41^{\circ}E$ in the derived savanna zone of South Eastern Nigeria. The area has a wet season from April to October and a dry season from November to march with mean annual rainfall and temperature of 1350mm and $20^{\circ}C$, respectively (FCAI, 2003). The soil is characterized by hydromorphic belonging to the order ultisol and also classified as Type-Haplustult (FDALR, 1985). They are sandy loam with moderate soil organic content on the top soil. A Randomized Complete Block Design (RCBD) was used with 6 treatments replicated 3 times and the treatment used in each plot measuring 3 X 3m include cow dung (CD), poultry dropping (PD), saw dust (SD), Legume mulch (LM), No application (NA) and cow dung + poultry dropping + saw dust + legume mulch (CD + PD + SD + LM). Each treatment used as soil amendment were measured out in tons/ha (0.02t/ha).

Weed composition on the site before clearing:

The composition of weeds flora on the site were determined before clearing. At the site, pathways were created and plots demarcated. Weed samples were collected using 0.2cm X 0.2cm quadrant/plot; species of weed were identified and counted (Table 1.). It was observed that, weed flora composition on the site comprised 48 species made up of 20 families. The family Gramineae, Asteraceae and Solanaceae were most represented with the percentage of 18.8%, 14.9% and 10.4% respectively. Annual weeds species were observed to be predominant (72.9%) while perennial weeds accounted for only 27% of the total flora. Broadleaf weeds were predominant (70.8%), grasses (16.7%) while sedge and spiderwort constituted only 12.5%. Most of the specie of weed flora observed were widespread across the treatments but with low density.

Table I: Weed Flora Composition of Experimental Site before clearing:

Weed species	Family	Morphology	Life cycle
Ageratum conyzoides	Asteraceae	BL	A
ChromolaenaOdorata	Asteraceae	BL	Р
Peporomia pellucid	Piporceae	BL	А
Calopogorum mucuroides	Papilionaceae	BL	А
Mimosa pudica	Mimosaceae	BL	А
Physalis angulata	Solanaceae	BL	А
Imperata cylindrical	Gramineae	G	Р
Synedrella nodiflora	Asteraceae	BL	A
Synedrella nedillora	Compositae	BL	Р
Oldenlandia corymbosa	Rubiaceae	BL	A
Euphorbia hyssopifolia	Euphorbiaceae	BL	A
Setaria barbata	Gramineae	BL	A
Euphorhia hirta	Euphorbiaceae	BL	A
Aspililo africana	Asteraceae	BL	A/P
Bidens pilosa	Asteracene	BL	A
Centrosema pubescens	Papilionaceae	BL	A
Emilia coccinea	Asteraceae	BL	A
Tridax procumbens	Asteraceae	BL	A
Cynodon dactylon	Gramineae	G	P
Digitaria horizontalis	Gramineae	G	A
Paspalum orbiculare	Gramineae	G	P
Setaria longiseta	Gramineae	G	A
Euphorbia heterophylla	Euphorbiaceae	BL	A
Solanum nigrum	Solanaceae	BL	A
Solanum torvum	Solanaceae	BL	A
Schwenkia americana	Solanaceae	BL	A
Amaranthus viridis	Amaranthaceae	BL	A
Celosia argentea	Amaranthaceae	BL	A
Celosia argeniea Commelina erecta	Commelinaceae	SP	P
Commetina erecia C. diffusa	Commelinaceae	SP	P
55	Convolvulaceae	BL	r A
Ipomoea violacea I. involcucrata	Convolvulaceae	BL	A
		BL S	A P
Cyperus rotundus	Cyperaceae	BL	r A
Spigelia anthermia Urena lobata	Loganiaceae Malvaceae	BL BL	A
			A P
Portulaceae oleroceae	Portulacaceae	BL	-
Talinum triangulare	Portulacaceae	BL	A
Mitracarpus scaber	Rubiaceae	BL	A
Rottboellia cochinchinensis	Graminacae	G	A
Mariscus umbellatus	Cyperaceae	S	Р
Corchorus olitorius	Tiliaceae	BL	A
Cassia occidentalis	Caesalpiniaceae	BL	А
Stachytarpheta cayennensis	Verbenaceae	-	-
Mariscus alternifolius	Cyperaceae	S	Р
<i>Eleusine indica</i>	Graminacae	G	A
Chromoleaena odorata	Asteraceae	BL	A
Panicum maximum	Gramineae	G	A
Sida acuta	Mulvaceae	BL	Р

