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Abstract 
 

The legitimacy of parents and progenies used in crop improvement programmes is vital for 
any meaningful progress in selection. While acknowledging the shortcomings of controlled 

pollination in oil palm breeding and commercial seed production, the legitimacy of 20 oil palm 

progenies from the Nigerian Institute for Oil Palm Research (NIFOR) breeding programme 
was determined using 16 fluorescently-labeled microsatellite markers. The genotyping of 

parents and progenies was conducted by capillary electrophoresis using the ABI 3730 DNA 
Genetic Analyzer (Applied Biosystems, USA). Results revealed a complementary expression of 

the parents’ alleles in 18 out of the 20 individual progenies screened, confirming their 

hybridity and genetic identity. The two illegitimate progenies detected could be attributed to 
pollination and planting errors, respectively. A subset of three sufficiently informative loci 

(sMg00016, sMg00179 and sMo00102) was identified for routine quality control genotyping. 
The detection of illegitimate progenies provided ample evidence to substantiate the 

importance of assessing hybrid fidelity in breeding programmes. Furthermore, the usefulness 
of microsatellite markers as a reliable technique for routine assessment and unambiguous 

identification of oil palm crosses was established. The implications of microsatellite-     based 

hybrid identification in oil palm varietal improvement programmes have been adequately 
discussed. 
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Introduction 
 

Over the past eight decades at the Nigerian 

Institute for Oil Palm Research (NIFOR), there 
has been a steady progress in oil palm breeding 

with the highest average oil yield of about 4-5 

t/ha/yr (Ataga et al., 2018). In accordance with 
the economic diversification efforts of the federal 

government to boost national palm oil 

production, a policy to invest $500 million in oil 
palm plantation development was enunciated. 

This policy aims at increasing the           annual 
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local production of palm oil by 700% over the 

next eight years (2019 to 2027) to attain self-
sufficiency in the commodity (USDA 2019). To 

meet this projected target, future breeding 
progress will depend on the legitimacy of 

individual parents as well as their progeny      for 

breeding crosses and commercial hybrids. While 
acknowledging the susceptibility of oil palm 

controlled pollination to various sources of errors 
(during pollination, seed collection, germination, 

and field planting), the need for accurate hybrid 
verification and identification (genetic 

fingerprints) of oil palm crosses cannot be 

overlooked (Corley and Tinker, 2016). Therefore, 
the success of hybrid oil palm production beside 

other factors depends on the production and 
timely supply of genetically pure planting 

materials to the oil palm growers. This ensures 

that the gains of heterosis can be harnessed 
through enhanced yield by growing pure F1 

hybrid crops. 
A major concern to the sustainability of Nigerian 

oil palm industry is the fidelity of planting 
materials. The out-crossing behaviour of the crop 

coupled with the challenges associated with 

controlled pollination, inadvertently deviate the 
expected or theoretical Mendelian segregation 

ratios, leading to contamination or illegitimacy in 
fruit forms. Hence the need to objectively confirm 

the genetic identity of hybrids in a crossing 

programme for breeding and seed production. 
This situation is further exacerbated by 

adulteration of oil palm planting materials by 
illegal seed or seedling hawkers/producers, who 

handpick seeds from plantations and raise them 

as seedlings for sale to farmers (Okwuagwu, 
2001). These traffickers market their illegitimate 

materials to unsuspecting farmers on the 
pretense of being NIFOR agents to support their 

fraudulent actions. More worrisome is the inability 
of the farmers to differentiate between NIFOR 

tenera planting material and the material 

procured from the seed/seedling vendors. This 
problem is equally shared by oil palm breeders 

who find it difficult in identifying the hybrids of 
crossed progenies before planting and production 

of fruit bunches. As a step to safeguard the very 

vulnerable farmers and the oil palm industry from 
illegal seed traffickers, several measures 

including microsatellite marker, genetic 
fingerprinting scheme were initiated to 

characterize breeding crosses and commercial 

planting materials for early identification at or 

before planting stage (Okoye 2016).  
The shell thickness gene (Sh) in oil palm fruit 

forms (dura, pisifera and tenera) plays a major 
role in identification of fruit type and also 

influences palm oil yield (Singh et al., 2013). 

Illegitimacy and contamination (some illegitimate 
palms in a family) in oil palm is conventionally 

assayed by using the traditional method of shell 
thickness assessment and segregation pattern of 

the fruit forms which are often ambiguous and 
vulnerable to long term field evaluation. 

Essentially, oil palm must be grown ±3-4 years 

before production of fruit bunches for fruit form 
determination and subsequent verification of 

hybrid legitimacy. A reliable method for hybrid 
identification of oil palm at early seedling stage is 

therefore crucial both for the integrity of a 

durable breeding programme and for assuring 
good quality planting material to the farmers. 

Unlike the morphological means (fruit-form 
determination) of identifying contamination in oil 

palm, molecular markers are good alternatives 
because they are not subject to environmental 

influences and can be readily detected in all plant 

tissues, notwithstanding the growth or 
developmental stage (Mondini et al., 2009).The 

use of microsatellites or simple sequence repeats 
(SSR) marker technique is well established and 

accepted for genotype identity and hybrid 

verification because of their abundance in the 
genome, co-dominant inheritance, high 

polymorphism and reproducibility (Amos et al., 
1996; Smith et al., 1997). Several studies have 

successfully employed microsatellite markers as a 

routine quality control approach to address the 
issue of illegitimacy and contamination in oil palm 

breeding programmes and commercial seed 
production. Especially promising is the current 

application of microsatellite markers for identity 
checking in selection and seed production 

processes by Centre de Coopération      
Internationale en Recherche Agronomique pour 
le Développement      (CIRAD) and PalmElit 

(Pomiès et al., 2019), and Sime Darby Plantation 
R&D Centre, Malaysia (Teh et al., 2019).  

