
 Available online at http://ajol.info/index.php/njbas/index

Nigerian Journal of Basic and Applied Science (2010), 18(2): 260-268

ISSN 0794-5698

A Textual Case-Based Mobile Phone Diagnosis Support System

*A. Almu and K. M. Maiyama

Dept. of Mathematics, Computer Science Unit ,Usmanu Danfodiyo University, P.M.B 2346, Sokoto –

Nigeria

[*Author of correspondence: almul2003@yahoo.com]

260

ABSTRACT: Java Cases and Ontology Libraries Integration for Building Reasoning Infrastructures

(jCOLIBRI) is a framework which makes the development of Textual Case-Based Reasoning (CBR)

applications easier by providing the preprocessing of text methods, textual similarity methods and

appropriate representation for textual cases which are the major techniques needed in any CBR

systems. In this paper, a Mobile Phone Diagnosis Support System is presented as an extension to

jCOLIBRI which accepts a problem and reasons with cases to provide a solution related to a new

given problem. Experimental evaluation using some set of problems shows that the developed system

predicts the solution that is relatively closer to the user given mobile phone problem. The solution

also provide the user valuable advise on how to go about solving the new problem.

Keywords: Textual case-based reasoning, jCOLIBRI

INTRODUCTION
Mobile Phone users in Nigeria especially the

new users experienced some common similar

phone problems such as keypad not

responding repeatedly over the years and the

solutions to these problems are addressed by

the repairer’s of the phones. Since the number

of phone users are increasing drastically and

also the same problems has been taken again

and again to the repairers, there is a need to

provide a system that would be able to store

and index these similar past textual cases and

then provide their solutions to the users when

needed. Moreover, whenever a repairer

submits a similar problem, its corresponding

solution can be reused and presented to the

repairer. This is achieved by applying Textual

Case-Based Reasoning techniques to predict

the outcomes of new cases or suggest

solutions about the problem at hand. These

promising techniques can mimic a human

being’s typical way of reasoning when solving

a new problem by searching through a

collection of previous cases and use similar

cases to solve the problem.

METHODOLOGY

Case-Based Reasoning (Bergmann et al.,

2005) is an artificial intelligence methodology

that solves problems by using previous

information with a view to providing solution

to a given problem. A case is described as a

record or collection of a past experiences or

problems together with solutions or outcomes

to be used by the system while solving a given

problem (Pal and Shiu, 2004). CBR compares

a new problem or a case to its previously

solved cases which makes it easier for the

system to draw inferences and make decision

about a given case (Weber et al., 2006). The

problem solving using this approach enables

the CBR system to solve problems or cases

even if they are not completely similar to its

previous experiences. This is what makes

CBR problem solving approach more

advantageous than other problem solving

approaches such as rule-based and information

retrieval (Lenz, 1998).

Textual Case-Based Reasoning (TCBR)

(Weber et al., 2006) is a subfield of CBR

problem solving methodology that deals with

the research and implementation of case-based

reasoning using the knowledge sources that

are in textual form such as Frequently Asked

Questions (FAQs). TCBR is particularly

Almu & Maiyama; A Textual Case-Based Mobile Phone Diagnosis Support System

261

aimed to use a specific domain that involves

textual cases in an automated or semi-

automated way to support problem solving by

using case comparison in order to derive

relevant solution(s) to a given problem

(Weber et al., 2006). The basic idea behind

Textual CBR is that, it uses textual documents

as cases and compares these cases in terms of

similarity with a given query in an attempt to

retrieve similar documents that are likely to be

useful for responding to a query as a

solution(s). The similarity of cases to be

retrieved does not rely merely on keywords

matching alone but also consider the similarity

measure constructed during the knowledge

acquisition process (Lenz et al., 1998). Both

CBR and TCBR used the four-step processes

of CBR life cycle namely retrieve, reuse,

revise and retain as an approach to problem

solving in any given domain. Unlike CBR

which deals with different sources, the TCBR

focus on dealing with specific domain or

problem where the sources are in texts form

(i.e. textual in nature). This is what makes it

necessary to use the TCBR approach for the

development of mobile phone diagnosis

support system since all the problems are in

textual form.