Niger Agric. J. 40 No. 1 (2009): 255 - 262

-257-

Essien, B. A.; J. B. Essien; J. C. Nwite; K. A. Eke; U. M. Anaele; J.U. Ogbu

BL=Broadleaf, G = Grass, SP = Spiderwort, S=Sedge, A=Annual P=Perennial.

Early maturing, open pollinated maize variety (MMV 400) as a test crop obtained from the College were sown same day in all the plots at a spacing of 50cm x 50cm at 2 seeds/hole at a depth of 3cm. Treatments were applied to the plots on the surface immediately after sowing. At 4 weeks after sowing (WAS), weed flora composition were determined in each plot and were identified and the frequency of occurrence recorded and maize yield parameters were measured too. Data collected were subjected to analysis of variance (ANOVA) technique and significant means were separated using LSD (P \leq 0.05).

RESULTS AND DISCUSSION:

Effect of treatment on weed flora composition:

The species of weed population were generally low among the treatments; but it was observed that zero treatment (NA) produced the highest weed population (Table 2). This is probably due to the fact that the soil was bare and weed species received adequate growth resources. The benefit of residue mulching in cultural weed control, crop growth and yield improvements derives from its effectiveness in suppressing weed by mechanical and allelopathic means (Akobundu, 1987). The efficiency of mulching depends on the type of mulch materials persistence, thickness of mulch cover, environmental conditions (Smith *et al* 2002), which might have caused the reduction in some weed species in the combined treatments, and could primarily be attributed to local weed distribution. Some species of weeds such as, *Oldenlandia crymbosa, Euphorbia hyssopifolia, Peporomia pellucida* and *Physollis angulata* across the treatments show high frequency occurrence. This could be as a result of rapid release of nutrients into the soil from the mulch material. This agrees with the work of Buckles *et al* (1998), who stated that mulch material of plants and animals, when incorporated into the soil stimulate the rooting of weeds and enhance their growth. *Cyperus rotundum* weed species observed in the plot of saw dust treatment, not present before as in Table 1, could be as a result of input of weed seeds from mulch material on local weed occurrence pattern.

All mulch treatments except No application (NA) reduced weed occurrence considerably compared to weed species observed in the vegetation before clearing. On the other hand, the plots were infested by annual broad-leaved weeds and grass species, as Asteraceae family being the dominant species compared to perennial weed species (Table 2).

Table 2: Effect of weed treatments on weed flora composition

Trt	Weed species	Common Name (CN)	Family	Μ	FQ	LC
	Ageratum conyzoides	Goat weed	Asteraceae	BL	3	А
	Eupatorium odoratum	Siam weed	Compositae	BL	1	Р
	Paperomia pellucida	Shinny bush	Piperaceae	BL	2	А
CD	Mimosa pudica	Sensitive plant	Mimosaceae	BL	2	А
	Calopogonum mucunoides	Catopo	Papilionaceae	BL	5	А
	Physalis argulata	Chinese lantern	Solanaceae	BL	12	А
	Emilia coccines	Emilia	Asteraceae	BL	31	А
	Tridax procumbens	Tridax	Astereceae	BL	4	А
	Mariscus alternifolius	-	Cyperaceae	S	6	Р
	Senna occidentalis	Cassia	Ceaeselpiniaceae	BL	5	Р
	Imperata cylindrical	Spear grass	Gramineae	G	3	Р
	Ageratums conyzides	Goat weed	Asteracease	BL	2	А
	Synedralla nodillora	Yellow starwort	Compositue	BL	3	А
NA	Eupatorium odoratum	Siam weed	Compositae	BL	4	Р

