Prevalence of Chlamydia Trachomatis Infection among Female Undergraduates of the University of Port Harcourt Using Strand Displacement and Amplification [SDA] Technique

*Kennedy Tamunomiebam Wariso, **John Odigie, **Sunny Eyaru

Departments of *Medical Microbiology and Parasitology and **Pharmacology and Toxicology, University of Port Harcourt, Port Harcourt, Nigeria.

ABSTRACT

Background: Chlamydia trachomatis infection, being largely asymptomatic, is difficult to diagnose using the common diagnostic methods which have varying degrees of sensitivity and specificity. There is a paucity of data on the prevalence of Chlamydia trachomatis infection in Nigeria. The aim of this research is to determine the prevalence of and predictive risk factors for Chlamydia trachomatis infection among female undergraduate students of the University of Port Harcourt.

Methods: Four hundred undergraduate, non pregnant, asymptomatic female students below the age of 30 years were randomly selected and given questionnaires with self administrable vaginal swab sticks. The participants completed the questionnaires and provided vaginal swab samples which were analyzed using Strand Displacement and Amplification Technique.

Results: Of the 400 sexually active participants, 44 tested positive [prevalence rate of 11%] for Chlamydia trachomatis. Some of the associated risks factors identified were, having multiple sexual partners especially in the last 90 days, irregular contraceptive usage and past history of sexually transmitted infections.

Conclusion: There is an urgent need for a national policy on routine screening for Chlamydia trachomatis as treatment is cheap and effective, while the morbidity resulting from delayed diagnosis is more difficult to manage and associated with severe sequelae.

Key Words: – Prevalence; Chlamydia trachomatis; Strand Displacement and Amplification [SDA] Technique

Correspondence: DR K.T. Wariso
Email - ktwariso@yahoo.com

INTRODUCTION

Genital Chlamydia trachomatis infection is the most common curable sexually transmitted infection [STI] worldwide. Chlamydia trachomatis is the most prevalent bacterial cause of STI in men and women worldwide, with about 50 million new infections yearly. It mostly runs an asymptomatic course in women and men, therefore it remains undetected and subsequently untreated. While the main burden of morbidity falls upon women, the challenge of Chlamydia control remains the identification of asymptomatic individuals. The inherent morbidity that results from asymptomatic Chlamydia trachomatis infection has necessitated the screening for Chlamydia trachomatis among women who are aged 25 years and above; unmarried, separated or divorced; or with past histories of STI’s; or with new or multiple sexual partners within the past 90 days and; women who inconsistently use barrier form of contraception.

Although the major impact of disease caused by Chlamydia trachomatis is on the female reproductive tract, this agent also causes infections in men and children. The prevalence of Chlamydia infection in sexually active adolescent women, the population considered most at risk generally exceeds 10%, and in some STI clinic populations of women, the prevalence can reach 40%. The prevalence of Chlamydia trachomatis infection ranges from 4 to 10% in asymptomatic men and from 15 to 20% in men attending STI clinics.

Although Chlamydia trachomatis can be easily treated with antibiotics, control of the infection has been impeded, primarily because the symptoms of the infection are often absent or insufficient to lead to diagnosis, especially among many affected women. If untreated, it may lead to severe sequelae ranging from pelvic inflammatory disease [PID], through tubal scarring to ectopic pregnancy and tubal infertility. Also, about one-third of women with untreated Chlamydial infection go on to develop PID, by ascending infection and PID is the predominant infectious cause of chronic pelvic pain and tubal infertility. Chlamydial genital infection during pregnancy increases the risk of spontaneous abortion, premature delivery and ectopic pregnancy. Neonates delivered vaginally from infected mothers may contract Chlamydial conjunctivitis or pneumonia. Chlamydial infections in newborns occur as a result of perinatal exposure. It is known that about 65% of babies born from infected mothers become infected during vaginal delivery.

Chlamydia trachomatis is a spherical or ovoid, non motile, gram negative, obligate, intra cellular bacterium thought initially to be a virus because of the intracellular life cycle. It is metabolically deficient in its ability to synthesize ATP and thus requires an exogenous source of this high energy compound. This is why it is called an energy parasite. It undergoes a unique biphasic developmental cycle, forming distinctive intracellular inclusions that permit identification by light or fluorescent microscopy.
Chlamydia trachomatis is susceptible to a broad spectrum of antibiotics, particularly the tetracyclines and macrolides. Because the Chlamydial cell wall is different from that of many bacteria, beta-lactam antibiotics such as penicillin lack bactericidal activity against these microorganisms. Chlamydia trachomatis includes the agents of trachoma, lymphogranuloma venereum [LGV], urogenital tract disease, and inclusion conjunctivitis.

