
Looking for novel matrix materials for encapsulation of enzymes based on water-

immiscible coacervates prepared by reaction of negatively charged hyaluronic acid and a 

positively charged recombinant mussel adhesive protein containing tyrosine residues 

was the subject of the investigation of this work. The results of experimental study of the 

thermostability of horseradish peroxidase (HRP) by means its encapsulation in these 
o

coacervates at temperature from 30 to 95 C is presented in this paper. The Michaelis-

Menten equation was applied to analyze of the enzymatic activity of HRP. The kinetic 

parameters were interpreted using a Lineweaver-Burk plot. According to the data 

obtained, Michaelis-Menten parameters, K  and K , interpreted from the Lineweaver-M Cat
-1 -1Burk plots, were 0.271 mM and 2265 s  for the free HRP and 0.325 mM and 2158 s  for the 

rMAP/HA coacervate, containing HRP, respectively, which indicate that the enzyme did 

not lose its activity during the coacervate formation. It was founded that the free enzyme 
o o

began to lose activity above 40 C, while the encapsulated HRP remained stable to 85 C. 
oThe encapsulated HRP lost only 18% and 25% of activity at temperature of 90 and 95 C, 

respectively, while as free HRP loses all its initial activity, although they show similar 

activity at room temperature. 
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 The successful use of biological 

molecules (enzymes, antibiotics, vitamins) to 

many applications depends on their ability to 

maintain activity under conditions that are not 

characteristic of most enzymatic reactions, in 

particular, the effect of high temperatures 

accompanying the production of animal feed (~ 
o95 C), or long-term storage conditions. Enzyme 

immobilization on the surface of a carrier 

(fixation or incorporation of biomolecules into it) 

may address many of the issues listed above. 

Methods commonly employed for this purpose 

are covalent bonding (Grazú et al., 2005), 

entrapment (Yan et al., 2006) and physical 

adsorption (Ladero et al., 2006). Adsorption is 

considered as the dominant mechanism of 

interaction of a protein with a surface and, in 

principle, is the initial event that precedes 

immobilization through covalent bonding or 

encapsulation. As a result, the immobilized 

enzyme acquires an increased stability at high 

temperatures (Koutsopoulos et al., 2005). 

However, the physical adsorption of enzyme on 

most hydrophilic support is not generally strong 

enough (Cahyaningrum et al., 2014). The key to 

s u c c e s s f u l l y  u t i l i z i n g  e n z y m e s  f o r 

biotechnological applications is to ensure that 
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 Horseradish peroxidase (HRP) is an 
enzyme that is widely used in bioassay and 
biosynthesis and whose properties have been 
studied for decades (Veitch, 2004), was chosen 
as a model enzyme for the present study. Among 
existing encapsulation methods or genetic 
approaches applied to HRP, the nanogel 
demonstrates unprecedented stability and ease 
of execution of the two-step encapsulation 
p rocedure .  An  advantage  o f  enzyme 
encapsulating in the nanogel is that the second 
step, which is aqueous in situ polymerization, 
can be repeated by adding monomers and cross-
linkers to react with the primary nanogel so as to 
give the final product that contains a single 
enzyme in expected size and shape. It was 
founded that the encapsulated enzyme (HRP) 
exhibits similar biocatalytic behavior with a free 
HRP, but significantly improved stability at high 
temperature (Yan et al., 2006).

Never the less ,  in  our  work ,  the 
coacervate which was prepared by reaction of 
negatively charged hyaluronic acid (HA) and a 
positively charged recombinant mussel adhesive 
protein (rMAP), was used to encapsulate the 
enzyme (HRP). The two starting materials are 
well known for their thermal stability, which in 

o  the case of HA can exceed 130 C (Gousse et al., 
2012) and rMAP which is the strong and water-
insoluble mussel adhesive proteins have were 
used to formation of a water-insoluble 
coacervates. Such features of mussel adhesive 
proteins (MAPs), as biocompatibility and strong 
adhesiveness explain their high potential in 
different applications in medicine, including 
design of artificial tissues. Mussels are able to 
keep strong adhesion in different environment to 
survive. For our study, a significant advantage of 
MAPs is their ability to attach to all types of 
inorganic and organic surfaces. 