The legitimacy of oil palm materials currently 

used in the NIFOR oil palm main breeding 
programme has not been assessed and 

documented using any molecular marker 
technique. As part of a quality control approach 

in the breeding and seed production programme, 
we present a preliminary fingerprinting report of 
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some oil palm breeding crosses with molecular 

markers. Specifically,  this study 1) sought out to 
employ fluorescently-labeled microsatellite 

markers for confirmation of parentage and hybrid 
purity of 20 oil palm progenies, and 2) to identify 

a subset of highly informative SSR markers for 

routine and low-cost quality control genotyping.  
 

Materials and Methods 
 

Twenty five (25) oil palm genotypes comprising 
two parental genotypes with contrasting yield 

components and twenty of their resulting 

progenies, and three advanced experimental 
selections from Malaysian Palm Oil Board (MPOB) 

were evaluated in this study (Table 1). The 
parental genotypes consist of the thick-shelled 

dura (female) and thin-shelled tenera (male) 

genotypes. The dura parent genotype was 
selected for high bunch weight and low bunch 

number while the tenera genotype was selected 
for high bunch number and low bunch weight. 

These two sequentially developed traits are 
highly heritable and determine the yield of fresh 

fruit bunch in the oil palm (Okoye et al., 2001). 

The three advanced experimental selections were 
used as outgroup in the multivariate analysis to 

assess the efficiency of the employed molecular 

markers in genetic differentiation and 
discrimination among different oil palm 

genotypes. 
Young leaf samples were collected from 

unopened spears of 22 individual palms planted 

at the NIFOR Main Station, Benin City, Nigeria. 
The samples were stored at -80oC at the 

Bioscience Centre, International Institute of 
Tropical Agriculture (IITA) Ibadan, Nigeria prior 

to DNA isolation. In addition, DNA samples of the 
three advanced experimental selections were 

obtained from MPOB Malaysia.  

DNA was extracted from the individual palms 
following the Cetyl-Trimethyl Ammonium 

Bromide (CTAB) procedure (Doyle and Doyle 
1990) with an additional chloroform extraction 

step. The extracted DNA quality of each sample 

was assessed using 1% (w/v) agarose gel and the 
quantity of DNA was confirmed using 

NANODROP® (ND-1000) Spectrophotometer 
(Thermo Fisher Scientific Inc., Denver). DNA 

concentrations were normalized at 25 ng/µl in 
sterile water and stored at 40C until polymerase 

chain reaction (PCR) amplification at the 

Advanced Biotechnology and Breeding Centre 
(ABBC), MPOB Selangor, Malaysia. 

 
Table 1: List of parental genotypes along with their putative hybrids and three elite oil palm populations 

used as an outgroup in this study 

 

S/N Genotype Origin Code 

1 P1♀ Serdang Avenue Deli DD1 

2 P2♂  Umuabi OP T6 

3 DT_47/593 Putative hybrid P1 x P2 DT1 

4 DT_47/649 Putative hybrid P1 x P2 DT2 

5 DT_47/793 Putative hybrid P1 x P2 DT3 

6 DT_47/820 Putative hybrid P1 x P2 DT4 

7 DT_47/916 Putative hybrid P1 x P2 DT5 

8 DT_47/945 Putative hybrid P1 x P2 DT6 

9 DT_47/1040 Putative hybrid P1 x P2 DT7 

10 DT_47/1041 Putative hybrid P1 x P2 DT8 

11 DT_47/1096 Putative hybrid P1 x P2 DT9 

12 DT_47/1150 Putative hybrid P1 x P2 DT10 

13 DT_47/1151 Putative hybrid P1 x P2 DT11 

14 DT_47/1207 Putative hybrid P1 x P2 DT12 

15 DT_47/1468 Putative hybrid P1 x P2 DT13 

16 DT_47/1679 Putative hybrid P1 x P2 DT14 
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17 DT_47/1803 Putative hybrid P1 x P2 DT15 

18 DT_47/1846 Putative hybrid P1 x P2 DT16 

19 DT_47/1847 Putative hybrid P1 x P2 DT17 

20 DT_47/1874 Putative hybrid P1 x P2 DT18 

21 DT_47/2042 Putative hybrid P1 x P2 DT19 

22 DT_47/2043 Putative hybrid P1 x P2 DT20 

23 013_0338/0391* MPOB Kluang Dura Kl-D1 

24 014_0174/0655* MPOB Kluang Pisifera Kl-P1 

25 016_911101/1203* MPOB KULIM Pisifera Ku-P2 

♀- female parent, ♂- male parent, OP- open pollinated, *elite breeding populations forming the outgroup 

A total of sixteen fluorescently-labeled 
microsatellite markers were used to fingerprint 

progenies and their parents. Nine of these 

markers (sMg00156, sEg00154, sMo00102, 
sMg00228, sMg00016, sMg00120, sEg00151, 

sMg00179 and sMg00087) were developed at 
MPOB by Singh et al., (2008). A further set of 

seven markers (mEgCIR3813, mEgCIR0793, 

mEgCIR0425, mEgCIR3828, mEgCIR3519, 

mEgCIR0790 and mEgCIR3745) were obtained 
from CIRAD (Billotte et al., 2005; http: 

//tropgenedb.cirad.fr/). Preliminary screening of 

these markers on the parental genotypes for 
polymorphism allowed the selection of eight 

informative loci used to confirm the identity of the 
20 oil palm hybrids (Figure 1).  