jCOLIBRI is a free and open source object

oriented framework developed in java

programming language for developing Case-

Based Reasoning systems (Recio-Garcia et al.,

2008). jCOLIBRI framework is reusable and

extensible in the sense that, the developer can

easily reuse its source codes and even extend

its classes to build a new system. Similarly,

some of the classes can be simply

implemented as abstract classes by the

developer. This makes it possible to be

considered and used in developing this

Textual Case-Based mobile phone diagnosis

support application. Another benefit of

adopting jCOLIBRI in this work is its ability

to ease the implementation of Textual CBR

system by providing the preprocessing of text

(i.e. tokenization and stop words filtration)

methods, textual similarity methods to ease

the retrieval and also appropriate

representation for textual cases. jCOLIBRI

also comprises of some tools with a view to

improving the performance of the system such

as Lucene search engine to provide the

functionalities of indexing and searching to

the diagnosis support system.

System Design: The Design Methodology for

Diagnosis Support System comprises of

different parts that works together for the

purpose of diagnosing the users’ mobile phone

given problems. It consists mainly of four (4)

parts which includes the User Interface,

Problem Preprocessing, Search Engine and the

Case Base. The overall structure of the

application is shown in Figure 1. The problem

is to be entered through the system interface

by the user and when the system diagnoses the

given problem its feedback would be also

displayed on the interface as the diagnoses

results for the user to see. The processing of

problem text into a form suitable for the

search engine to use is handled by the problem

preprocessing component. The search engine

compares the user entered problem with the

previous cases contained in the case base and

retrieved those solutions that are relevant to

the user given problem. The application case

base stores the cases (problems and solutions)

to be used by the system when diagnosing a

user given problem.

Nigerian Journal of Basic and Applied Science (2010), 18(2): 260-268

262

 Problem

Figure 1: The Architecture of the Mobile Phone Diagnosis Support System

User Interface: The User Interface is

designed specifically to ease the means of

interaction between the user and the diagnosis

support system. According to Ghowdhury

(2004) the two major functions of the user

interface in a typical Information Retrieval

(IR) system includes allowing the users to

search for the information needed and display

relevant search results, and also to make it

simpler for users to carryout various tasks

such as saving results, modifying the query

and so on.

The system interface is a medium through

which a user inputs a problem to the system

and click on diagnosis button which triggers

the necessary communication between the

system’s components with a view to

diagnosing the problem. The result for the

inputted problem is displayed via the interface

as diagnosis results for the user to see. The

user interface comprises of five (5) major

components which includes: (i) the problem

input field that allows the user to enter the

problem to be submitted to the system and it is

editable i.e. allow the user to modify his

problem, (ii) the Diagnosis button that

normally starts the diagnosis operation by

sending the problem to the system when fired,

(iii) the diagnosis results area is a portion of

the user interface that contains the results of

the problem being retrieved based on their

relevancy to the user given problem in a

ranked order, (iv) the diagnosis result content

portion that displays the content of the

diagnosis result by simply selecting any of the

problems in a diagnosis results portion of the

user interface, and (v) the similarity field

designed to display the degree of similarity

value of each solution that matched the

problem submitted by the user.

Problem

 D
ia
g
n
o
s
is
 R
e
s
u
lt
s

Solution Problem

User Interface

Problem Preprocessing

Search Engine

Case Base

User

Problem Terms

Retrieved Solutions

Almu & Maiyama; A Textual Case-Based Mobile Phone Diagnosis Support System

263

Problem Preprocessing: Document or text

indexing is the process of transforming a

document text into a representation of text and

it may involves three major steps of

tokenization, stop word filtration and

stemming (Garcia, 2005). The problem text

need to be preprocessed to extract the terms

needed to be used as index for enhancing the

process of matching the problem terms with

relevant cases in a system case base. To

achieve such objective, there are three steps

(i.e. tokenization, stop words filtration and

stemming) that have to be accomplished.

Tokenization: In the tokenization step, the

user entered problem text is to be broken into

tokens of lowercase letters. This enables the

removing of any punctuation symbols,

numbers or even hyphens in the problem.

These tokens are to be passed to the next step

of stop words filtration for further processing.

Stop Words Filtration: The tokens produced

by the tokenization step consist of a number of

frequent terms in the problem referred to as

stop-words. These stop words are to be

filtered out at this step since they might not

contribute in identifying the content of the

cases during retrieval process. For instance,

the problem “my keypad is not working”

consists of “my”, “is”, and “not” as stop

words that has to be removed and simply

become as “keypad and working”.

