
Available online at http://ajol.info/index.php/njbas/index 

Nigerian Journal of Basic and Applied Science (2010), 18(2): 168-180 

ISSN 0794-5698 

PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes and Macrophages 

S.A. Isa, R.H.K. Morris, A.W. Thomas, R. Webb  

Cardiff School of Health Sciences, University of Wales Institute Cardiff, UWIC Llandaff 

Campus, CARDIFF CF5 2YB, UK 

[Author of Correspondence: sisa@uwic.ac.uk] 

 

168 

 

ABSTRACT: Obesity and associated disorders such as Type-2 Diabetes (T2D) and atherosclerosis 

are associated with elevated levels of circulating oxidized low-density lipoprotein (oxLDL). High 

levels of oxLDL lead to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. 

Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response 

(UPR), which tends to restore ER homeostasis but switches to apoptosis when ER stress is prolonged. 

In the present study the lipotoxic effect of oxLDL was investigated on a monocyte/macrophage cell 

lines. The results demonstrate that oxLDL could induce ER stress and activation of the UPR pathway 

in mnocyte/macrophage cell lines as evident of the activation/up-regulation of ER stress/UPR genes. 

Cholesterol does not seem to exert effects in intact cells in our experiments; in contrast oxLDL did 

induce ER stress and UPR. In microsomal fractions, cholesterol but not oxLDL inhibit the ER Ca
2+

-

ATPase activity. Gene expression analysis showed that macrophages express high levels of the 

oxLDL scavenger receptor CD36, than monocytes and oxLDL induced macrophage apoptosis via 

caspase-3/7 activation. The observations that oxLDL can induce UPRs in macrophages, and that 

cholesterol inhibit ER Ca
2+

-ATPase activity, suggest that cholesterol may be the oxLDL component 

responsible for macrophage lipotoxic ER stress effects as seen in obesity. As disrupted cellular Ca
2+

 

homeostasis/ER stress may be linked to macrophage lipotoxicity this data may enhance our 

understanding of the diverse effects of oxLDL, particularly in the context of obesity, type 2 diabetes 

and metabolic syndrome. 
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INTRODUCTION 

The endoplasmic reticulum (ER) performs 

several important functions including post-

translational modification, folding and 

assembly of newly synthesized secretory 

proteins and calcium homeostasis. However, 

various conditions can disturb any of the ER 

functions leading to imbalance between 

protein-folding load and the capacity of the 

ER, causing unfolded or misfolded proteins to 

accumulate in the ER lumen, a condition 

referred to as ER stress (Araki et al., 2003; 

Zhang and Kaufman, 2008). To combat the 

deleterious effects of ER stress, cells have 

evolved a protective response called the 

unfolded protein response (UPR) (Patil and 

Walter, 2001; Ron and Walter, 2007). The 

main function of the UPR is to reduce the 

accumulation of the unfolded proteins and 

restoration of normal ER function. However, 

prolonged ER stress may lead to apoptotic cell 

death (Szegezdi et al., 2006). Thus, ER stress 

and UPR has been linked to several diseases 

(Marciniak and Ron, 2006) 

One of the major complications associated 

with diabetes is atherosclerosis, and has been 

regarded as number one cause of mortality in 

diabetics (Beckman et al., 2002). 

Monocytes/macrophages play an important 

role in the pathogenesis of atherosclerosis and 

several other diseases (Lebovitz and Banerji, 

2001). In atherosclerotic lesions for example, 

macrophages are the most prominent cell type 

and are associated with lipid deposition and 

inflammation (Tiwari et al., 2008). One 

prominent feature of atherosclerotic lesions is 

macrophage death which affects lesion 

progression and complications (Yao and 

Tabas, 2001). Among the likely cause of 

macrophage death is accumulation of free 

cholesterol in the ER leading to the activation 

of the unfolded protein response (Devries-

Seimon et al., 2005). Macrophages can acquire 

cholesterol both from endogenous synthesis 

and uptake of cholesterol-containing 



Isa et al.;  PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes and Macrophages 

 

169 

 

extracellular materials. However in 

atherosclerotic lesions the major cholesterol 

source is plasma low density lipoprotein 

(LDL) that has been chemically or physically 

modified forming oxidized LDL (oxLDL) (van 

Reyk and Jessup, 1999).  

