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ABSTRACT: Rank score functions are known to be versatile and powerful techniques in factorial designs. 
Researchers have established the theoretical properties of these methods based on nonparametric hypotheses, 
but only scanty empirical results are available in the literature on these procedures. In this paper, four types of 
rank score functions Wilcoxon-scores, Mood-scores, normal-scores and expected normal- scores are studied in 
the context of two–way factorial designs using  asymptotic 2 (Wald-Type)  and modified Box- approximation 
(ANOVA-Type) tests. The empirical Type I error rate and power of these test statistics on the rank scores were 
determined using Monte Carlo simulation to investigate the robustness of the tests. The results show that there 
are problems of inflation in the Type I error rate using asymptotic 2 test for all the rank score functions, especially 
for small sample sizes and distributions studied. The modified Box- approximation test was found to be robust for 
both validity and efficiency, especially for Wilcoxon, normal and expected normal score functions. It was concluded 
that the asymptotic 2 test is non-robust for rank score functions in two-factor designs. 
Keywords:  Rank score functions, Type I error rates, Power, Factorial designs. 

 
INTRODUCTION 
When analyzing data from a two-factor design, usually 
a linear model is assumed and the hypotheses are 
formulated by the parameters of this model (Brunner 
and Puri, 2002). If no specific distribution functions are 
assumed, then there are no parameters to formulate 
hypotheses. In this situation, artificial parameters are 
usually introduced to express the hypotheses (Brunner 
and Puri, 2002). The hypotheses derived from these 
artificial parameters are called nonparametric 
hypotheses.  Akritas and Arnold (1994) reported the 
idea to formulate nonparametric hypotheses in factorial 
designs by contrasts of the distribution functions. 
However, the nonparametric hypothesis in the one-way 
layout to higher-way layouts are presented in several 
studies (Lemmer and Stoker 1967; Rinaman, 1983;  
Hora and Conover, 1984; Brunner et al., 1995; Brunner 
and Puri, 2002). 
 
Rank procedures for nonparametric hypotheses based 
on the distribution functions are derived for score 
functions with bounded second derivatives (Brunner 
and Puri, 2002). In this approach data from continuous 
distributions as well as discrete ordinal data are 
covered. The results in Brunner and Puri’s (2002) paper 
are presented in a general form such that statistical 
nonparametric hypotheses in any factorial design can 
be derived easily from this unified approach. Many rank 
(score) statistics given in the literature are special 
cases of the statistics they derived. However, they 

stated that the procedures are applicable to analyze 
data for balanced and unbalanced designs, data with 
continuous distribution functions or data with ties. 
Furthermore, Brunner and Puri (2002) applied this 
approach to factorial design using Wilcoxon-scores and 
Mood-scores. Asymptotic 2 and modified Box- 
approximation (Box, 1954; Brunner et al., 1997) are 
used as tests statistics.  
 
The p-values of the asymptotic 2 and modified Box- 
approximation tests differ (when applied to the same 
data) for the two types of scores (Brunner and Puri, 
2002). A question of whether or not that the tests under 
Wilcoxon and Mood scores have the same Type I error 
rates and power for two-factor designs can be raised. 
However, the p-values of asymptotic 2 and modified 
Box- approximation tests for other scores like normal-
scores and expected normal-scores (Sawilowsky, 1990; 
Conover, 1999) may also differ.  In this study, Type I 
error rates and power comparison of the asymptotic 2 
and modified Box- approximation tests for Wilcoxon- 
scores, Mood-scores, normal-scores and expected 
normal scores were carried out using Monte Carlo 
simulation. 
 
The purpose of this paper is to determine which of the 
test statistic (the asymptotic 2 test or modified Box- 
approximation test) on the rank score function has good 
Type I error rates and power for the nonparametric 
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hypotheses of two-factor designs with independent 
observations, fixed number of levels and several 
independent observations per cell (replicates). In 
addition, the robustness of validity and efficiency of the 
two test statistics were investigated based on the rank 
scores.   
 