Stemming: The stemming step involves

reducing the problem tokens or terms that

are not stop words into their roots. For

instance, the terms “worker”, “working”,

“worked” and “works” are to be reduced to

“work” during this step. This will give a better

matching of the problem terms with the cases

to be retrieved during the retrieval process.

Search Engine: The search engine used for

the diagnosis support system to provide the

index and search capabilities to the system is

the Lucene search engine. According to

Recio-Garcia et al (2008) the Apache Lucene

search engine is based on the statistical

similarity approach that yields good results in

the Information Retrieval (IR) field. It used

both the vector space model and Boolean

model (Manning et al., 2009) of Information

Retrieval during the process of determining

how relevant a case to be retrieved is to the

user given problem. Using Lucene becomes

necessary because of the importance of good

indexing contribution to the retrieval of

relevant solutions during the process of

diagnosing a given problem. The search

engine gets its input (problem terms) from the

preprocessing stage and then used the

luceneTextualsimilarity package (Source

Forge, 2009) that is based on nearest neighbor

(Beyer et al., 1999; Athitsos et al., 2008)

retrieval approach to compare the problem to

the set of cases that are already indexed by the

lucene with a view to computing their

similarities with the problem. Having gotten

the similarity of the problem to each case, then

the NNretrieval.NNScoring package (Source

Forge, 2009) would be used to retrieve the

topmost relevant solutions (i.e. those with

highest similarity values) to the problems as

the diagnosis results. These results are sent by

the search engine to the user interface as a list

of problems and solutions ranked based on

their relevance to the user entered problem.

Case-Base: The diagnosis support system

case base is a collection of previous cases of

mobile phone problems and their solutions

that the system used to base its reasoning

while diagnosing a new problem. The case

base is stored in a single text file consisting of

cases arranged as problem and solution pairs

as shown in Figure 2, where by each case in

the text file is being mapped to its equivalent

attribute in the application Case Bean Class. A

customized connector is used by the

application to read the entire case base into the

memory for it to be accessible by the lucene

search engine. The Lucene created inverted

index terms with a view to indexing all the

system cases before comparing them with the

user given problem in order to retrieve

relevant solutions and present them to the

users via the interface.

Nigerian Journal of Basic and Applied Science (2010), 18(2): 260-268

264

Figure 2: Case Structure

System Implementation: This section

describes the actual implementation of the

mobile phone diagnosis support system

components based on the detailed design

specified in Figure 1. The system is

implemented using the jCOLIBRI CBR

framework (Source Forge, 2009). The source

codes of some classes in jColibri framework

were modified and integrated within the new

system to suit the purpose of the proposed

system. The system components are discussed

and specifically how they are implemented to

serve the needed functionalities of the

developed system.

Diagnosis Support System Interface: The

Diagnosis Support System Interface was

implemented using Java Language and

integrated with other system components by

reusing and extending jCOLIBRI framework.

Figure 3 shows an example of the process of

diagnosing a given problem. The user can first

enter a problem description and after

submitting the problem, a collection of cases

which match the solution description are

retrieved and returned to the user. These cases

are ranked based on their similarities to the

problem submitted, so the user can select any

similar problem on the interface to see if it is

the corresponding solution.

Problem Preprocessing Components: The

preprocessing operations on the problem text

are performed using the textual packages

provided by the jCOLIBRI Framework. These

packages consist of classes and their various

methods to ease this operation. The

OpennlpSplitter package (Source Forge, 2009)

receives the problem and organized it into a

stream of tokens by eliminating any

punctuation symbols, numbers and so on. This

is known as the tokenization. The

StopWordDetector package (Source Forge,

2009) removes the stop words in the problem

tokens. Then the TextStemmer package

(Source Forge, 2009) performs the stemming

on those tokens that are not stop words. All

these operations are carried out during this

stage to make the problem easier to be match

with the similar cases in the application case

base.

Application Case

Solution

Problem

problem: IETextOpenNLP

solution: IETextOpenNLP

Case1

problem1

solution1

Case2

problem2

solution2

 . . .