Strand Displacement and Amplification [SDA] technique is a form of Nucleic Acid Amplification Technique [NAAT] with a high specificity and sensitivity in the diagnosis of Chlamydia trachomatis infection20,21. The technique allows for the use of not only urine but also self administered vaginal swab as the clinical specimen. NAAT has revolutionized the diagnosis of Chlamydia trachomatis. Urine based screening using NAAT has comparable sensitivity and specificity to cervical and urethral specimens20,21.

This study is aimed at determining the prevalence of Chlamydia trachomatis infection, and identification of the risk factors associated with genital Chlamydia infection among female undergraduates of the University of Port Harcourt.

MATERIALS AND METHODS

This study was carried out between January and June 2009 at the University of Port Harcourt Teaching Hospital, Port Harcourt. Ethical approval was obtained from the relevant boards at the University of Port Harcourt and the University of Port Harcourt Teaching Hospital.

Inclusion criteria were that subjects should be healthy, female undergraduates aged between 16 and 30, should not be on any antibiotics prior to the collection of samples, and should respond to all or most of the questions asked in the questionnaire. The sample size determined using the Kish formula was 400 with prevalence rates of 10.5%, at 95% confidence interval, and degree of accuracy as 0.05.

Informed and written consent was obtained from every participant. Those who consented were required to fill in questionnaires which detailed the predisposing/risk factors associated with Chlamydia trachomatis. They were also given vaginal swab for self administered vaginal swabbing. This process was explained to each participant by trained clinical students. All the self admissible vaginal swabs [Genital BBL Culture swab EZ] were quickly transported to the laboratory and analyzed by SDA.

RESULTS

Of the 400 students screened, only 44 of them were positive for Chlamydia trachomatis infection. These constitute about 11% of the total students screened. From the data obtained, students aged between 28 and 30 years have a significantly increased chance of contracting Chlamydia trachomatis infection as compared to the other age ranges [Table 1], with a p value of <0.05, X2 = 22.081 for linear trend and Odds ratio of 0.6.

Table 1: Prevalence of students with Chlamydia trachomatis infection according to age range

<table>
<thead>
<tr>
<th>Age Range</th>
<th>[Positive] YES</th>
<th>[Negative] NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-18</td>
<td>8 (33.3%)</td>
<td>16 (66.7%)</td>
</tr>
<tr>
<td>19-21</td>
<td>4 (5.3%)</td>
<td>72 (94.7%)</td>
</tr>
<tr>
<td>22-24</td>
<td>12 (8.8%)</td>
<td>124 (91.2%)</td>
</tr>
<tr>
<td>25-27</td>
<td>0 (0%)</td>
<td>120 (100%)</td>
</tr>
<tr>
<td>28-30</td>
<td>20 (45.5%)</td>
<td>24 (54.5%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>44 (11.0%)</td>
<td>356 (89.0%)</td>
</tr>
</tbody>
</table>

The data obtained also showed that about 5.3% of those with no sexual partners at the time of study were infected compared to those with up to four sexual partners who had 100% infectivity [Table 2], with a p value of <0.05 using Fisher’s test of exactness, X2 = 28.10, RR = 19.00 (7.32<RR<49.32).

Table 2: Prevalence of students with Chlamydia trachomatis infection in relation to number of sexual partners

<table>
<thead>
<tr>
<th>Number of Sex Partner</th>
<th>[Positive] Infected</th>
<th>[Negative] Not Infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>4 (5.3%)</td>
<td>72 (94.7%)</td>
</tr>
<tr>
<td>One</td>
<td>4 (1.8%)</td>
<td>224 (98.2%)</td>
</tr>
<tr>
<td>Two</td>
<td>8 (16.7%)</td>
<td>40 (83.3%)</td>
</tr>
<tr>
<td>Three</td>
<td>24 (54.5%)</td>
<td>20 (45.5%)</td>
</tr>
<tr>
<td>Four</td>
<td>4 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>44 (11.0%)</td>
<td>356 (89.0%)</td>
</tr>
</tbody>
</table>

Among the students that judiciously use condom during sexual intercourse, none of the 112 student respondents were infected while 39(17.5%) of those who do not use condom regularly were infected. This was statistically significant with a p value of <0.05, X2 = 21.99.

The prevalence of Chlamydia infection among students with previous sexually transmitted infections (STI) is shown in Table 3, with 15.2% of subjects with previous STI testing positive compared to 8.8% of those without a previous history of sexually transmitted disease who were also infected. This was statistically significant with a p value of <0.05, X2 = 4.58.