METHODS 
The Expected normal 
A normal distribution was sampled randomly, ordered, 
recorded, and replaced, and this process was repeated 
many number of times. The average of each position of 
N is the expected normal score (Harter, 1961 and 
Royston, 1981). In a sample of size N the expected 
value of the rrh largest order statistic is given by  

                   


        
1( , )  

2 1
r

E r N
N

, 

 
where E(r, N) is the expected normal score for an 
observation, r is the rank for that observation, (.) is 
the quantile from the standard normal distribution and  
= 0.375 (Harter, 1961; Royston, 1981). The expected 
value of the rth smallest observation is given by the 
same expression preceded by a minus sign. 
 
The Normal-Score 
The data were ranked from 1 to sample size, N. The 
ranked observations (rijk) were then replaced by their 

normal scores ( 1

1
ijkr

N
  

   
), 

 
where is the cumulative distribution function of a 
standard normal distribution (Conover, 1999).  
 
The Wilcoxon-Score and Mood-Score 
Brunner and Puri (2002) defined the Wilcoxon-scores 

as 1 1
2

w
ijk ijka R

N
   
 

,  

 
where Rijk  is the rank of the original observations from 
one to sample size, N. They also defined the Mood 

scores as 
21

2
m w
ijk ijka a   

 
. 

 
Model and Nonparametric Hypothesis 
For a two-factor design with fixed levels a and b, the kth 

observation from ),( ji  is modeled as  

Yijk =  + i + j +  ()ij +ijk,  

where  i = 1, …, a;  j = 1, …, b;  k = 1, …, n;   is the 
overall mean, i is the effect of the ith level of factor A, 
j is the effect of the jth level of factor B, ()ij is the 
effect of the interaction between the ith level of factor A 
and the jth level of factor B, ijk is the random error 
associated with the kth replicate in cell (i, j), and Yijk is  
the kth observations in cell ),( ji .  
 
The hypotheses usually tested by the two-way factorial 
ANOVA for the A main effect, B main effect, and 
interaction are, respectively, 
Ho: αi = µi. − µ = 0 for all i = 1,…, a 
Ho: j = µ.j − µ = 0 for all j = 1 ,…, b 
Ho: αβij = µij − µi − µj + µ = 0 for all    i, j’.  
 
Brunner and Puri (2002) claimed that the rank 
procedures might test hypotheses where rank mean 
counterparts are substituted for the appropriate µ’s in 
the above hypotheses, but in reality they test truly 
nonparametric hypotheses. In this situation, 
independent random variables Yijk have distribution 
function 

ij ijF (y) F(y )  ,  
where ij i j ij( )      .  
The nonparametric hypotheses are given as a function 
of the cumulative distribution for each cell, Fij (y) 
(Brunner et al. 1997 and Akritas et al., 1997). Fi. is the 
average of the Fik(y) across the b levels of B, F.j. is the 
average of the Fij(y) across the a levels of A, and F.. is 
the average of the Fij(y) across the ab cells. Then the 
hypotheses tested by these nonparametric methods for 
the A main effect, B main effect, and interaction, are, 
respectively, 
 
Ho: i = Fi. − F.. = 0 for all i = 1 ,…, a 
Ho: j = F.j − F.. = 0 for all j = 1 ,…, b 
Ho: ij = Fij (x) − Fi. − Fj + F.. = 0 for all i = 1 ,…, a, for 
all j = 1 ,…, b 
 
These hypotheses are respectively equivalent to 
 Ho:CAF = 0,  Ho:CBF = 0,  Ho:CABF = 0,   
 
where 

1 1,  ,  ,     A a b B a b AB a ab aC P J C J P C P P
1 1,     P I J P I Ja a a b b ba b , d1  is the 1d  

summing vector, 111 dddJ   and  1,...,1diagI d . 
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 11 12 abP̂ Q .,Q .,  ...,Q .  is used to test these 
hypotheses using  

b
i ijj 1

1Q .. Q .
b 

    and n
ij ijkk 1

1Q . Q ,
n 

   

where ijkQ (i= 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n) 
are the rank scores from normal, expected normal, 
Mood or Wilcoxon scores. See Brunner and Puri (2002) 
for more details.  
       