Casen

Almu & Maiyama; A Textual Case-Based Mobile Phone Diagnosis Support System

265

 Figure 3: A Snapshot of Problem Submission in Diagnosis Support System

Search Engine Component: The search

engine is implemented simply by reusing the

lucene textual package provided in the

framework. First of all the Connector in the

configure() method of the application loads

the textfile containing the cases via its

specified path into the memory. This textfile is

the case base used by the system. For the

purpose of indexing these cases the lucene

method need an index to be created using the

jcolibri.method.precycle.LuceneIndexCreator

method in the precycle method (Recio-Garcia

et al., 2008). Therefore, the luceneIndex

variable is created of type LuceneIndex class

to index all the cases in the System Case base

as inverted terms index for easy comparison

with the user given problem. Once a problem

is received, the LuceneTextSimilarity package

compares the problem with the already

indexed cases to determine its closeness to the

cases by computing their similarities. The

NNScoringMethod.evaluateSimilarity method

retrieved the solutions with the highest

similarity values as the diagnosis results to be

presented to the user.

System Case Base Component: In

jCOLIBRI cases can be stored in text files,

database files and even XML files format as

case base. Here, the case base is implemented

as a LinealCaseBase that stores the cases as a

list data structure by reading the text file

cases. The PlainTextConnector of the

framework is used to manage the application

cases stored in the text file as described in

section 3.4.

System Evaluation: After implementing the

developed diagnosis support system,

performance of the system has been evaluated

based on the degree of the similarity matching

and the relevant of the textual solution

retrieved to the given problem respectively.

This evaluation is done using some collection

of 42 mobile phone problem cases compiled

from some phone repairers within Sokoto

metropolis whom normally repairs the users’

phone.

Evaluation Criteria: The essence of the

evaluation is to assess the effectiveness of the

system in retrieving the relevant solutions

from its case base to diagnose the user given

problem. Precision and recall measures were

Nigerian Journal of Basic and Applied Science (2010), 18(2): 260-268

266

used to assess the effectiveness of a system

(Ghowdhury, 2004). In this case, the system is

evaluated according to the following criteria:

Precision: The number of solutions retrieved

that are relevant.

Recall: The number of relevant solutions that

are retrieved.

Similarity Degree: The similarity matching

value of the solution retrieved to the problem.

The experiment is carried out using six (6)

domain experts (repairers) and six (6) users,

by allowing each expert or user to submit one

problem for the system to diagnose. So

whenever each of the problems is submitted,

the expert or user was asked to identify the

relevant solutions being retrieved by the

system to that problem. The performance of

the system is captured by taking the precision,

recall and similarity degree of the retrieved

solutions into account.

RESULTS AND DISCUSSION
Results in Figure 4, 5 and 6 respectively have

shown the precision, recall and similarity

degree values obtained during the experiment

for all the 12 problems submitted by the

experts and users.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Problem(s)

P
re
c
is
io
n

Figure 4: Problems Vs Precision Experimental Results

In Figure 4, the results have shown that 75%

of the problems have high precision and 25%

of the problems have low precision values. As

we can see from the Figure, the system has

shown high relevant solutions retrieval

performance except with problem 4, 9 and 11

respectively where the system retrieves

irrelevant cases. This implies that, most of the

solutions that the system retrieved are relevant

to the users given problems.

In Figure 5, the results have also shown that

75% of the problems have high recall and

25% of the problems have low recall values.

As we can see from the Figure, the system has

shown high solutions retrieval performance

except with problem 4, 9 and 11 respectively

where the system retrieves irrelevant cases.

This might occur due to the limited collection

of cases available in the case base during the

experiment. This implies that, the system

retrieves irrelevant solutions to answer the

users given problems if there is no any

solution that is relevant from its case base.

In Figure 6, the results have shown that 75%

of the problems have high similarity with the

retrieved solutions and 25% of the problems

have low similarity values. As we can see

from the Figure, the system has shown high

Almu & Maiyama; A Textual Case-Based Mobile Phone Diagnosis Support System

267

similarity relationships of the problems with

the solutions retrieved except with problem 4,

9 and 11 respectively where the system shows

low similarity relationship. This implies that,

irrelevant solutions could never have high

similarity since they are not relevant to the

users given problems.