The potential of rMAP/HA coacervate as 
an effective binding material for grafts is 
described in study (Kim et al., 2016). The 
authors of article mentioned that their 
investigation of interaction between HA and 
rMAP was stimulated by the sandcastle worm-
inspired complex coacervation using these two 
components. 

upon immobilization the enzyme remains 
functional. Strategies for the covalent 
immobilization of enzymes have been reviewed 
in many publications (Hirsh et al., 2010; Novick 
and Rozzell, 2008; Ahmad, R., Sardar, M. 2015). 
The covalent binding is usually very strong, and 
leakage of enzyme from the support is usually 
minimal. However, covalent immobilization of 
enzymes onto solid supports may lead to 
damage in their structures, thereby causing loss 
of activity (Matosevic et al., 2011). Many 
scientists and engineers concentrated on 
enzyme immobilization using nanoscale material 
as support by using traditional immobilization 
methods, mainly as covalent attachments (Datta 
et al., 2013; Homaei et al., 2013). As time 
passed, the revolutionary immobilization 
method was developed based on the size of the 
enzyme with a nanometer scale such as single 
enzyme nanoencapsulation and self-entrapment 
by silaffin (Min and Yoo, 2014).

coacervates are presented in this article.

Materials and Methods

 Looking for novel matrix materials, there 
were attracted by recent publications of (Kim et 
al., 2016; Choi et al., 2011) on water-immiscible 
coacervates prepared by reaction of negatively 
charged hyaluronic acid (НА)  and a positively 
charged recombinant mussel adhesive protein 
(rMAP) containing tyrosine residues (rMAP/HA). 
The results on exper imental study of 
thermostability improvement of horseradish 
peroxidase (HRP) by its encapsulation in these 

In our opinion, more promising way to 
increase the enzymes' thermostability is related 
to different types of encapsulation despite the 
various post-translational machineries. 
Encapsulation provides a platform for protecting 
enzymes from thermal inactivation during 
prolonged exposure of increased temperatures, 
provided that adequate interactions between the 
matrix and the enzyme occur. In addition, it is 
necessary that the matrix materials also 
withstand high temperatures (Unsworth and 
Koutsopoulos, 2007). The main attention 
focuses on correlating thermostability and 
enzymes' activity. Various materials are used in 
creating matrices: silica based materials (e.g. 
sol-gel matrices, mesoporous silica; Pierre, 
2004), aluminosilicates (Lee et al., 2005), 
polymers (Yan et al., 2006; Bolis et al., 2004) and 
organoclays (Patil et al., 2005), but they all have 
some limitations.
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A composition of foot proteins type 1 
(fp-1) together with proteins type 2 (fp-2) 
retrieved from mussels is example of extracted 
MAPs during single commercially available 
process. The evidence of low efficiency of this 
process is the fact that about 10000 mussels are 
required to obtain 1 g of final product. The foot 
protein type 5 (Mgfp-5) and type 3 (Mgfp3) 
manufactured from Escherichia coli display 
advantageous adhesiveness and other attractive 
properties. Tyrosinase-modified recombinant fp-
5 showed ~ 1.11 MPa adhesive shear strength, 
which is the first report of a bulk-scale adhesive 
force measurement for purified recombinant of 
natural MAP type. The complex coacervate with 
using recombinant fp-5 and hyaluronic acid was 
prepared as an efficient adhesive composition 
having improved bulk adhesion strength (Hwang 
et al., 2007; Lim et al., 2010). At the same time, 
MAP type 5 (fp-5) is characterized by several 
problems for practical applications such as low 
production yield from toxicity to host E. coli 
cellular structure, as well as limited solubility on 
post-purification step and related to this fact 
challenges in purification process. 