Asymptotic 2 test (Wald-Type test)  
The Wald -Type tests for factor A, B and AB interaction 
are respectively as follows: 
              

 
 
 

2
1

2
1

2
( 1)( 1)
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


      
   Where 11. 12. .

ˆ ( , , , )  abP Q Q Q , 

2 2
1 .

1

1ˆ ( )
( 1) 

 
 

n

ij ijk ij
k

s Q Q
n

, 

2 2
111 1

ˆ ˆ ˆ( ,..., )  ab
NV diag s s
n  and N = abn   

 
Modified Box- approximation test (ANOVA-Type 
test) 
 The ANOVA-Type tests for factor A, B and AB 
interaction are respectively as follows:  
             

 

 

 

1, 

1,  

( 1)( 1), 
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





o

o

o

A A A A a f

B B B B b f
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NT P C C C P F
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NT P C C C P F
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NT P C C C P F
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 where 
2

1

ˆ[ ( )]
ˆ[ ( ) ]


 o

d d

tr Vf
tr V I

, m is any element in 

diag(C(CC/)- C) and d= diag(n, …, n) 
 
Monte Carlo Simulation 
For two-way table with a levels of factor A, b levels of 
factor B, n >1 observations per cell, and level of 

significance. A set of data xijk (i = 1, 2, …, a; j =1, 2, 
…, b; k = 1, 2, …, n) were obtained from the probability 
distribution. From these data (xijk), test statistics were 
computed, and used to determine whether to accept or 
reject their corresponding null hypotheses. In this study 
a = b = 4, and n = 5, 10, 15, 20, 25, 30 replicates were 
used. The power of the tests for main effects were 
obtained for only factor A at 1=0.5, 3= – 0.5, 2 = 
4=0. However, the power for tests of interaction was 
first generated when main effects are null and then 
when main effects are non-null (1 = 0.5, 3 =  – 0.5, 
2 = 4 =  1=4= 0, 2= 0.5,3= –0.5) using the 
interaction effects 11= 1, 13=0.5, 22= –0.5, 33 
= –1, 42 = 0.5, 44 = –0.5, the remaining ij =  0. 
In addition, the probability distributions used for the 
study are N(, 2), exponential, lognormal and mixed 
normal [0.75N(, 2)+ 0.25 N(10+, 2)], where 2 
= 1. Data generated from each distribution are 
converted to rank score (yijk). The estimate of Type I 
error rate for a particular test is obtain by plugging yijk in 
the two-way table, computing  

0,  if the true null hypothesis is accepted
1, if the true null hypothesis is rejectedrC


 


 and  


1

G

r
r

C
T

G
.  

Then T is the required Type I error rate. Similarly, the 
power of the test is obtained by computing  

0,  if the false null hypothesis is accepted
1, if the false null hypothesis is rejectedrD


 


 and 


1

G

r
r

D
P

G
.  

P is the required power of the test, where G =1000. 
 
Robustness 
Empirical Type I error rates () within the confidence 
interval 

(1 ) (1 )Z Z
G G
 

    
   

    

for a test is considered robust for validity, where G and 
 are the number of replications and level of 
significance, respectively (Lin and Myers, 2006). This 
criterion is used with G=1000 and  =0.05. That is, a 
test is robust for validity if 0.036    0.064.  
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A test with empirical power (Pa) is considered robust for 
efficiency over another test with empirical power (Pb) if 
Pa – Pb   2

2

ˆ( )Z SE P  , where the quantity 

2
2

ˆ( )Z SE P  is the difference between the upper 
and lower limits of the confidence interval for p, 




(1 )ˆ( )
P P

SE P
G

 and p denote independent 

Bernoulli trial probability of success (Steidl and 
Thomas, 2000). At G = 1000 and p = 0.5, two tests with 
empirical power difference (from the same population) 
within 0.062 are considered equal.  