TABLE 3. Prevalence Chlamydia Trachomatis Infection in Students With A Previous History Of Sexually

<table>
<thead>
<tr>
<th>PREVIOUS STD</th>
<th>CHLAMYDIA TRACHOMATIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>INFECTED</td>
</tr>
<tr>
<td>No</td>
<td>NOT INFECTED</td>
</tr>
<tr>
<td>Yes</td>
<td>20 (15.2%)</td>
</tr>
<tr>
<td>No</td>
<td>208 (84.8%)</td>
</tr>
</tbody>
</table>

Table 4 shows the prevalence of Chlamydia trachomatis infection in relation to the number of sexual partners in the past 90 days. Subjects with 3 and 4 or more sexual partners had significantly higher rates of Chlamydia positivity with a p value of <0.05, X2 = 12.30, RR = 3.99(1.15<RR<10.01).
Table 4: Prevalence of students with Chlamydia trachomatis infection in relation to number of sexual partners in the past 90 days.

<table>
<thead>
<tr>
<th>No. of sex partners in past 90days</th>
<th>Chlamydia trachomatis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES[infected]</td>
</tr>
<tr>
<td>None</td>
<td>0[0%]</td>
</tr>
<tr>
<td>One</td>
<td>4[2.0%]</td>
</tr>
<tr>
<td>Two</td>
<td>0[0%]</td>
</tr>
<tr>
<td>Three</td>
<td>4[14.3%]</td>
</tr>
<tr>
<td>Four or more</td>
<td>36[56.3%]</td>
</tr>
</tbody>
</table>

DISCUSSION
The present study revealed a prevalence rate of 11% [44 of the 400 subjects] for Chlamydia trachomatis infection. Possible predictive risk factors gotten as result of the study include increasing age [28 to 30 years], multiple sexual partners, inconsistent contraceptive usage, and a past history of STI.

The prevalence of Chlamydia infection in our study exceeds that from reported studies, which indicate a prevalence of 10% in sexually active adolescent women14, considering that sexual activity was not an inclusion criterion in our study.

The documented prevalence of Chlamydia infection differs considerably depending on the methodologies for the identification leading to different prevalence rates even in similar populations. Techniques used in identification include antibody detection, antigen detection, culture, and nucleic acid amplification. Amplification methods use different approaches to achieve the amplification of low copies of nucleic acid to amounts that can subsequently be detected. This method has a better sensitivity than culture and allows the detection of infection in individuals with a low number of infectious units23.

The probable predictive risk factors from the present study are in keeping with those from previous studies; increasing age1,6, sexual activity7; past histories of STIs8; multiple sexual partners9; and poor contraceptive usage10.

Treatment of Chlamydial infections, save for being cheap and effective, have an added benefit: treatment of Chlamydial infections could delay the spread of human immunodeficiency virus [HIV] as Chlamydia trachomatis infections are known to increase the risk for HIV infection11, with women infected with Chlamydia up to five times more likely to become infected with HIV12 because Chlamydia induces inflammation which results in an increased recruitment of CD4 lymphocytes into the genital tract leading to an increase in HIV targets and an increased HIV replication is thought to contribute to enhanced transmission13.

The biggest challenge to the treatment and control of Chlamydial disease is that as many as 70 to 80% of women infected with Chlamydia trachomatis are asymptomatic but still contagious, resulting in a large reservoir of unrecognized, infected individuals who are capable of transmitting the infection to sexual partners. Contributing to this challenge is the fact that immunity following infection is thought to be type specific, not organism specific and only partially protective14; hence, recurrent infections are common. Evidence suggests that the risk of developing sequelae such as ectopic pregnancy or infertility increases with each successive episode of infection15.

Considering that all subjects that were positive for Chlamydia trachomatis were asymptomatic and the morbidity caused by Chlamydia trachomatis infection, the relevance of routine screening for Chlamydia trachomatis is strongly highlighted as treatment is cheap and effective, while the attendant morbidity resulting from delayed diagnosis is more difficult to manage and associated with severe sequelae. Screening should be cheap, readily accessible with acceptable degrees of sensitivity and specificity, and non-invasive.

The SDA provides high specificity and sensitivity in the diagnosis of Chlamydia trachomatis infection20, allows for the use of urine and vaginal swabs, with urine based screening having comparable sensitivity and specificity to cervical and urethral specimens21,22,23. Though various questions have been asked concerning the cost-effectiveness and eligibility of routine screening24, age-based routine screening provides the greatest cost-saving strategy to identify those infected with Chlamydia trachomatis22,25, considering the economic importance of long term sequelae from infection.

The paucity of data on the prevalence of Chlamydia trachomatis infection in Nigeria using SDA is due primarily to the lack of policy on routine screening for Chlamydia trachomatis using NAAT, unlike in the first world where it is done for populations where prevalence exceeds 3%26. There is an obvious need to assess the trend of STI including genital Chlamydia trachomatis infection among young, asymptomatic, non-pregnant females.

CONCLUSION
There is an urgent need for a national policy on routine screening for Chlamydia trachomatis as treatment is cheap and effective, while the attendant morbidity resulting from delayed diagnosis is more difficult to manage and associated with severe sequelae.

REFERENCES–