 

 

 
Figure 1: Screening of parents and a hybrid with four SSR markers prior to capillary electrophoresis 

analyses. 

Polymerase chain reaction was conducted in a 
Perkin Elmer 9700 thermocycler (Life 

Technologies, Thermo-Fisher Scientific, USA) 
using      the composition and conditions 

described in Ting et al., (2010). The total reaction 

volume was 10 µl containing (prepared in order 
listed): 2 µl of 25 ng genomic DNA, 6.625 µl MilliQ 

water, 1× PCR standard buffer (NEB, USA), 0.2 
µl of 10mM deoxynucleotide triphosphates 

(dNTPs) (NEB, USA), 0.025 µl of each primer 
(M13 tailed forward primers and untailed reverse 

primers), 0.025 µl dye, and 0.1µl of Taq DNA 

polymerase (5 U/µl) (NEB, USA). The 
amplification cycle consisted of an initial 3 min 

denaturation at 95 0C, followed by 35 cycles of 
denaturation at 95 ºC for 30 sec, primer 

annealing for 30 sec at 50 - 58 0C depending on 

the primer annealing temperature and an 

extension temperature of 72 ºC for 30 sec, 
followed by an additional extension at 72 ºC for 

2 min. Amplified fragments were estimated by 
capillary electrophoresis on a DNA Genetic 

Analyzer-ABI PRISM 3730 (Applied Biosystems, 

USA). The alleles were sized with reference to GS 
500 LIZ, a formamide containing red DNA size 

standard. Fragment size in base pairs was 
determined using GeneMapper® software 

version 4.1 (Applied Biosystems, USA). Sample 
plots were generated and genotype data for all 

the markers scored in an Excel matrix. The 

scoring of the genotype data was performed 
manually with reference to allele and peak size, 

except for stutters. Null alleles were assigned to 
sample individual genotypes that were confirmed 

to have no amplification products under standard 

conditions.  
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The peaks present in the parents and their 

respective progenies were scored for each of the 
SSR markers used. These were termed alleles and 

according to the GeneMapper® software were 
referred to by their size in base pairs rounded to 

the appropriate unit. Comparison of the parents’ 

alleles to those of their progenies allowed for the 
determination of legitimate and illegitimate 

hybrids. A progeny was considered legitimate if 
one of its two alleles was maternal and the other 

one paternal showing that they were inherited 
from its two parents. On the contrary, a progeny 

was considered illegitimate or contaminant if at 

least one of its alleles was not inherited from its 
parents at a minimum of two microsatellite 

markers. If only maternal alleles were present, 
the possibility of the progeny being a product of 

self-pollination and not that of a cross between 

putative parents was not discounted. 
Correspondingly, the presence of an unexpected 

allele with a maternal allele infers a non-hybrid 
progeny from contamination by foreign pollen. 

The number of alleles per locus (Na), unbiased 
gene diversity (He; Nei 1978) and the observed 

heterozygosity (Ho) along with their standard 

error of means were calculated with Genetic 
Analysis in Excel computer package 6.5 (Peakall 

and Smouse, 2012). The software Cervus 3.0.7 
was used to assess the probability of identity 

(PID); the probability that two individuals drawn 

at random from a population will have the same 
genotype at multiple loci (Marshall et al. 1998). 

PID was calculated for the entire data set and on 
a per locus basis as described in Paetkau et al., 

(1995) to measure the power of each marker set 

for individual identification. The polymorphic 
information content (PIC), according to Anderson 

et al., (1993), was calculated using PowerMarker 

v3.25 software (Liu and Muse 2005). The 
percentage of hybrid genetic purity was 

calculated using scored data according to the 
purity index of Bohra et al., (2011):   Hybrid purity 

(%) was determined by dividing the number of 

true hybrids (comprising alleles from both 
parents) by the total number of hybrids screened, 

then multiplied by 100. Pairwise comparisons of 
the proportion of shared alleles between 

individual genotypes (plants) were determined by 
simple matching dissimilarity index. The resulting 

genetic dissimilarity coefficient was then 

transformed into a distance matrix averaging      
over 1000 bootstraps. Cluster analysis was 

generated from the distance matrix by the 
unweighted pair group method using the 

arithmetic averages (UPGMA) algorithm for a 

better visualization of the genetic relationships 
among the parent-offspring and MPOB oil palm 

genotypes used as outgroup. These calculations 
were performed by the computer program 

DARwin v5 (Perier and Jacquemoud-Collet 2006).  
 

Results and Discussion 

 
Screening the parents and progenies using SSR 
markers 
The choice of 16 microsatellite markers used for 

screening the oil palm parent genotypes and their 

putative hybrids was based on their ability to 
generate polymorphic bands under optimized 

PCR conditions. Based on our genotyping results, 
eight microsatellite markers which were 

polymorphic among the parents were employed 

for further analysis of their hybrids (Table 2).