 
RESULTS 
In Table 1 through Table 5, QW, QM, QN, QE are Wald 
Type tests for Wilcoxon-score, Mood-score, normal-
score, and expected normal-score respectively, while 
AW, AM, , AN, AE are ANOVA Type tests for Wilcoxon-
score, Mood-score,  normal-score, expected normal-
score respectively. Table 1 and Table 2 show the Type 
I error rates for factor A and interaction tests, 
respectively. Table 3 shows the power for tests of factor 
A, while Tables 4 and 5 show the power for tests of 
interaction. The power for QN and QE are similar and 
therefore only the power for QN is reported. Similarly, 
the power for AN and AE are similar and only the power 
for AN is reported. 
 
Table 1 shows the Type I error rates for tests of factor 
A. The bolded values are the Type I error rates outside 

the interval of robustness (0.036 0.064). At n = 5, the 
Type I error rates of QW, QM,  QN and QE are outside 
the interval (0.036 0.064)  while for the remaining 
sample sizes, the rates are within the interval. The Type 
I error rates for AW, AM, AN and AE are within the 
interval for all sample sizes and populations studied. 
 
Table 2 shows the Type I error rates for the interaction 
tests. The Type I error rates of QW, QM,  QN and QE 
are outside the interval (0.036 0.064) in most of the 
sample sizes and populations studied. The Type I error 
rates for AW, AM, AN and AE are within the interval for 
all sample sizes and populations studied. 
 
In Table 3, the results indicate that QM and AM have 
low power for all sample sizes and populations studied. 
The tests QW, AW, QN and AN are powerful and have 
similar power for all sample sizes and populations used 
in the study. 
 
When main effects are null, the power of interaction 
tests are given in Table 4. The results show that QW 
has some power advantage over other tests, especially 
for small sample size. The test AN has smaller power 
than other tests. 
 
The powers of interaction tests when main effects are 
non-null are given in Table 5.  The results show that QN 
and QW have some power advantage over other tests 
for small samples. 
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Table 1: Type I error rate for test of factor A 
Test Statistic  Population                                             n 