A large body of evidence indicates that oxLDL 

are cytotoxic for several cell types including 

macrophages (Muller et al., 2001; Heinloth et 

al., 2002). However, the mechanisms by which 

oxLDL induce cytotoxicity are not fully 

understood. As mention earlier, one of the 

functions of the ER is calcium homeostasis 

(Nielsen and Petersen, 1972).  Disturbing any 

of the ER functions may result in ER stress 

and UPR which tend to restore ER 

homeostasis but switch to apoptosis when ER 

stress is prolonged. ER stress may thus 

contribute to the increased risk of insulin 

resistance, type 2 diabetes and other 

cardiovascular complications associated with 

obesity (Ozcan et al., 2004; Gregor and 

Hotamisligil, 2007).  Calcium homeostasis is 

also related to the pathophysiology of type 2 

diabetes and its complications (Advani et al., 

2004). Moreover cholesterol loading to the ER 

causes ER stress and activation of UPR (Li et 

al., 2004).  

Previous work in our Laboratory has shown 

that, in addition to its role as a peroxisome 

proliferator-activated receptor gamma 

(PPARγ) ligand, the anti-hyperglycaemic drug 

rosiglitazone causes inhibition of the ER 

‘housekeeping Ca
2+

 pump’ enzyme 

sarco/endoplasmic reticulum calcium ATPase 

2b (SERCA2b), unchecked leakage of Ca
2+

 

from the ER lumen and triggering of UPRs 

(Caddy et al., 2008). It was therefore the aim 

of this study to examine whether oxLDL, a 

natural PPARγ ligand could disrupt ER 

calcium homeostasis and trigger UPRs in two 

cell types relevant to the progression of type 2 

diabetes and its compications: monocytes and 

macrophages. Because ER stress restores 

normal cell physiology or induce cell death 

when stress is prolonged, the effect of oxLDL 

on apoptosis was also investigated.   

 

MATERIALS & METHODS.  

Materials. All reagents were purchased from 

Sigma-Aldrich (Poole, UK) unless stated 

otherwise. oxLDL, and rosiglitazone were 

obtained from Autogen Bioclear (Calne, UK) 

and GlaxoSmithKline (Uxbridge, UK) 

respectively. Human monocytic THP-1 cell 

lines were obtained from the European 

Collections of Cell Cultures (Salisbury, UK). 

Maintenance of cells in culture. Human 

monocytic leukemia (THP-1Mon) cell lines 

were used in these studies (Tsuchiya et al., 

1980). The cells were maintained in culture 

under standard conditions. To generate 

macrophages (THP1MΦ) cells were treated 

with 100ng/ml porbol myristate acetate (PMA) 

for 72h. After confirming that the cells were 

fully differentiated (Figure 1), the media 

containing PMA was then aspirated and fresh 

culture media was added. 

RNA isolation and real-time quantitative 

PCR. Total RNA were extracted with Trizol

 

reagent according to the manufacturer’s 

instructions (Invitrogen, Paisley, UK). RNA 

samples were converted to cDNA using an 

Applied Biosystems® High-Capacity cDNA 

Archive Kit. CD36, PPARγ and β-actin 

mRNA expressions were assessed using 

SYBR® Green Assays (Applied Biosystems, 

Warrington UK) and analysed using an 

Applied Biosystems 7500 Real-time PCR 

system. Semi-quantitative comparisons of 

mRNA expression levels were carried out 

using the 2
-∆∆CT

 method were ∆CT equals the 

difference between CT values for target gene 

and the house-keeping gene, β-actin. The 

following primers were used: 

CD36. Fwd: 5’-GGAAGTGATGATGAACAGCAGC-3’ 

Rev: 5’-GAGACTGTGTTGTCCTCAGCGT-3’ 