 
Table 2: Genetic diversity measures for eight polymorphic microsatellite loci tested in 22 oil palm genotypes 

 

Locus Linkage 
Group 

Repeat  
Motif 

Na uHe Ho PID PIC 

mEgCIR0793 2 (GA)15 3.000 0.623 0.955 0.230 0.5318 

sEg00154 6 (CAG)5 5.000 0.672 0.955 0.177 0.5979 

sMo00102 7 (AG)11 4.000 0.722 1.000 0.141 0.6494 

sMg00016 9 (GA)13 6.000 0.717 1.000 0.141 0.6496 

mEgCIR3519 10 (GA)15(GT)8 5.000 0.672 0.955 0.177 0.5979 

mEgCIR0790 12 (GA)19 4.000 0.644 0.955 0.204 0.5628 

sEg00151 13 (CAG)8 2.000 0.512 0.909 0.375 0.3750 

sMg00179 14 (AAAG)6 5.000 0.772 1.000 0.104 0.7103 
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Mean   4.250 

±0.453 

0.667 

±0.028 

0.966 

±0.011 

 

1.14 x 10-7# 

0.5843 

Na: observed number of alleles; uHe: expected heterozygosity; Ho: observed heterozygosity; PID: 
probability of identity; PIC: polymorphism information content, #: combined probability of identity and 

exclusion  
The eight polymorphic SSR loci exhibited a total 

of 34 alleles among the parents and putative 
hybrids with a mean value of 4.25 alleles per 

locus (Table 2). The highest number of alleles (6 

alleles per locus) was detected for sMg00016, 
whereas loci sEg00154, mEgCIR3519 and 

sMg00179 presented 5 alleles per locus. Similar 
studies involving the analysis and 

characterization of microsatellites in oil palm have 

also detected loci with highly variable number of 
alleles, as well as the polymorphic information 

content (2 to 6 alleles per locus, Bakoumé et al., 
2011; 3 to 8 alleles per locus, Hama-Ali et al., 

2015; 5 to 11 alleles per locus, Budiman et al., 
2019). The highest polymorphism information 

content (PIC) value was detected for the locus 

sMg00179 (0.7103), while the lowest PIC value of 
0.3750 was recorded for the locus sEg00151 with 

a mean value of 0.5843. This was comparable to 
PIC values found in previous studies (0.488 to 

0.777, Hama-Ali et al., 2014; 0.41 to 0.84, 

Budiman et al., 2019). The high level of 
polymorphism observed for the described 

microsatellite markers support their application in 
genetic studies of oil palm. Number of alleles 

detected and PIC value based on the frequencies 
of different alleles by a particular marker 

indicates the quality (discriminatory power) of the 

marker (Powell et al., 1996). The range of gene 
diversity varied between 0.512 (sEg00151) and 

0.772 (sMg00179) with a mean value of 0.667. 
The observed heterozygosity differed among the 

locus from 0.909 (sEg00151) to 1.000 

(sMo00102, sMg00016 and sMg00179). Lower 
but comparable results were obtained in a study 

that involved the analysis of 16 SSR loci in six oil 

palm populations from Cameroon where He 

ranged from 0.47 to 0.62, and Ho from 0.627 to 
0.840 (Budiman et al., 2019). This discrepancy 

may be due to populations evaluated and the fact 

that the sample size employed in the present 
study was smaller compared to the afore-

mentioned report. Also, the probabilities of 
identity values (PID) between two genotypes 

randomly selected were minimum (0.104) for 

sMg00179 and maximum (0.375) for sEg00151. 
When evaluated for all eight microsatellites, the 

cumulative probability to obtain identical 
genotypes among the two parents and the 20 

putative hybrids were 1.14 x 10-7. This result 
reflects a relatively high genetic polymorphism 

despite the two generations of selective breeding 

on the investigated genotypes.  
 

Applying SSR markers for hybrid identification 
The eight microsatellite markers used to screen 

the parent genotypes were employed to verify 

that the 20 progenies were indeed genetically 
descended from their putative parents. The 

alleles recorded for each hybrid with the 
microsatellite loci tested are shown in Table 3. 

The number of different allele combinations 
observed with each primer pair ranged from 2 

(sEg00151) to 6 (sMg00016) and the number of 

hybrids distinguished ranged from 1 (sEg00151) 
to 5 (sMg00016). These allelic data could be used 

by other oil palm breeders to check the identity 
of oil palm with similar pedigree as microsatellites 

are transferable between laboratories (Peakall et 

al., 1998). In fact, the parents evaluated in this 
study are widely used for commercial seed 

production.
 

Table 3: Allele combinations (in base pairs) at eight microsatellite loci in the oil palm parents and hybrids 

 

 mEgCIR0793 sEg00154 sMo00102 sMg00016 mEgCIR3519 mEgCIR0790 sEg00151 sMg00179 

P1♀ 170/170 260/266 254/258 283/289 241/241 231/231 239/239 237/242 

P2♂ 163/171 261/261 252/260 284/297 260/267 233/243 236/236 232/238 

DT1 163/170 260/261 258/260 284/289 241/260 231/243 236/239 232/242 

DT2 163/170 260/261 254/260 284/289 241/260 231/233 236/239 232/242 

DT3 163/170 261/266 254/260 284/287 241/267 231/243 236/239 232/242 
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DT4z 170/175 260/261 258/260 284/289 241/267 231/235 236/239 237/239 