Niger Agric. J. 40 No. 1 (2009): 255 - 262

-258-

	Mimosa pudica	Sensitive plant	Mimosaceae	BL	2	Р
	Panicum maximum	Panicum	Gramineae	G	12	А
	Oldenlandia corymbosa	Linn	Rubiacease	BL	13	Р
	Sida acuta	malvaceae		BL	2	Р
	Commelina erecta	Commelinaceae		SP	4	Р
	Oldenladia crymbosa	Linn	Rubiaceae	BL	15	А
	Imperata cylindrical	Spear grass	Craminaceae	G	2	Р
	Setaria barbata	Kunth	Graminaceae	BL	4	А
	Euphorbia hyssopifolia	Hyssop spurge	Euphorbiaceae	BL	15	А
PD	Calopogium mucunoides	Calopo weed	Papilionaceae	BL	2	А
	Ageratum conyzoides	Goat weed	Astereceae	BL	3	А
	Peporomia pellucida	Shinny bush	Piporaceae	BL	4	А
	Synedralla nodillora	Yellow starwort	Compositae	BL	4	А
	Mimosa pudica	Sensitive plant	Mimosaceae	BL	3	Р
	Ageratum conyzoides	Goat weed	Asteraceae	BL	2	А
LM	Oldenlandia corymbosa	Linn	Rubiaceae	BL	14	А
	Imperata cylindrical	Spear grass	Graminace	G	2	Р
	Calopogronum mucunoides	Calopo weed	Fabaceae	BL	2	А
	Euphatorum odoratum	Siam weed	Compositae	BL	1	Р
	-		-			

CD+PD+LM+SD

	Euphorbia hirta	-	Euphorbiaceae	BL	1	Α
	Solanum torvum	-	Solanaceae	BL	2	Α
	Ageratum conyzoides	Goat weed	Arteraceae	BL	1	Α
	Tridax procumbens	Tridax	Asteraceae	BL	1	Р
SD	Commelina diffusa	Commelina	Commelliaceae	S	3	Р
	Cyperus rotundum	Cyperaceae	Sedge	S	2	Р

- CD = cow dung, NA = No application, PD = Poultry dropping, LM = Legume mulch, SD = Saw dust, BL = Broad leaf, S = sedge Trt=Treatment CN = Common Name M=Morphology
- FQ = Frequency LC = Life Cycle

G=Gross

Trt Plant Height (CM)			Leaf Number			Sten	Stem Girth (CM)		LAI (CM ²)			
	2	4	6	2	4	6	2	4	6	2	4	6
CD	18.40	46.13	49.40	6.53	7.53	9.20	2.29	5.33	6.99	44.45	291.39	526.45
ND	14.13	27.50	49.47	5.53	6.00	6.20	1.71	2.95	3.69	25.9	113.80	260.63
PD	17.93	50.27	130.03	4.99	8.20	10.7	2.33	6.58	5.15	48.62	360.29	639.01
LM CD+PD +LM+S	18.40	40.13	73.40	3.34	6.87	8.93	2.07	5.05	6.28	30.88	210.44	515.49
SD	18.42	50.51	68.75	6.01	9.93	10.80	2.81	6.60	6.65	47.30	342.00	589.32
	15.12	27.50	47.23	4.52	6.53	7.73	2.40	3.50	4.52	32.10	114.52	360.47
LSD (0.05)	NS	NS	NS	2.5	NS	NS	NS	NS	0.42	NS	NS	56.4

Essien, B. A.; J. B. Essien; J. C. Nwite; K. A. Eke; U. M. Anaele; J.U. Ogbu

WAP= Weeks After Planting

LAI = leafArea Index,

Trt = Treatment

Effect of treatment on growth parameters:

Results (Table 3) show the effect of treatments on crop growth. Results revealed that PD produced the tallest plant height while SD produced the shortest plants. This could be attributed to the faster decomposition and released of nutrient by the poultry dropping (PD). Tian, *et al* (1993) had earlier stated that fast decomposers provide large amount of nutrient in early stage of crop growth, and the contribution of the mutual supply of plant nutrient also affected other growth parameters.