PPARγ. Fwd: 5’-CGTGGCCGCAGATTTGAA-3’ 

Rev: 5’-CTTCCATTACGGAGAGATCCAC-3’ 

β-actin. Fwd: 5’-TCCTGTGGCATCCACGAA-3’ 

Rev: 5’-GAAGCATTTGCGGTGGAC-3’ 

 

 

In the case of SERCA2b, mRNA expression 

was investigated using an Applied Biosystems 

7500 Real-time PCR system and assessed 

semi-quantitatively (relative to 

Glyceraldehyde Phosphate Dehydrogenase 

(GAPDH)) via Taqman


 Gene Expression 
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Assays (Applied Biosystems, Warrington, 

UK). In all cases, thermocycling was as 

follows: initial denaturation (2min; 

50
o
C/10min; 95

o
C), followed by 50 cycles of 

denaturation (15sec; 95
o
C)/annealing-

extension (60sec; 60
o
C). 

XBP-1 activation. Activation of the UPR 

transcription factor x-box binding protein 1 

(XBP-1) was assessed in THP-1Mon and 

THP1MΦ via a method adapted from Shang 

(Shang et al., 2005) which uses RT-PCR, 

agarose gel electrophoresis and densitometric 

analysis to determine XBP-1 activation. 

Because inositol requiring ER-to-nucleus 

signal kinase 1’s (IRE1) endoribonuclease 

activity excises a 442bp segment from within 

exon 4 of the unspliced XBP-1 mRNA species 

(XBP-1u) under conditions of ER stress, and 

so generates a spliced mRNA (XBP-1s) 

encoding the active form of the protein (Xu et 

al., 2005), XBP-1 activation can be 

determined via densitometric analysis of 

banding patterns on 2% agarose gels by means 

of the following formula:  

[XBP-1(s) + 0.5 XBP-1(h)]/[XBP-1(s) + XBP-1(h) + XBP-1(u)] 

 

where XBP-1(s) is a 398bp PCR product, 

XBP-1(u) is a 442bp PCR product, and 

XBP-1(h) is an additional PCR product 

representing a heteroduplex XBP-1 cDNA 

species (Shang et al., 2005). XBP-1 

activation was then expressed relative to 

that seen in control THP-1Mon cells. 

Subcellular fractionation and Ca
2+

-ATPase 
Assay. Microsome preparation from THP-

1Mon was conducted according to the methods 

of Maruyama and MacLennan 1988, and Papp 

et al., 1992 respectively, with minor 

adaptations. Cells were homogenised, and 

subjected to differential centrifugation, with 

the final pellet containing the microsomal 

fraction being resuspended in ATPase assay 

buffer and aliquots snap-frozen in liquid 

nitrogen prior to storage at -80°C.  

Ca
2+

-dependent ATP hydrolysis was measured 

using a coupled enzyme assay, and free 

Ca
2+

concentrations were calculated, as 

described previously (Webb et al., 2000; 

Storer et al. 1976). 

Cell viability and apoptosis Assays.  Cell 

viability and apoptosis levels was determined 

using 3-(4,5-Dimethylthiazol-2-yl)-2,5 

diphenyltetrazolium bromide (MTS) and 

Caspase-Glo 3/7 assays (Promega, 

Southampton, UK), respectively, according to 

the manufacturers’ instructions. The resulting 

optical density or luminescence data was read 

via Dynex plate-reading spectrophotometer or 

luminometer (Worthing, UK), respectively. 

Statistical analysis. Data were expressed as 

mean ± standard error of the mean. Statistical 

significance was determined with Student’s t-

test comparison between two groups of data 

sets. Significance levels were set at P<0.05. 

RESULT 

Effect of PMA on THP-1Mon diffferention. 