 The biocatalytic activity was examined 

using 3,3',5,5'-tetramethylbenzidine (TMB) as 

the substrate. The incubation mixture contained 

0.9 ml of 100 mM phosphate citrate (pH=5.5) 

c o n t a i n i n g  1 . 1  m M  H O ,  0 . 0 5  m l 2 2

The first stage: the isolation procedure of 
rMAP.

Escherichia coli BL21 (DE3) cells containing the 
plasmid encoded by the fp-151 hybrid 

recombinant protein were cultured in an 
o

incubator at 37 C at 250 rpm in Luria-Bertani 
medium (LB) supplemented with 50 μg/ml 
ampicillin. When the culture density reached the 

. -3
optimum range of 0.7 at 600 nm (OD ), 1 10  M 600

isopropyl-β-D-thiogalactopyranoside was added 
to induce rMAP expression. After this procedure, 
the culture was incubated for an additional 8 

ohours with stirring at 37 C. Bacteria were 
collected by using centrifuging at 7,500 g for 10 

o
minutes at 4 C and the collected cell pellets 

. -3resuspended in lysis buffer (1010  M Tris-HCl 
. -3and 10010  M sodium phosphate, pH = 8.0) per 

gram wet weight. The cells were lysed in a buffer 
using an OS cell-disruption system, followed by 

ocentrifugation at 15,000 g for 20 minutes at 4 C. 
After the centrifugation procedure, which is 
process of purification from impurities, the lysate 

. -3was treated with Tris-Triton-EDTA buffer (5010  
. - 3

M Tris-HCl, 1% Triton-X-100, 1 10  M 
. -3

ethylenediaminetetraacetic acid and 0.110  M 
phenylmethanesulfonyl fluoride, pH = 8.0), then 
resuspended in 25% (v/v) acetic acid for  rMAP 
extraction. The precipitate was separated from 
the homogenate by centrifuging at 14,000 g for 

o30 min at 4 C and the supernatant was collected 
and then freeze-dried.

Thus, taking into account all the above 
the following two-step procedure was performed 
according to the method of Kim et al, (2016) and 
enzymatic activity assay performed following 
published procedure of Yan et al., (2006).

 The final procedure: measurement of 
enzymatic activity. 

Therefore, we used MAP of the hybrid type 
151 (fp-151), which has a number of important 
properties, and efficiency as presented in the 
study of Hwang et al. (2007). Previously Kim et 
al., (2008) describe recombinant protein which 
was based on 6 repeats of the fp-1 deca-peptide 
fragments at both C-termini and N-termini of 
protein fp-5, which was designed with a high 

level of success and obtained in E. coli system 
and considered as potentially important natural 
adhesive. However, the recombinant fp-151 
system also requires the limitations in quantity, 
as there is a need for further progress in process 

of separation from Gram-negative bacterium E. 

coli. Safety issues related to the presence of E. 

coli need to be considered when process of 
protein purification is taking place.

 To obtain the complex coacervate, each 
polyelectrolyte (rMAP and HA) was dissolved in 
PBS buffer at concentration 1 mg/ml. In addition, 
the obtained saturated solution of HRP in PBS 
was filtered through filter paper. For complex 
coacervation between rMAP and HA solutions, 
the optimal ratio of 7:3 (w/w), was used, which 
was proposed in the study (Kim et al., 2016). The 
condensed coacervate phase was prepared by 
stirring the mixture of prepared HRP, rMAP and 

oHA solutions at ratio 10:7:3 for 20 min at 4 C. The 
brown precipitate was collected by centrifuging 
at 14,000 g, the supernatant was separated and 
the precipitate, frozen to the temperature of 
liquid nitrogen and freeze-dried. 