5 10 15 20 25 30 
QW  Normal 

Exponential 
Lognormal 
Mixed normal 

0.080  
0.075  
0.085  
0.078 

0.058 
0.061 
0.062 
0.059 

0.066 
0.052 
0.053 
0.052 

0.049 
0.054 
0.052 
0.050 

0.058 
0.059 
0.054 
0.046 

0.046 
0.062 
0.052 
0.047 
 

QM Normal 
Exponential 
Lognormal 
Mixed normal 

0.089  
0.076  
0.087  
0.089 

0.062 
0.066 
0.059 
0.063 

0.066 
0.064 
0.062 
0.052 

0.045 
0.063 
0.045 
0.061 

0.050 
0.049 
0.048 
0.051 

0.059 
0.063 
0.049 
0.053 
 

AW Normal 
Exponential 
Lognormal 
Mixed normal 

0.048  
0.040  
0.060  
0.045 

0.046 
0.048 
0.050 
0.046 

0.057 
0.047 
0.051 
0.047 

0.046 
0.052 
0.044 
0.044 

0.047 
0.054 
0.046 
0.040 

0.050 
0.057 
0.052 
0.068 
 

AM Normal 
Exponential 
Lognormal 
Mixed normal 

0.058  
0.043  
0.053  
0.054 

0.051 
0.049 
0.046 
0.051 

0.056 
0.054 
0.043 
0.048 

0.042 
0.063 
0.043 
0.055 

0.049 
0.048 
0.042 
0.052 

0.052 
0.060 
0.042 
0.048 
 

QN  Normal  
Exponential 
Lognormal 
Mixed normal 

0.071  
0.074  
0.082  
0.068 

0.063 
0.061 
0.064 
0.059 

0.056 
0.056 
0.055 
0.055 

0.042 
0.060 
0.050 
0.057 

0.049 
0.054 
0.048 
0.041 

0.043 
0.062 
0.050 
0.063 
 

QE Normal 
Exponential 
Lognormal 
Mixed normal 

0.070  
0.074  
0.082  
0.070 

0.063 
0.061 
0.063 
0.058 

0.056 
0.055 
0.055 
0.056 

0.041 
0.060 
0.050 
0.055 

0.049 
0.055 
0.048 
0.040 

0.042 
0.064 
0.051 
0.064 
 

AN Normal 
Exponential 
Lognormal 
Mixed normal 

0.048  
0.037  
0.057  
0.046 

0.047 
0.051 
0.053 
0.050 

0.045 
0.052 
0.055 
0.048 

0.039 
0.054 
0.052 
0.048 

0.043 
0.052 
0.047 
0.045 

0.044 
0.058 
0.055 
0.062 
 

AE Normal 
Exponential 
Lognormal 
Mixed normal 

0.047  
0.038  
0.057  
0.046 

0.048 
0.052 
0.053 
0.049 

0.043 
0.052 
0.054 
0.048 

0.039 
0.054 
0.053 
0.049 

0.045 
0.053 
0.047 
0.046 

0.044 
0.058 
0.055 
0.063 
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Table 2: Type I error rate for test of interaction 
Test Statistic  Population                                             n 

5 10 15 20 25 30 
QW  Normal 

Exponential 
Lognormal 
Mixed normal 

0.245  
0.211  
0.225  
0.211 

0.113 
0.115 
0.116 
0.134 

0.098 
0.104 
0.090 
0.094 

0.075 
0.079 
0.076 
0.073 

0.067 
0.068 
0.067 
0.065 

0.061 
0.065 
0.059 
0.059 
 

QM Normal 
Exponential 
Lognormal 
Mixed normal 

0.230  
0.204  
0.218  
0.236 

0.100 
0.115 
0.123 
0.141 

0.091 
0.089 
0.089 
0.089 

0.069 
0.097 
0.072 
0.072 

0.067 
0.077 
0.091 
0.065 

0.068 
0.081 
0.065 
0.076 
 

AW Normal 
Exponential 
Lognormal 
Mixed normal 

0.050  
0.042  
0.047  
0.043 

0.045 
0.044 
0.053 
0.064 

0.048 
0.064 
0.046 
0.052 

0.051 
0.050 
0.046 
0.045 

0.047 
0.044 
0.051 
0.042 

0.043 
0.037 
0.044 
0.044 
 

AM Normal 
Exponential 
Lognormal 
Mixed normal 

0.038  
0.037  
0.046  
0.044 

0.046 
0.045 
0.045 
0.058 

0.049 
0.043 
0.048 
0.045 

0.038 
0.055 
0.045 
0.046 

0.048 
0.047 
0.064 
0.044 

0.051 
0.045 
0.049 
0.063 
 

QN  Normal  
Exponential 
Lognormal 
Mixed normal 

0.213  
0.184  
0.196  
0.198 

0.101 
0.098 
0.113 
0.116 

0.085 
0.105 
0.085 
0.088 

0.079 
0.077 
0.071 
0.074 

0.064 
0.066 
0.061 
0.067 

0.060 
0.062 
0.058 
0.053 
 

QE Normal 
Exponential 
Lognormal 
Mixed normal 

0.211  
0.182  
0.192  
0.192 

0.100 
0.097 
0.115 
0.114 

0.084 
0.103 
0.084 
0.088 

0.079 
0.078 
0.072 
0.073 

0.063 
0.065 
0.060 
0.066 

0.060 
0.063 
0.056 
0.053 
 

AN Normal 
Exponential 
Lognormal 
Mixed normal 

0.054  
0.042  
0.048  
0.045 

0.048 
0.037 
0.053 
0.060 

0.048 
0.060 
0.044 
0.048 

0.049 
0.049 
0.045 
0.044 

0.047 
0.048 
0.048 
0.043 

0.046 
0.050 
0.050 
0.041 
 

AE Normal 
Exponential 
Lognormal 
Mixed normal 

0.053 
0.042  
0.046  
0.044 

0.048 
0.036 
0.053 
0.059 

0.046 
0.060 
0.044 
0.048 

0.048 
0.050 
0.046 
0.046 

0.046 
0.048 
0.048 
0.040 

0.044 
0.050 
0.050 
0.040 

 
 
.    
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Table 3: Power for test of factor A  at 1 = 0.5, 2 = 0, 3 = – 0.5, 4 = 0 
Test Statistic  Population                                           n 