THP-1Mon cells were stimulated with 

100ng/ml PMA (Silverstein 1996) and left to 

differentiate for 72 hours. Images captured 

using fluorescence microscope show that the 

cells were fully transformed into macrophages 

after 72 hours as evidence of their extension of 

cell membrane and increased adherence 

Activation of PPARγ by oxLDL. oxLDL has 

been shown to dose dependently induce 

PPARγ mRNA expression in macrophage 

(Taketa et al., 2008). As shown in figure 2, 

both 1 and 40µg/ml oxLDL up-regulate the 

expression of PPARγ mRNA compared to 

untreated cells.  

Effect of PPARγ ligands on CD36 mRNA 

expression. oxLDL entry into 

monocyte/macrophages occurs via receptor-

mediated endocytosis through the lipid 

scavenger receptor CD36 (Endemann et al., 

1993). Moreover, CD36 expression is highly 

regulated in monocytes/macrophages and it 

can be upregulated at transcriptional level by 

PPARγ ligands (Febbraio et al., 2001). 

Differentiation of THP-1 cells increases their 

expression of PPARγ (Chinetti et al., 1998). 

As shown in figure 3, PMA differentiated 

THP1MΦ expressed approximately 3 fold 

increase in CD36 compared to 1.5 fold in 

undifferentiated THP-1 cells.  
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Figure 1: Effect of 100ng/ml PMA on THP

(A) and with (B) 100ng/ml PMA for 72 hours and visualized using fluorescence microscope.

 

Figure 2: Effect of oxLDL on PPAR

incubated for 24 hours with 1 or 40µg/ml oxLDL. PPAR

time-PCR relative to β-actin. Data is expressed as mean ± SEM of three independent experiments (* 

denotes P<0.05 compared to control

Figure 3: Effect of 1µM rosiglitazone
PPARγ ligand) on CD36 mRNA expression in THP

THP1MΦ were incubated with 1µM rosiglitazone or 1µg/ml oxLDL for 24 hours. CD36 mRNA 

expression was quantified by real time

mean ± SEM of three independent experiments

0

1

2

3

4

5

6

Control 1ug/ml 

oxLDL

P
P

A
R
γ

m
R

N
A

 E
x
p

re
ss

io
n

 

(R
el

a
ti

v
e 
β

-a
ct

in
)

A

0

1

2

3

4

control 1µM 

Rosi

C
D

3
6

 m
R

N
A

 e
x
p

re
ss

io
n

(R
el

a
ti

v
e 
β

-a
ct

in
)

A 

A 

* 

 Ligand-Induced Unfolded Protein Responses in Monocytes and Macrophages

171 

: Effect of 100ng/ml PMA on THP-1Mon cells. THP-1Mon cells were incubated without 

) and with (B) 100ng/ml PMA for 72 hours and visualized using fluorescence microscope.

Effect of oxLDL on PPARγ mRNA expression. THP-1Mon (A) and 

incubated for 24 hours with 1 or 40µg/ml oxLDL. PPARγ mRNA expression was quantified by real 

actin. Data is expressed as mean ± SEM of three independent experiments (* 

control cells).  

: Effect of 1µM rosiglitazone (synthetic PPARγ ligand) and 1µg/ml oxLDL
on CD36 mRNA expression in THP-1Mon (A) and THP1M

were incubated with 1µM rosiglitazone or 1µg/ml oxLDL for 24 hours. CD36 mRNA 

expression was quantified by real time-PCR and is reported as a ratio to β-actin. Data is expressed as 

mean ± SEM of three independent experiments (* denotes P<0.05 compared to untreated cells).
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cells were incubated without 

) and with (B) 100ng/ml PMA for 72 hours and visualized using fluorescence microscope. 

and THP1MΦ (B) were 

 mRNA expression was quantified by real 

actin. Data is expressed as mean ± SEM of three independent experiments (* 

and 1µg/ml oxLDL (natural 
THP1MΦ. THP-1Mon and 

were incubated with 1µM rosiglitazone or 1µg/ml oxLDL for 24 hours. CD36 mRNA 

actin. Data is expressed as 

untreated cells).  