 The second step:  the making of 
rMAP/HA coacervate containing horseradish 
peroxidase (HRP).
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0.02 M H O , and 10 μM 0.2 μg / ml HRP. The 2 2

reaction was initiated by adding 0.05 ml of DMSO 
containing 0.02 M TMB and monitored by 
measuring OD  using a UV-Visible Spectrometer 655

(Shimadzu). The oxidation rate of TMB were 
interpreted from slope of the initial linear parts of 
the adsorption curve at 655 nm using a molar 

-1 -1absorption coefficient (39000 M cm ) for the 
oxidation product of TMB (Frenkel-Mullerad and 
Avnir, 2005).

A comparison of the thermal stability of 
free HRP and rMAP/HA coacervate containing 
HRP was performed at a temperature of 30 to 

o  
95 Cat pH=7.0. The free HRP started to lose its 

o  activity above 40 C  while the encapsulated HRP 
oremained stable until 85 C. As shown in Figure 1, 

o  
at temperatures of 90 C the encapsulated HRP 

o  lost only 18% activity and at 95 C- 25% activity, 
while the free HRP loses all its initial activity, 
although they show similar activity at room 
temperature.

To determine thermal stability of the free 
HRP and rMAP/HA coacervate, containing HRP, 
the sample was incubated at different 

o
temperature (from 30 to 95 C) at given period. 

oThen the sample was incubated 2 hours at 4 C 
and room temperature sequentially before 
subjected to HRP activity assay.

Result and Discussion

Also, the dependence of the activity of 
free HRP and encapsulated HRP on the 
incubation time was studied (Figure 2). As follow 
up from the Figure 2, the activity of the free 
enzyme decreases by a 50-fold during the 

o  incubation at 85 Cfor 60 min. The activity of the 
encapsulated enzyme (HRP in rMAP/HA 
coacervate) decreases weakly, at 1.14-fold 

o
during the incubation at 85 C. Thus, the activity 
of the encapsulated enzyme before the 
beginning of incubation is 0.032 units, after 20 
min of incubation - 0.031 units, after 60 min of 
incubation - 0.028 units. In this case, the initial 
activities of the free and encapsulated enzyme 
practically coincide.

Figure 1: Thermal stability of the rMAP/HA coacervate, containing HRP (1) and free HRP (2) at pH=7.0
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Thus, the inclusion of the enzyme in the 
coacervate leads to a decrease in the catalytic 
activity of the enzyme after incubation for 60 min 

o  at 85 C by 12%, while the free enzyme loses its 
activity almost completely (98%). The maintain 
of HRP activity in rMAP/HA coacervate to 98% 
can be explained by an increase in the amount of 
available enzyme as a result of expansion of the 
coacervate pores at the increase of the 

temperature.
The Michaelis-Menten equation was used 

for the analysis of enzymatic activity, which was 
applied to the free HRP and rMAP/HA 
coacervate, containing HRP with a TMB 
concentration of 0 to 1 mM.  The kinetic 
parameters  were interpreted us ing a 
Lineweaver-Burk plot (Veitch, 2004; Figure 3).

Figure 2: Thermal inactivation kinetics of the encapsulated HRP (1) and free HRP (2) 
o  at 85 C in the oxidation of TMB during the incubation time at pH = 7.
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Figure 3: The Michaelis-Menten equation and determination of the kinetic parameters using a 
Lineweaver–Burk plot. (ʋ is the reaction rate; [S] is the concentration of substrate (TMB); V  is the max

maximum rate achieved by the system, at saturating substrate concentration; the Michaelis 
constant K is the substrate concentration at which the reaction 27rate is half of V ).M  max
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Thus, the study results indicate that the 
method of encapsulation of enzymes by using 
rMAP/HA coacervate-based procedure, 
proposed in the present paper is capable to 
provide significantly better results than other 
known encapsulation methods. The enzyme 
encapsulated in this way and the free enzyme 
show similar catalytic behavior, providing a 
robust enzyme model for a large variety of 
applications. Further investigation of this 

method hopefully will be able to extent the 
proposed approach to other important biological 
molecules.
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