DT5 163/170 261/261 252/254 284/289 241/267 231/243 236/238 237/238 

DT6 163/170 261/266 252/254 284/289 241/267 231/243 236/239 237/238 

DT7 170/171 261/266 254/260 284/289 241/260 231/233 236/239 232/242 

DT8 163/170 261/266 252/254 284/289 241/267 231/233 236/239 237/238 

DT9 163/170 260/261 254/260 289/297 241/267 231/233 236/239 232/242 

DT10 163/170 260/261 254/260 284/289 241/267 231/233 236/239 237/238 

DT11 170/171 261/266 258/260 289/297 241/260 231/233 236/239 237/238 

DT12z 170/171 262/265 252/254 283/284 255/258 231/243 236/239 237/238 

DT13 170/171 260/261 254/260 289/297 241/260 231/233 236/239 232/242 

DT14 163/170 261/266 252/254 284/289 241/260 231/243 236/239 232/242 

DT15 163/170 260/261 254/260 284/289 241/267 231/233 236/239 237/238 

DT16 170/171 260/261 252/254 289/297 241/260 231/243 236/239 232/242 

DT17 163/170 260/261 254/260 289/297 241/260 231/233 236/239 237/238 

DT18 163/170 260/261 254/260 284/289 241/260 231/233 236/239 237/238 

DT19 163/170 261/266 258/260 284/289 241/267 231/233 236/239 237/238 

DT20 170/171 261/266 252/254 283/284 241/267 231/243 236/239 237/238 

Na 3 5 4 6 5 4 2 5 

K 2 3 3 5 3 3 1 3 

Na: number of different allele combinations; K: number of hybrids distinguished by each primer pair; z 
illegitimate progeny with mismatching alleles underlined 

One allele from each of the two intercrossing 
parents was amplified at each SSR locus      of the 

hybrid. A hybrid was also considered illegitimate 

if one or both of its two alleles      were not 
inherited from its two parents. The hybrid purity 

index for the entire tested locus was 90%. Out of 
20 individual palms screened, two illegitimate 

hybrids were observed (Table 3). A closer 
examination of the illegitimate/contaminated 

progenies revealed that one of the progenies 

(DT4) presented single allele genotype mismatch 
at three loci, with all matching alleles derived 

from the female parent. This suggests that pollen 
from different male parents may have been used 

to pollinate the maternal tree rather than the 

intended pollen, or the pollen used was 
contaminated with pollen from a different source. 

Overall however, a pollination error or a planting 
error could possibly explain this event. The other 

illegitimate sample (DT12) did not have any allele 
in common with either parent (Table 3). An error 

during the seed and seedling handling stages 

(incorrect labeling or mixing of families in 
nurseries) is the most likely explanation here. All 

the legitimate progenies inherited both parents’ 
alleles and were heterozygous at all the SSR loci 

tested. 

Notwithstanding the long history of crossing 
programmes in oil palm breeding, controlled 

pollination is difficult and susceptible to various 

sources of error resulting in illegitimacy or 
contamination in the controlled crosses. The 

reasons for illegitimacy or contamination in oil 
palm breeding programmes are several and have 

been elaborately discussed by Corley (2005) and 
Corley and Tinker (2016). More recent utilization 

of SSR for characterizing genetic diversity of oil 

palm breeding populations by Budiman et al., 
(2019), revealed four illegitimate individuals 

among two dura self progenies of PT Astra Agro 
Lestari (AAL) breeding materials in Indonesia. In 

a study that used 30 microsatellite markers for 

illegitimacy and sibship assignments in oil palm, 
Hama-Ali et al., (2015) found three illegitimate 

palms among 200 progenies of four half sib 
families of FELDA’s breeding materials in 

Malaysia. Thongthawee et al., (2012) used eight 
SSRs for parentage analysis in six full sib families 

of the breeding plantation of Univanich Palm Oil 

Public Company Ltd., Krabi, Thailand and 
detected four non-hybrids. They speculated that 

illegitimate palms probably resulted from pollen 
contamination during the control cross and errors 

during the nursery or planting stage. Taken 
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together, these observations underscore obvious 

risk of errors from pollen collection to field 
planting of controlled crosses, and the need for 

careful supervision of the process coupled with 
strict adherence to quality control procedures. 

The two non-essential genotypes found in this 

study can be considered excellent when 
compared to previous reports (Budiman et al., 

2019; Hama-Ali et al., 2015; Thongthawee et al., 
2012)  as well as other studies on different plant 

species (Subashini et al., 2014). 
 

Selection of informative markers for quality 
control  
The selection of informative microsatellite 

markers for hybrid confirmation is vital in the 
reciprocal recurrent selection (RRS) method of oil 

palm breeding. This is cogent, in view of the 

possibility of contamination at the different 
stages of oil palm breeding activities. Another 

concern, mostly from a practical standpoint, is the 
initial high cost, research equipment, and tedious 

procedures involved in microsatellite marker 
development (Bakoumé et al., 2011). Corley 

(2005) in his review, suggested that the number 

of markers necessary for hybrid confirmation 
might be fewer than five due to the high 

polymorphism of microsatellites at the locus level. 
Out of the eight detected polymorphic SSR 

markers, a suite of three markers (sMg00016, 

sMg00179 and sMo00102) presented sufficient 
information content among the 22 genotypes 

representing two parental palms and their 20 
hybrids. This marker suite had the highest 

expected heterozygosity (uHe), PIC values and 

the lowest probabilities of identity (PID; Table 2). 
They are located in three different oil palm 

linkage groups (or chromosomes) which explains 
their significant discriminatory power to 

distinguish closely related oil palm genotypes.  
The efficiency of the cited markers in genetic 

differentiation and discrimination among different 

oil palm genotypes was further validated using 
multivariate analysis. The results of the UPGMA 

dendrogram constructed based on shared allele 
frequency showed grouping of the 25 genotypes 

(22 NIFOR parent-progeny palms and 3 MPOB 

advanced lines used as outgroup) into two major 
clusters (Figure 2). Cluster I consisted of the two 

parents and their hybrids while the MPOB 
experimental selections were grouped in cluster 

II. This outcome indicated the usefulness of the 
markers to differentiate among closely related 

genotypes as well as the 25 oil palm genotypes 

under investigation. In a related study, Singh et 
al., (2007) obtained satisfactory separation of six 

oil palm ortet-ramet sets using five SSR loci.