1ug/ml 

oxLDL

40ug/ml 

oxLDL

*

1µM 

Rosi

1µg/ml 
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Effect of PPARγ ligands on ER Ca
ATPase activity. In microsomes isolated from 

untreated THP-1cells, maximal Ca

activity was identified (at ~pCa 4.82). This 

activity was not inhibited by incubation with 

0.1% DMSO alone (21±9 nmol/mg/min; 

P>0.05) or oxLDL 40

 

Figure 4: Effects of DMSO (0.1% v/v; blue), 

oxLDL (40µg/ml; yellow) on THP

control).  

Disruption of ER homeostasis triggers UPR
To determine whether disruption in ER Ca

homeostasis trigger UPR, relative expression 

of XBP-1 spliced variants showed that oxLDL 

Figure 5: Splicing of XBP-1 mRNA as an indicator of ER stress.

Cholesterol (200µg/ml), oxLDL (40µg/ml) and 

and THP1MΦ. (XBP-1(s): active splice variant; XBP

splice variant; representative of >3 separate experiments).

Effect of oxLDL on XBP

Densitometric analysis of XBP

showed that oxLDL induced XBP

in THP1MΦ (Fig 6). However, no XBP

activation could be observed in THP

(data not shown).  
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 ligands on ER Ca
2+

-
In microsomes isolated from 

, maximal Ca
2+

-ATPase 

activity was identified (at ~pCa 4.82). This 

activity was not inhibited by incubation with 

0.1% DMSO alone (21±9 nmol/mg/min; 

>0.05) or oxLDL 40µg/ml 

(9±2nmol/mg/min; P>0.05)

significantly inhibited by incubation wi

15dPGJ2 (1±1nmol/mg/min; 

200µg/ml Cholesterol (

P<0.05), suggesting that free cholesterol is the 

oxLDL component that inhibits ER Ca

ATPase activity (Li et al., 

Effects of DMSO (0.1% v/v; blue), cholesterol (200µg/ml; red), 15dPGJ2 (3µM; green) and 

yellow) on THP-1Mon ER Ca2+-ATPase activity (*denotes P<0.05 compared to 

Disruption of ER homeostasis triggers UPR. 
To determine whether disruption in ER Ca2+ 

homeostasis trigger UPR, relative expression 

iced variants showed that oxLDL 

induced XBP-1 splicing in 

in THP-1Mon (Fig. 5). Cholesterol did not 

significantly induce XBP

cell types.   

1 mRNA as an indicator of ER stress. Effects of DMSO (0.1% v/v), 

Cholesterol (200µg/ml), oxLDL (40µg/ml) and Tunicamycin (10ng/ml) on XBP-1 splicing in 

1(s): active splice variant; XBP-1(u): inactive splice variant; XBP

splice variant; representative of >3 separate experiments).  

of oxLDL on XBP-1activation. 

Densitometric analysis of XBP-1 activation 

oxLDL induced XBP-1 activation 

). However, no XBP-1 

activation could be observed in THP-1Mon 

PPARγ Ligands induced transcriptional 

activation of XBP-1 target gene SERCA2b. 
Studies have demonstrated that the natural 

PPARγ ligand 15dPGJ2 are specifically traffic 

to the ER and trigger the UPR (Takashi 

1998) and SERCA2b is an ER stress inducible 

gene (Caspersen et al,

* *

>0.05). Activity was 

significantly inhibited by incubation with 3µM 

1nmol/mg/min; P<0.05) or 

g/ml Cholesterol (-1±3nmol/mg/min; 

<0.05), suggesting that free cholesterol is the 

oxLDL component that inhibits ER Ca
2+

-

 2004). 

 

cholesterol (200µg/ml; red), 15dPGJ2 (3µM; green) and 

ATPase activity (*denotes P<0.05 compared to 

in THP1MΦ, but not 

). Cholesterol did not 

significantly induce XBP-1 splicing in both 

 

Effects of DMSO (0.1% v/v), 

1 splicing in THP-1Mon 

1(u): inactive splice variant; XBP-1(h): hybrid 

 Ligands induced transcriptional 

1 target gene SERCA2b. 
Studies have demonstrated that the natural 

 ligand 15dPGJ2 are specifically traffic 

to the ER and trigger the UPR (Takashi et al., 

1998) and SERCA2b is an ER stress inducible 

et al, 2000). SERCA2b 
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mRNA was significantly upregulated in THP-

1 cells treated with 15dPGJ2 but not oxLDL 

(Figure 7). In contrast, both 15dPGJ2 and 

oxLDL significantly upregulate SERCA2b 

mRNA in dTHP-1 macrophages (Figure 8).   