Therefore, it is expected that, the system will

work far better when more cases are added in

the future during the diagnosis of users given

problems. On the whole, the results suggest

that the developed system performs better in

terms of precision, recall and similarity results

obtained in this work.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Problem(s)

R
e
c
a
ll

Figure 5: Problems Vs Recall Experimental Results

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Problem(s)

S
im
la
ri
ty
 D
e
g
re
e

Figure 6: Problems Vs Similarity Degree Experimental Results

Conclusion: In this paper, a diagnosis support

system is presented that used case based

reasoning for the diagnosis of mobile phone

problems. The system uses its preprocessing

component to break a problem into a

representation of text suitable for enhancing

the process of matching the problems with the

relevant cases in its case base by the search

engine during the diagnosis of each problem.

Experiments with a collection of some cases

show that the system diagnosis a problem with

a relevant solution based on the precision,

recall and similarity results obtained.

Nigerian Journal of Basic and Applied Science (2010), 18(2): 260-268

268

The work provides some interesting insights

into the task of developing a simple Textual

CBR system, and the potential benefits of

jCOLIBRI. It demonstrated the simplicity of

jCOLIBRI in developing Textual CBR

applications by reusing or extending existing

packages. Similarly, the system is easily

modifiable to suit any problem domain that

works in form of question and answering

format without writing even a single line of

code by simply modifying or replacing the

content of the case base.

However, as a future work, the research will

focus on integrating knowledge source to the

developed system in order to take the

synonyms similarity of the problem terms into

account while diagnosing a given problem,

since the same problem could be expressed

using different words.

REFERENCES
Athitsos, V., Alon, J., Sclaroff, S. and Kollios,

G. (2008). BoostMap: An Embedding

Method for Efficient Nearest Neighbor

Retrieval. IEEE Computer Society. 30(1)

pp.1-16.

Bergmann, R., Kolodner, J. and Plaza E.

(2005). Representation in Case-Based

Reasoning. The Knowledge Engineering

Review. United Kingdom: Cambridge

University Press. 00(0) pp. 1-4.

Beyer, K., Goldstein, J., Ramakrishnan, R.

and Shaft, U. (1999). When Is “Nearest

Neighbor” Meaningful? Berlin: Springer-

Heidelberg. pp. 217-235.

Garcia, E. (2005). Document Indexing

Tutorial: Document Indexing Tutorial for

Information Retrieval Students and Search

Engine Marketers. [online] Available

from:

http://www.miislita.com/information-

retrieval-tutorial/indexing.html [Accessed

May 24, 2009]

Ghowdhury, G. G. (2004). Introduction to

modern information retrieval. 2nd ed.

London: Facet publishing.

Lenz M. (1998). Textual CBR and

Information Retrieval – A Comparison. In:

Proceedings of sixth German Workshop on

Case-based Reasoning. Berlin: Springer.

Pp. 1-8

Lenz, M., Hubner, A. and Kunze, M. (1998).

Question and Answering with Textual

CBR. In: Proceedings of the Third

International Conference on Flexible

Query Answering Systems. Berlin:

Springer-Verlag. pp. 236-247.

Manning, C. D., Raghavan, P. and Schutze, H.

(2009). An Introduction to information

retrieval. England: Cambridge University

Press. [online] Available from:

http://nlp.stanford.edu/IRbook/pdf/irbooko

nlinereading.pdf [Accessed May 25, 2009]

Pal, S. K. and Shiu, S. C. K. (2004).

Foundations of soft case-based reasoning.

Canada: John Wiley and Sons. Pp. 3-12

Recio-García, J. A., Díaz-Agudo, B. and

González-Calero, P. (2008). jCOLIBRI2

Case Based Reasoning Framework.

jCOLIBRI2 Tutorial. Group for Artificial

Intelligence Applications, Universidad

Complutense De Madrid. Available from:

http://gaia.fdi.ucm.es/projects/jcolibri/jcoli

bri2/tutorial.pdf[Accessed June 23, 2009]

Source Forge. (2009). jCOLIBRI: CBR

Framework. [online] Available from:

http://sourceforge.net/projects/jcolibri-

cbr/files/jCOLIBRICBR/jCOLIBRI21.zip/

[Accessed June 22, 2009]

Weber, R. O., Ashley, K. D. and Bruninghaus

S. (2006). Textual Case-Based Reasoning.

The Knowledge Engineering Review.

United Kingdom: Cambridge University

Press. 20(3) pp. 255-260.