The slow growth rate observed in saw dust (SD) treatment might be due to the efficiency of the treatment to suppress germination and early growth of crop.

However, the slow growth rate observed among treatments could be as a result of competition with weed seed germination and root sprouting that is supported by the release of nutrient from the soil amendment materials. Smith *et al* (2001) and Budelman (1991) observed that rapid released of nutrients to the soil facilitate a rapid resurgence of weed growth and also enhance the activities of micro-organisms involved in mulch decomposition with the same effect on weed emergence, and that there is need for one early supportive weeding to reduce crop yield losses due to weed interference, although the interference effect of weed specie on crop differs. This was earlier observed by Ibe (2002) who stated that no two weeds are exactly the same in terms of interference with crop plants.

Soil amendment combination also show significant increase in growth yields of maize. A combination of the material had a positive effect on maize leaf area index (LAI). This is a result of long term insurance in weed suppression and nutrient availability for crop use, and the persistent mulch effectiveness and resistance to decomposition thereby suppressing weeds. (Smith *et al* 2001; Melifonwu, 2007).

Table 4: Yield of maize as affected by soil amendment of harvest.

	cob wt with husk (t/ha) d Grain wt(t/ha)	Fresh cob wt without husk (t/ha)	Cob dr	y wt (t/ha)	Seed
CD	0.2	0.1	0.05	0.02	0.04
NA	0.03	0.02	0.01	0.06	0.007
PD	0.6	0.4	0.1	0.04	0.1
LM	0.3	0.2	0.06	0.2	0.1
CD+PD					
+LM+CD	0.4	0.3	0.1	0.3	0.1
SD	0.12	0.1	0.01	0.02	0.02
LSD (0.05)	NS	NS	NS	NS	NS

Effects of treatment on yield parameters:

Results (Table 4) show the effect of soil amendment on yield parameters. The results show non significant difference ($P \le 0.05$) in yield parameters among the treatments. However, soil amendment with poultry droppings (PD) and combination of mulch materials (CD + PD + LM + SD) produced the highest fresh cob weight, dry cob weight and grain weight while the least weight was obtained in no application (NA) and SD application. It was observed however, that animal waste alone, and a combination with plant residue improves maize growth and yield over no application. Mulching credible affect soil improvement, growth and yield of crops and on weed suppression in vegetables and other crops. This could be attributed to the continuous supply of nutrients for continuous productivity. This agrees with the work of Pearson and Gam (1987) who stated that livestock manure from cattle, pig and chickens are important as they positively affect soil composition resulting in good growth and yield of crop. Although weeds must be controlled, excessive weeding not only increase cost of production, but also is destructive to the soil structure (Echezona and Mbah, 2001). It is therefore imperative to work out the minimal but effective methods of weeds control that will give effective suppression and enhanced crop performance.

CONCLUSION

The potential for incorporating both plant and animal wastes as mulch materials to improve crop growth and yield as well as suppress weeds provides a conducive maize growing environment. Appreciable increase in the effectiveness composition of organic mulch materials reduced weed emergence and growth, and significantly increases in the growth and yield of maize as observed especially in plots receiving CD + PD + LM + SD combination and PD sole are adequate indications of the importance of these soil amendments. Studies to establish the true economic value of the organic mulch materials used in the trial were not done. This calls for further investigations.

REFERENCES

Akobundu I. O. (1981). Weed Science in the tropics, Principles and Practices. John Wiley and sons Inc. p. 522.

- Akobundu 1.0 (1987) weed control in canals; In: weed science in the tropic; imcyils. John inley & Sons. London. p 337
- Babatola, L. A and J. O. Olaniyi (1997); Effects of some management practices on the performance of tomato (*Lycopersiscon esculertum Mill*). Proc. of the 15th Annual Conf. of HORTSON, Apr 8-11, Ibadan. P. 11.
- Budelman, A. (1991); Woody species in auxiliary roles. Live stakes in yam cultivation. Royal Trop. Inst. KIT publ. Netherland. p. 151.