Effect of oxLDL on THP-1Mon and 
THP1MΦ apoptosis. Caspase -3 and -7 has 

been shown to play key effector roles in 

mammalian apoptosis (Garcio-Calvo et al., 

1999; Le et al., 2002; Hitomi et al., 2004) and 

therefore effect of oxLDL on caspase 

activation as a marker of apoptosis was 

investigated in THP-1Mon and THP1MΦ 

treated with 1 or 40µg/ml oxLDL. As shown 

in figure 9, both 1 and 40µg/ml oxLDL do not 

induce apoptosis in THP-1Mon (A). In 

contrast, both 1 and 40µg/ml oxLDL induced a 

small non-significant increase in apoptosis in 

THP1MΦ (B). 

Effect of oxLDL on THP-1Mon and 
THP1MΦ viability. THP-1Mon or THP1MΦ 

were treated with 1 or 40µg/ml oxLDL for 24 

hours. Effect of oxLDL on THP-1Mon and 

THP1MΦ was investigated. As shown figure 

10, both 1 and 40µg/ml oxLDL do not induce 

decrease cell viability in THP-1Mon (A). In 

contrast, both 1 and 40µg/ml oxLDL induced a 

small non-significant decrease cell viability in 

THP1MΦ (B).  

 

 

Figure 6: Effect of oxLDL on XBP-1 activation in THP1MΦ. XBP-1 activation was assessed via a 

method adapted from Shang (Shang 2005). Band intensity of gel images were measured using 

Quantity One Software (Bio-Rad, UK). After background correction, band intensities were obtained 

and XBP-1 activation was then determined.  

Figure 7: Effect of 15dPGJ2 and oxLDL on SERCA2b mRNA expression in THP-1Mon. THP-

1Mon cells were treated with 40µg/ml oxLDL or 3µM 15dPGJ2 for 0 to 72 hours.  
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Figure 8: Effect of 15dPGJ2 and oxLDL on SERCA2b mRNA expression in THP1MΦ. 

THP1MΦ were treated with 40µg/ml oxLDL or 3µM 15dPGJ2 for 0 to 72 hours. SERCA2b mRNA 

expression was quantified by real time-PCR and is reported as a ratio to GAPDH. Data is expressed as 

mean ± SEM of three independent experiments.  

 

 

Figure 9: Effect of oxLDL on THP-1Mon and THP1MΦ apoptosis. THP-1Mon cells (A) or 

THP1MΦ (B) were treated with 1 or 40µg/ml oxLDL for 24 hours. At the end of the incubation, the 

cells were analyzed for caspase -3/7 activity via Caspase-Glo luminescence-based apoptosis assay 

using Dynex luminometer. Data are expressed as mean % control.  

Figure 10: 

Effect of oxLDL on THP-1Mon or THP1MΦ viability. THP-1Mon (A) or THP1MΦ (B) 

were treated with 1 or 40µg/ml oxLDL for 24 hours. At the end of the incubation, the number 

of viable cells was determined using MTS reduction assay. Data are expressed as mean % 

control.  
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DISCUSSION 
Elevated plasma LDL leads to an increase in 

the adherence of circulating monocytes to 

arterial endothelial cells and rate of LDL entry 

into the intima (Steinberg, 1997). In the 

intima, LDL can undergo oxidative 

modification catalyzed by any of the cells of 

the vasculature, i.e. macrophages, smooth 

muscle cells or endothelial cells (Steinberg, 

1997) forming a modified form of LDL called 

oxidized LDL (oxLDL). oxLDL has been 

shown to induce variety of biological and 

physiological functions in vitro and these may 

seem to be contradictory in some respects. For 

example, oxLDL induces macrophage and 

smooth muscle cell proliferation (Yui et al., 

1993; Auge et al., 1995; Biwa et al., 1998)
 
and 

also macrophage viability and survival (Sakai 

et al., 1996; Hamilton et al., 2001). While 

conversely a large body of literature also exists 

that demonstrates the cytotoxic and/or pro-

apoptototic effects of oxLDL (Reid et al., 

1993; Dimmiler et al., 1997; Sata et al., 1998; 