 

 
 

Figure 2. UPGMA dendrogram showing the ability of the three sets of SSR loci to discriminate among the 

parental genotypes, their hybrids and the three elite populations used as outgroup. The dendrogram was 

I 

II 
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specifically used to assess the discriminating ability of the SSR for fingerprinting. All the genotypes were 

derived from a single cross with parents of different origin so their relationship is not in doubt. The two 
parents and their resulting progeny      are in one cluster while the MPOB advanced materials used as 

outgroup/control were assigned to a different cluster. 
 

Implications to oil palm varietal improvement 
Reports show that molecular markers such as 
microsatellites or simple sequence repeats (SSR) 

are more faithful in the acceleration of 
conventional oil palm breeding with respect to 

verification and identification of hybridity (Singh 
et al., 2007; Thawaro and Te-chato, 2010; 

Thongthawee et al., 2012; Bakoumé et al., 2011; 

Hama-Ali et al., 2015; Budiman et al., 2019). 
Results from this study indicate that it is possible 

to accurately and rapidly determine true hybrids 
in oil palm using PCR-based techniques compared 

to the cumbersome morphological observation 

that has been adopted in the NIFOR oil palm 
breeding programme. In contrast to the 

morphological method of hybrid identification 
which usually takes 3-4 years, SSR analysis takes 

only 1-3 months depending on the number of 
populations or sample size. Nevertheless, given 

the occurrence of inter-type contamination in oil 

palm, it is not easy for SSR markers to distinguish 
dura fruit form from tenera or pisifera fruit forms. 

Therefore, the traditional method of hybrid 
identification will continue to complement 

molecular marker technology. Early detection of 

true hybrids indicates precise selection of plants 
in the field. In an effort to develop marker-

assisted selection (MAS) tools for economically 
important agronomic traits as well as disease 

resistance in the oil palm breeding programme, 

these legitimate hybrids could be used as 
mapping population. The use of MAS will increase 

selection efficiency, reduce the breeding cycle 
and enhance variety development. Introduction 

of an additional phase involving SSR markers in 
the modified RRS programme of NIFOR will be 

desirable for the identification of contaminants in 

addition to selection of recombinant genotypes 
that will maximize heterosis among populations. 

According to Babu et al., (2017), significant cost 
savings could be made by eliminating illegitimate 

crosses before field planting. 

 
Conclusion  

This is the first study confirming the ascendance 
of some progenies in NIFOR oil palm main 

breeding programme using microsatellite 
markers. Eight polymorphic microsatellite 

markers were employed for the verification of 

some oil palm progenies from the breeding 
programme.  In principle, results from the 

progeny screening highlight the efficiency of the 
microsatellite markers for analysis of genetic 

variation and parentage verification. Two 
individual palms were off-types probably due to 

genotype mix-ups from pollen contamination 

during controlled crosses and planting errors, 
respectively. This also draws attention to the 

need for constant care, control and organization 
at all the stages of seed production; from raising 

of seedlings in the nursery, to planting in the 

field. It is therefore recommended as a standard 
practice to test the legitimacy of all crosses in the 

breeding programme. The three most informative 
SSR markers (sMg00016, sMg00179 and 

sMo00102) could be confidently utilized for 
routine fingerprinting, hybrid purity tests and 

certification of controlled crosses in oil palm 

breeding programmes. Although more numbers 
of plant samples will be required for large scale 

application in commercial seed production, minor 
modifications in terms of measurement precision 

and probabilities will be worked out to circumvent 

technical drawbacks. The legitimate progenies 
identified will be useful for reliable inheritance 

studies and comparison of genetic diversity 
determined by microsatellite markers to that 

revealed by agronomic markers, which have 

rarely been reported in literature. 
 

Acknowledgments  
The support and assistance received from the 

Genomics Unit of the Advanced Biotechnology & 
Breeding Centre, MPOB in the form of laboratory 

attachment for microsatellite genetic analyses is 

gratefully acknowledged. We wish to thank Dr. 
Ravigadevi Sambanthamurthi for her logistic 

support, Ms. Rahimah Abd Rahman and Dr. Ting 
Ngoot-Chin for their technical assistance in the 

microsatellite assays and capillary 

electrophoresis. The assistance of Dr. Maizura 
Ithnin in statistical analysis, and Messrs. Innocent 

Ani and Hugh Okoye in field work is also 
acknowledged. The valuable suggestions and 

comments of Dr. Mehmood Hassan of ICRAF on 



Okoye et al./ Nig. J. Biotech. Vol. 37 Num. 2 : 1-12 (Dec 2020) 

10 

 

an early version of this manuscript is highly 

appreciated.   
 

References 
 

Amos, W., Sawcer, S. J., Feakes, R. W. and 

Rubinsztein, D. C. (1996). Microsatellites Show 
Mutational Bias and Heterozygote Instability. 

Nature Genetics 13: 390-391. 
doi:10.1038/ng0896 

390  
Anderson, J.A., Churchill, G.A., Autrique, J.E., 

Tanksley, S.D. and Sorrells, M.E. (1993). 