Niger Agric. J. 40 No. 1 (2009): 255 - 262

Essien, B. A.; J. B. Essien; J. C. Nwite; K. A. Eke; U. M. Anaele; J.U. Ogbu

Conway, G. R. (1997). The douby green revolution. Penguin books, London. P. 3

- Echezona, B. C and M. C. Mbah (2001); Okra growth, development and podagrica altack in relation to weed presence and carbofuran application. Proc. of 19th Annual conf. of HORTSON, May 28 June 1, 2001. p 135 136.
- FCAI, 2003; Year Bulletin. Federal College of Agriculture, Ishiagu meteorological and weather station. P.1-3.
- FFTC (food and fertilizer Technical Centre) (1997): what farmers get when they but compost. FFTC Newsletter No. 117. p 5.
- Gershung, G. and J. Smillie (1986): The soul of soil: a guide to ecological soil Mgt. GAIA services of Johnsburg. P. 3
- Ibe, A. E. (2002): comparison of the weedy strategies of Agerotum conyzoides (Linn) and Aspillia Africana (pers) C. D. Adams (Haemorrhage weed) in southern Nigeria. Proc. Of 36th Ann. Conf. of ASN 2002 p 214.
- IITA (Int'l Institute for Tropical Agric.)(1993): Annual Report. IITA Ibadan p. 25
- Ladd, J. N.; J. M. Oades and M. Amato (1981): distribution and Recovery of nitrogen from legume residues decomposing in soils sown to wheat in the filed. Soil biology and Biochemistry 13:251-256
- Lal, R; F. J. pierce (1991): soil Mgt for sustainability. Soil & water conservation society. Amkeng p. 15
- Lamplain, N. (1990): Organic Farming. Farming press, Ipswich P. 7-11
- Melifonwu A. A. (2007); Effects of rates of NPK fertilizer and mulch on weed growth and cassava yield. Proc. of 41st conf. of ASN. Oct. 22-26, 2007. p. 112.
- Munger, H. M.; J. T. C. chandler and F. M. Anons (1987): Soyabean (Glycine max) velvet leaf (Abution theophrast) interspecific competition. Weed Sci. 35:647-653.
- Murwira, H. K. and H. kirchmann (1993): Nitrogen dynamics and plant growth in Zimbabwean sandy soil under manure fertilization. Commun. soil Sci. Plant Analysis. 24 (17 and 19) 2343 2359.
- Pearson, C. J. and Gam (1987): Agronomy of grassland systems. Cambridge University press, Cambridge. p. 7-8
- Poll, J.K (1997): Effect of soil cover in the yield and quality of vegetables. Weed Abstr. No. 41 P 339.
- Smith, M. AK.; T. P. tolorun and O. S. Adeniji (2001) Effect of combine of mulch and fertilizer on weed growth and okra (abelmucus esculentus (L) moench) yield in a humid tropical environment. Proc. of the 35th annl. <u>Conf. of ASN</u>. Sept 8-11 Ibadan. p. 11

Smith, M. A. K. (2002): seedling emergence, growth and yield response of indian spinach (Bassella spp) to depth of planting and weed competition. <u>Proc. of the 20th annual conf. of Hortson</u> 2002. p 15-16

- Shukla, W. C. (1990): Role of soil fertility Mgt. enhancing agricultural production. An overview. Invited paper. 18th ann. Conf. soil sci. soc. Nig. Dec 7-11. Univ. of Maiduguri, Nig.
- Tian, G.; Kang, B. T. and Brussoard, L, (1993): Mulching effect of plant residue with chemically compositions on maize growth and nutrient accumulation. Plant soil. 153: 179-187
- Tian, G; Kang, B. T.and T. Brussoard (1994). Mulching effect of plant residue with chemically contrasting composition on maize growth and nutrients accumulation. IITA Res. 9: 7-11.
- Yamoah, C. H; A. A. Agboola and K. Mulongoy (1986): Decomposition, Nitrogen release, and weed control by burning of selected alley cripping shrubs. Agrof syst. 4: 234-246.

Niger Agric. J. 40 No. 1 (2009): 255 - 262 -262-