Coles et al., 2001; Martinet & Kockx, 2001; 

Nahn et al., 2003; Tabas 2005; Seimon et al., 

2009; Sanson et al., 2009). The reasons for 

these contradictory reports might be due to 

differences in the concentration and oxidation 

processes of the oxLDL used in these different 

studies. Thus, the present study showed that 

oxLDL is cytotoxic at least to macrophages.  

The first property of oxLDL to be discovered 

that makes it more atherogenic than native 

LDL is the fact that it is recognized by the 

scavenger receptors leading to accumulation of 

cholesterol in foam cells (Henriksen et al., 

1982). The scavenger receptor CD36 has been 

shown to bind and internalize oxLDL in 

macrophage (Nicholson et al., 2000) and 

increases its functional expression. In line with 

this study, the induction of CD36 mRNA in 

THP-1Mon or THP1MΦ was investigated. As 

shown in figure 3, oxLDL increase the 

functional expression of CD36 mRNA in both 

THP-1Mon or THP1MΦ. However, a 

statistically significant induction was only 

observed in THP1MΦ. One important feature 

of atherosclerotic plaques is the intracellular 

accumulation of oxLDL within macrophages, 

which is the result of scavenger receptor CD36 

recognizing altered molecular patterns present 

on oxLDL (as distinct from non-oxidised 

LDL), and mediating the accumulation of 

cholesterol that is characteristic of macrophage 

foam cells (Tiwari et al., 2008). 

The endoplasmic reticulum (ER) performs 

several important functions including post-

translational modification, folding and 

assembly of newly synthesized secretory 

proteins and calcium homeostasis. However, 

various conditions can disturb any of the ER 

functions leading to imbalance between 

protein-folding load and the capacity of the 

ER, causing unfolded or misfolded proteins to 

accumulate in the ER lumen, a condition 

referred to as ER stress (Araki et al. 2003; 

Zhang and Kaufman, 2008). To combat the 

deleterious effects of ER stress, cells have 

evolved a protective response called the 

unfolded protein response (UPR) (Patil and 

Walter, 2001; Ron and Walter, 2007) which 

aim to restore normal ER homeostasis but 

switch to apoptosis when when stress is 

prolonged (Szegezdi et al., 2006). 

Interestingly, in macrophages, trafficking of 

free cholesterol to the ER membrane has been 

shown to trigger ER stress and the UPR, due to 

incorporation of cholesterol into the normally 

cholesterol-poor ER membrane and alteration 

of its physico-chemical properties, which leads 

to disruption of ER function (Sanson et al., 

2009).  

This study showed that oxLDL (1 and 40µg/ml 

which represent the concentrations seen in 

sedentary individual (Butcher et al., 2008) and 

plasma of subjects after a meal rich in fat 

(Emanuel et al., 1991) respectively) could 

induce ER stress and so trigger the UPR in 

monocyte/macrophages. Upregulation of XBP-

1 and SERCA2b genes in this study imply that 

oxLDL was causing ER stress and UPR in 

these cells. At least three transcription factors 

are actvated as a direct result of ER stress: 

double-stranded RNA-activated protein kinase 

(PKR)-like ER kinase (PERK), inositol 

requiring ER-to-nucleus signal kinase 1 

(IRE1α), and activating transcription factor 6 

(ATF6) (Eizirik et al., 2008). Once activated, 

the cytosolic domain of IREα acquires 

endoribonuclease activity and cleaves 26 

nucleotides from the mRNA encoding the 

UPR transcription factor XBP-1 generating an 

active splice variant, XBP-1s (Eizirk et al., 

2008) (Fig 5). XBP-1s is translocated to the 

nucleus where it binds to ER stress-response 

elements (ERSE) and/or unfolded protein 

response elements (UPRE) in the promoters of 

target genes (Lee et al., 2003). In line with this 

study, SERCA2b whose promoters contain 

three ERSE (Thuerauf et al., 2001) was 
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upregulated in dTHP-1 macrophages. The 