5 10 15 20 25 30 
QW  
 

Normal 
Exponential 
Lognormal 
Mixed normal 

0.748  
0.145  
0.765  
0.840 

0.973 
0.203 
0.972 
0.989 

0.996 
0.251 
0.996 
1.000 

1.000 
0.334 
0.998 
1.000 

1.000 
0.400 
1.000 
1.000 

1.000 
0.458 
1.000 
1.000 
 

QM Normal 
Exponential 
Lognormal 
Mixed normal 

0.096  
0.045  
0.115  
0.099 

0.123 
0.058 
0.123 
0.137 

0.130 
0.074 
0.139 
0.178 

0.181 
0.085 
0.157 
0.191 

0.199 
0.090 
0.224 
0.233 

0.223 
0.110 
0.241 
0.275 
 

AW Normal 
Exponential 
Lognormal 
Mixed normal 

0.697  
0.099  
0.709  
0.794 

0.968 
0.170 
0.968 
0.986 

0.997 
0.234 
0.997 
1.000 

1.000 
0.315 
0.999 
1.000 

1.000 
0.385 
1.000 
1.000 

1.000 
0.432 
1.000 
1.000 
 

AM Normal 
Exponential 
Lognormal 
Mixed normal 

0.050  
0.040  
0.062  
0.058 

0.097 
0.044 
0.088 
0.112 

0.120 
0.062 
0.098 
0.157 

0.169 
0.078 
0.144 
0.178 

0.185 
0.091 
0.198 
0.221 

0.218 
0.108 
0.228 
0.263 
 

QN  Normal  
Exponential 
Lognormal 
Mixed normal 

0.749  
0.147  
0.781  
0.842 

0.980 
0.203 
0.976 
0.989 

1.000 
0.264 
0.997 
1.000 

1.000 
0.346 
1.000 
1.000 

1.000 
0.421 
1.000 
1.000 

1.000 
0.474 
1.000 
1.000 
 

AN Normal 
Exponential 
Lognormal 
Mixed normal 

0.719  
0.096  
0.733  
0.807 

0.978 
0.174 
0.976 
0.989 

0.999 
0.247 
0.997 
1.000 

1.000 
0.328 
1.000 
1.000 

1.000 
0.407 
1.000 
1.000 

1.000 
0.460 
1.000 
1.000 

 
 



Danbaba: Comparison of a Class of Rank-Score Tests in Two-Factor Designs 

312 

Table 4: Power for tests of interaction when main effects are null 
Test Statistic  Population                                             n 