Optimizing parental selection for genetic linkage 
maps. Genome 36:181-86. 

 
Ataga, C.D., Okoye, M.N., Enaberue, L.O. and 

Ikuenobe, C.E. (2018). Oil Palm Breeding 

Programme in Nigeria. In: International Oil Palm 
Conference (IOPC)-Smoothing the market 

disequilibra,  Medan, North Sumatra, Indonesia, 
17 – 19th July 2018.  

 
Babu, B.K., Mathur, R.K., Kumar, P.N., 

Ramajayam, D., Ravichandran, G., Venu, M.V.B., 

et al. 
(2017). Development, identification and 

validation of CAPS marker for SHELL trait which 
governs dura, pisifera and tenera fruit forms in oil 

palm (Elaeis guineensis Jacq.). PLoS ONE 

12(2): e0171933. 
doi:10.1371/journal.pone.0171933 

 
Bakoumé, C., Aziah, M.Y., Praveena, T., Chee, 

K.T., Suzaini, Y., Hamidah, M., Jangi, M.S., 

Basiran, M.N., Khairudin, H. and Harikrishna, K. 
(2011). DNA sequence‐based markers for 

verification of ramet‐to‐ortet relationship in oil 
palm (Elaeis guineensis Jacq.). Am. J. Plant Sci., 

2: 539‐48. doi:10.4236/ajps.2011.24064 
 

Billotte, N., Marseillac, N., Risterucci, A.M., Adon, 

B., Brottier, P., Baurens, F.C., Singh, R., Herran, 
A., Asmady, H., Billot, C., Amblard, P., 

DurandGasselin, T., Courtois, B., Asmono, D., 
Cheah, S.C., Rohde, W., Ritter, E. and Charrier, 

A. (2005). Microsatellite‐based high density 

linkage map in oil palm (Elaeis guineensis Jacq.). 
Theor. Appl. Genet., 110: 754‐65.doi: 

10.1007/s00122-004-1901-8 PMID: 15723275 
 

Bohra, A., Dubey, A., Saxena, R.K., Penmetsa, 
R.V., Poornima, K.N., Kumar, N. and Farmer, 

A.D. (2011). Analysis of BAC-end sequences 

(BESs) and development of BES-SSR markers for 
genetic mapping and hybrid purity assessment in 

pigeonpea (Cajanus spp.). BMC Plant Biol 11:56 
 

Budiman, L. F., Apriyanto, A., Pancoro, A. and 

Sudarsono, S. (2019). Genetic diversity analysis 
of Tenera × Tenera and Tenera × Pisifera 

Crosses and D self of oil palm (Elaeis guineensis) 
parental populations originating from Cameroon. 

Biodiversitas 20 (4): 937-49. 
 

Corley, R.H.V. (2005). Illegitimacy in oil palm 

breeding-a review. J Oil Palm Res 17(1):64–69. 
 

Corley, R. H. V. and Tinker, P. B. (2016). The Oil 
Palm, 5th Ed. United Kingdom. WILEY 

Blackwell, p.156.  

 
Doyle, J.J. and Doyle, J.L. (1990). Isolation of 

plant DNA from fresh tissue. Focus 12: 13-15.  
 

Hama-Ali, E.O., Alwee, S.S.R.S., Tan, G.S., 
Panandam, J. M., Ling, H.C., Namasivayam, P. 

and 

Peng, H.B. (2015). Illegitimacy and sibship 
assignments in oil palm (Elaeis guineensis Jacq.) 

half 
-sib families using single locus DNA microsatellite 

markers.  Mol Biol Rep 42:917– 925. DOI 

10.1007/s11033014-3829-7 
 

Liu, K. and Muse, S.V. (2005). PowerMarker: An 
integrated analysis environment for genetic 

marker analysis. Bioinformatics 21: 2128–2129.  

 
Marshall, T.C., Slate, J., Kruuk, L.E.B. and 

Pemberton, J.M. (1998). Statistical confidence for 
likelihood-based paternity inference in natural 

populations. Molecular Ecology 7: 639-55. 
http://dx.doi.org/10.1046/j.1365-

294X.1998.00374.x 

 
Mondini, L., Noorani, A. and Pagnotta, M.A. 

(2009). Assessing plant genetic diversity by 
molecular tools. Diversity 1:19-35. 

 

Nei, M. (1978). Estimation of average 
heterozygosity and genetic distance from a small 

number 
of individuals. Genetics 89, 583-90. 

 

http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x
http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x


Okoye et al./ Nig. J. Biotech. Vol. 37 Num. 2 : 1-12 (Dec 2020) 

11 

 

Okoye, M. N. (2016). Molecular characterization 

of some NIFOR and elite oil palm breeding 
populations using microsatellite markers. Ph.D 

thesis. University of Nigeria. 148 pp. 
 

Okoye, M. N., Okwuagwu, C.O. and Ataga, C.D. 

(2001).  The traits of economic importance in oil 
palm, their inheritance and implication in 

breeding and selection.  Paper presented at the 
In-house Reseaech and Development Seminar on 

the 17th of October, 2001, ERLSD Hall, NIFOR 
Benin City. Nigeria.  