Ca
2+

-ATPase activity of SERCA2b enzyme 

can be affected by the physico-chemical 

properties of the membrane in which these 

enzymes are embedded (Starling et al. 1996; 

Li et al. 2004). Because Ca
2+

 pumping relies 

on transfer between E1 and E2 conformations, 

the domains of the enzyme (including its 

transmembrane domains) must move relative 

to each other, and relative to the phospholipid 

bilayer in which the enzyme is embedded 

(Toyoshima et al., 2000; Toyoshima et al., 

2002). Increased membrane rigidity due to 

enrichment of the ER membrane with free 

cholesterol, as a result of accumulation of 

oxLDL (Yamada et al. 1998), prevents 

macrophage SERCA2b undergoing such 

conformational changes (Starling et al. 1996). 

This leads to SERCA2b upregulation (Fig 8) 

and subsequent initiation of down stream UPR 

pathways. 

Apoptotic cell death has been shown to play an 

important role in cardiovascular diseases 

(MaClellan et al., 1997) and apoptosis was 

virtually absent in non-atherosclerotic plaques 

(Bjorkerud and Bjorkerud, 1996). Although 

apoptosis induced by oxLDL has been 

demonstrated in vascular cells (Bjorkerud and 

Bjorkerud, 1996; Escargueil-Blanc et al., 

1997), the mechanisms are not fully 

understood. During ER stress, depletion of ER 

calcium stores causes the release of calcium 

from the ER to the cytoplasm (Zong et al., 

2003). The increase in calcium in the 

cytoplasm activates m-calpain which cleaves 

and activates procaspase-12 (Nakagawa and 

Yuan, 2000). Activated caspase-12 further 

activates the downstream caspases, which play 

a key effector role in mammalian apoptosis 

(Garcia-Calvo et al., 1999; Hitomi et al., 

2004). Because Apoptosis mediated by ER 

stress depends on activation of Caspase, and 

Caspases -3 and -7 play key effector roles in 

mammalian apoptosis (Garcia-Calvo et al., 

1999; Le 2002; Hitomi et al., 2004), figure 9 

showed that oxLDL activate caspase 3/7 

thereby inducing apoptosis in macrophage (Fig 

9a). To further investigate the physiological 

significance of the apoptosis assay, cell 

viability was measure. Moreover, oxLDL 

induced a decrease in macrophage cell 

viability (Fig 10b).  

 

In summary, oxLDL particles contain 

cholesterol, and figure 4 shows that cholesterol 

causes inhibition of integral ER membrane 

proteins such as the ER Ca
2+

-ATPase, possibly 

via intercalation of large amounts of 

cholesterol into the normally cholesterol-poor 

ER membrane. However, cholesterol does not 

seem to exert effects in intact cells in our 

experiments. In contrast, oxLDL did induce 

ER stress, particularly in THP1MΦ. As 

macrophages express high levels of the oxLDL 

scavenger receptor CD36, they should take up 

greater quantities of oxLDL than monocytes. 

The observations that oxLDL can induce 

UPRs in macrophages, and that cholesterol 

inhibit ER Ca
2+

-ATPase activity, suggest that 

cholesterol may be the oxLDL component 

responsible for macrophage lipotoxic ER 

stress effects as seen in obesity. As disrupted 

cellular Ca
2+

 homeostasis/ER stress may be 

linked to macrophage lipotoxicity this data 

may enhance our understanding of the diverse 

effects of oxLDL, particularly in the context of 

obesity, type 2 diabetes and the metabolic 

syndrome. 
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