5 10 15 20 25 30 
QW  Normal 

Exponential 
Lognormal 
Mixed normal 

0.909  
0.851  
0.916  
0.902 

0.938 
0.886 
0.938 
0.944 

0.995 
0.950 
0.992 
0.991 

0.998 
0.977 
0.997 
0.999 

1.000 
0.989 
1.000 
1.000 

1.000 
0.999 
1.000 
1.000 

        
QM Normal  

Exponential 
Lognormal 
Mixed normal 

0.668 
0.693 
0.711 
0.699 

0.722 
0.731 
0.718 
0.700 

0.754 
0.793 
0.747 
0.755 

0.794 
0.814 
0.808 
0.787 

0.798 
0.838 
0.816 
0.792 

0.858 
0.880 
0.860 
0.859 

        
AW Normal 

Exponential 
Lognormal 
Mixed normal 

0.156  
0.088  
0.140  
0.157 

0.372 
0.257 
0.376 
0.408 

0.769 
0.461 
0.712 
0.769 

0.910 
0.661 
0.911 
0.918 

0.983 
0.835 
0.982 
0.988 

0.993 
0.919 
0.993 
0.996 

        
AM Normal 

Exponential 
Lognormal 
Mixed normal 

0.039  
0.026  
0.031  
0.023 

0.049 
0.068 
0.080 
0.063 

0.088 
0.107 
0.114 
0.090 

0.158 
0.196 
0.137 
0.165 

0.191 
0.247 
0.196 
0.224 

0.297 
0.320 
0.317 
0.310 

        
QN  Normal  

Exponential 
Lognormal 
Mixed normal 

0.574 
0.439 
0.585 
0.619 

0.639 
0.477 
0.620 
0.650 

0.667 
0.544 
0.645 
0.691 

0.683 
0.620 
0.728 
0.702 

0.741 
0.729 
0.750 
0.767 

0.773 
0.768 
0.805 
0.836 

        
AN Normal 

Exponential 
Lognormal 
Mixed normal 

0.018  
0.016  
0.013  
0.014 

0.018 
0.021 
0.026 
0.031 

0.060 
0.023 
0.042 
0.044 

0.083 
0.025 
0.072 
0.077 

0.143 
0.027 
0.093 
0.137 

0.168 
0.028 
0.190 
0.200 
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Table 5: Power for tests of interaction when main effects are non-null 
Test Statistic  Population                                             n 

5 10 15 20 25 30 
QW  Normal 

Exponential 
Lognormal 
Mixed normal 

0.973  
0.898  
0.984  
0.981 

0.999 
0.950 
1.000 
1.000 

1.000 
0.987\ 
1.000 
1.000 

1.000 
0.998 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
 

QM Normal 
Exponential 
Lognormal 
Mixed normal 

0.814  
0.832  
0.821  
0.819 

0.838 
0.777 
0.822 
0.839 

0.870 
0.820 
0.870 
0.879 

0.946 
0.872 
0.925 
0.918 

0.964 
0.923 
0.965 
0.966 

0.989 
0.966 
0.984 
0.989 
 

AW Normal 
Exponential 
Lognormal 
Mixed normal 

0.408  
0.146  
0.420  
0.446 

0.917 
0.454 
0.932 
0.962 

0.996 
0.734 
0.999 
0.999 

1.000 
0.902 
1.000 
1.000 

1.000 
0.975 
1.000 
1.000 

1.000 
0.996 
1.000 
1.000 
 

AM Normal 
Exponential 
Lognormal 
Mixed normal 

0.055  
0.059  
0.041  
0.052 

0.170 
0.124 
0.147 
0.179 

0.289 
0.216 
0.307 
0.307 

0.448 
0.349 
0.461 
0.438 

0.591 
0.451 
0.587 
0.616 

0.731 
0.605 
0.752 
0.767 
 

QN  Normal  
Exponential 
Lognormal 
Mixed normal 

0.950  
0.745  
0.971  
0.978 

0.997 
0.672 
0.997 
0.998 

1.000 
0.679 
1.000 
1.000 

1.000 
0.715 
1.000 
1.000 

1.000 
0.757 
1.000 
1.000 

1.000 
0.827 
1.000 
1.000 
 

AN Normal 
Exponential 
Lognormal 
Mixed normal 

0.239  
0.024  
0.250  
0.309 

0.758 
0.057 
0.761 
0.860 

0.970 
0.077 
0.969 
0.984 

0.997 
0.116 
0.998 
1.000 

1.000 
0.160 
1.000 
1.000 

1.000 
0.223 
1.000 
1.000 

 
 
DISCUSSION 
The results show that QW, QM,  QN and QE tests for 
both main effect and interaction are not robust for 
validity, especially for small sample sizes. The results 
also show that the Type I error rates for AW, AM, AN 
and AE tests are within the interval (0.036 0.064) for all 
sample sizes, factor effects and populations studied. 
Therefore, AW, AM, AN and AE tests are robust for 
validity. 

 
The tests QW, AW, QN and AN are found to be 
powerful in testing main effect or interaction. Low power 
was observed for QM and AM tests for small sample 
sizes. A slit power advantage was observed for QN and 
QW tests over other tests for interaction in small 
sample sizes. In terms of power,  QW, AW, QN and AN 
tests are robust for efficiency. However, only AW and 

AN tests are found to be robust for both validity and 
efficiency. 
CONCLUSION 
Monte Carlo simulation was performed to compare 
Wald–Type test and ANOVA–Type test for two-factor 
designs using rank score functions Wilcoxon-score, 
Mood-score, normal-score and expected normal- score. 
The results show that ANOVA–Type test on Wilcoxon-
score, normal-score and expected normal-score is 
robust for both validity and efficiency, while the Wald-
Type test on the score functions is non-robust. 
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