 

Okwuagwu, C. O. (2001). The development of 
NIFOR high yielding and stable EWS and the 

consequences of adulteration of oil palm planting 
materials. A technical paper presented at the 

meeting of the Major Oil palm Growers in Nigeria, 

NIFOR. 24th April 2001, ERLSD Hall. p11-13  
 

Paetkau, D., Calvert, W., Stirling, I. and Strobeck, 
C. (1995). Microsatellite analysis of population 

structure in Canadian polar bears. Mol. Ecol., 4: 
347-54.   

 

Peakall, R., Gilmore, S., Keys, W., Morgante, M., 
Rafalski, A. (1998). Cross-species amplification 

of soybean (Glycine Max) simple sequence 
repeats (SSRs) within the genus and other 

legume 

genera: implications for the transferability of 
SSRs in plants. Molecular Biology and Evolution 
15: 
1275-1287. 

 

Peakall, R. and Smouse P.E. (2012). GenAlEx 6.5: 
genetic analysis in Excel. Population genetic 

software for teaching and research – an update. 
Bioinformatics 28: 2537-2539. 

http://bioinformatics.oxfordjournals.org/content/
28/19/2537 

 

Perrier, X. and Jacquemoud-Collet, J.P. (2006). 
DARwin software http://darwin.cirad.fr/darwin 

 
Pomiès, V., Riou, V., Flory, A., Manez, A., Jacob, 

F. and Cochard, B. (2019). Quality Approach 

in Oil Palm Selection and Seed Production by 
Using ID Checking Test with 12 SSR Markers. 

Proceedings of the PIPOC 2019 International 
Palm Oil Congress (Agriculture, Biotechnonoly & 

Sustainability) AP39 Vol.2:230-234. 
 

Powell, W., Morgante, M., Andre, C., Hanafey, M., 

Vogel, J., Tingey, S. and Rafalski, A. (1996). 
The comparison of RFLP, RAPD, AFLP and SSR 

(microsatellite) markers for germplasm analysis. 
Mol Breed 2: 225-238.  

 

Singh, R., Jayanthi, N., Tan, S.G., Jothi Malar, P. 
and Cheah, S.C. (2007). Development of simple 

sequence repeat (SSR) markers for oil palm and 
their application in genetic mapping and 

fingerprinting of tissue culture clones. Asia Pac J 
Mol Biol Biotechnol. 15(3):121–31. 

 

Singh, R., Zaki, N.M., Ting, N.C., Rosli, R., Tan, 
S.G., Low, E.T.L., Ithnin, M. and Cheah, S.C. 

(2008). Exploiting an oil palm EST database for 
the development of gene‐derived SSR markers 

and their exploitation for assessment of genetic 

diversity. Biologia, 63: 227‐35.  
 

Singh, R., Low, E.T.L., Ooi, L.C.L., Ong‐Abdullah, 
M., Ting, N.C., Jayanthi, N., Rajanaidu, N., Mohd 

Din, A., Rozana, R., Mohamad Arif, A.M., Chan, 
K.L., Mohd Amin, H., Norazah, A., Lakey, N., 

Smith, S.W., Budiman, M.A., Hogan, M., Bacher, 

B., Van Brunt, A., Wang, C., Ordway, J.M., 
Sambanthamurthi, R. and Martienssen, R.A. 

(2013). The oil palm SHELL gene controls oil yield 
and encodes a homologue of SEEDSTICK. Nature, 

500, 340‐44. 

 
Smith, J. S. C., Chin, E. C. L., Shu, H., Smith, O. 

S., Wall, S. J., Senior, M. L., Mitchel, S. E., 
Kresovich, S. and Ziegle, J. (1997). An Evaluation 

of the Utility of SSR Loci as Molecular Markers in 

Maize (Zea mays L.), Comparisons with Data from 
RFLPs and Pedigree, Theoretical and Applied 

Genetics 95: 163-173. 
doi:10.1007/s001220050544  

 
Subashini, V., Shanmugapriya, A. and Yasodha, 

R. (2014). Hybrid purity assessment in 

Eucalyptus F1 hybrids using microsatellite 
markers. Biotech 4: 367–373 DOI 

10.1007/s13205 
013-0161-1 

 

Teh, C.K., Lee, H.L., Abidin, H., Ong, A. L., 
Mayes, S., Chew, F. T. and Appleton, D. (2019). 

A 
practical genome-enabled legitimacy assay for oil 

palm breeding and seed production. BMC Plant 
Biology19:470. 

http://bioinformatics.oxfordjournals.org/content/28/19/2537
http://bioinformatics.oxfordjournals.org/content/28/19/2537
http://darwin.cirad.fr/darwin


Okoye et al./ Nig. J. Biotech. Vol. 37 Num. 2 : 1-12 (Dec 2020) 

12 

 

 

Thawaro, S. and Te-chato, S. (2010). Verification 
of legitimate tenera oil palm hybrids using SSR 

and propagation of hybrids by somatic 
embryogenesis. Songklanakarin J. Sci. 

Technol.32 (1):1-8. 

 
Thongthawee, S., Tittinutchanon, P. and 

Volkaert, H. (2012). Microsatellites for parentage 
analysis in an oil palm breeding population. Thail 

J. Genet 3(2):172–81.  
 

Ting, N.C., Noorhariza, M.Z., Rozana, R., Low, 

E.T., Ithnin, M. and Cheah, S.C. (2010). SSR 
mining in oil palm EST database: application in oil 

palm germplasm diversity studies. J. Genet 
89:135-45. 

 

USDA FAS Report (2019) Nigeria: Oilseeds and 
Products Annual. 

https://www.fas.usda.gov/data/nigeria-oilseeds-
and-products-annual 

 

 


