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ABSTRACT: Rank score functions are known to be versatile and powerful techniques in factorial designs.
Researchers have established the theoretical properties of these methods based on nonparametric hypotheses,
but only scanty empirical results are available in the literature on these procedures. In this paper, four types of
rank score functions Wilcoxon-scores, Mood-scores, normal-scores and expected normal- scores are studied in
the context of two—way factorial designs using asymptotic % (Wald-Type) and modified Box- approximation
(ANOVA-Type) tests. The empirical Type | error rate and power of these test statistics on the rank scores were
determined using Monte Carlo simulation to investigate the robustness of the tests. The results show that there
are problems of inflation in the Type | error rate using asymptotic 2 test for all the rank score functions, especially
for small sample sizes and distributions studied. The modified Box- approximation test was found to be robust for
both validity and efficiency, especially for Wilcoxon, normal and expected normal score functions. It was concluded
that the asymptotic y?2test is non-robust for rank score functions in two-factor designs.

Keywords: Rank score functions, Type | error rates, Power, Factorial designs.

INTRODUCTION

When analyzing data from a two-factor design, usually
a linear model is assumed and the hypotheses are
formulated by the parameters of this model (Brunner
and Puri, 2002). If no specific distribution functions are
assumed, then there are no parameters to formulate
hypotheses. In this situation, artificial parameters are
usually introduced to express the hypotheses (Brunner
and Puri, 2002). The hypotheses derived from these
artificial ~ parameters are called nonparametric
hypotheses. Akritas and Arnold (1994) reported the
idea to formulate nonparametric hypotheses in factorial
designs by contrasts of the distribution functions.
However, the nonparametric hypothesis in the one-way
layout to higher-way layouts are presented in several
studies (Lemmer and Stoker 1967; Rinaman, 1983;
Hora and Conover, 1984; Brunner et al., 1995; Brunner
and Puri, 2002).

Rank procedures for nonparametric hypotheses based
on the distribution functions are derived for score
functions with bounded second derivatives (Brunner
and Puri, 2002). In this approach data from continuous
distributions as well as discrete ordinal data are
covered. The results in Brunner and Puri’'s (2002) paper
are presented in a general form such that statistical
nonparametric hypotheses in any factorial design can
be derived easily from this unified approach. Many rank
(score) statistics given in the literature are special
cases of the statistics they derived. However, they
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stated that the procedures are applicable to analyze
data for balanced and unbalanced designs, data with
continuous  distribution functions or data with ties.
Furthermore, Brunner and Puri (2002) applied this
approach to factorial design using Wilcoxon-scores and
Mood-scores. Asymptotic 2 and modified Box-
approximation (Box, 1954; Brunner et al., 1997) are
used as tests statistics.

The p-values of the asymptotic x2 and modified Box-
approximation tests differ (when applied to the same
data) for the two types of scores (Brunner and Puri,
2002). A question of whether or not that the tests under
Wilcoxon and Mood scores have the same Type | error
rates and power for two-factor designs can be raised.
However, the p-values of asymptotic %2 and modified
Box- approximation tests for other scores like normal-
scores and expected normal-scores (Sawilowsky, 1990;
Conover, 1999) may also differ. In this study, Type |
error rates and power comparison of the asymptotic 2
and modified Box- approximation tests for Wilcoxon-
scores, Mood-scores, normal-scores and expected
normal scores were carried out using Monte Carlo
simulation.

The purpose of this paper is to determine which of the
test statistic (the asymptotic %2 test or modified Box-
approximation test) on the rank score function has good
Type | error rates and power for the nonparametric
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hypotheses of two-factor designs with independent
observations, fixed number of levels and several
independent observations per cell (replicates). In
addition, the robustness of validity and efficiency of the
two test statistics were investigated based on the rank
scores.

METHODS

The Expected normal

A normal distribution was sampled randomly, ordered,
recorded, and replaced, and this process was repeated
many number of times. The average of each position of
N is the expected normal score (Harter, 1961 and
Royston, 1981). In a sample of size N the expected
value of the ™ largest order statistic is given by

E(r,N)=—<Dl[ r-9 j

N-20+1
where E(r, N) is the expected normal score for an
observation, r is the rank for that observation, ®(.) is
the quantile from the standard normal distribution and 6
= 0.375 (Harter, 1961; Royston, 1981). The expected
value of the r smallest observation is given by the
same expression preceded by a minus sign.

The Normal-Score
The data were ranked from 1 to sample size, N. The
ranked observations (ri) were then replaced by their

)

where € is the cumulative distribution function of a
standard normal distribution (Conover, 1999).

rijk

normal scores (™
N +1

The Wilcoxon-Score and Mood-Score
Brunner and Puri (2002) defined the Wilcoxon-scores

L1 1
as a.ijk =W(Ruk _Eji

where R is the rank of the original observations from
one to sample size, N. They also defined the Mood

1

_JZ |

2

w

scores as aj, = (aijk —

Model and Nonparametric Hypothesis
For a two-factor design with fixed levels a and b, the ki
observation from (i, J) is modeled as
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Yik=p+oit B+ (af)i+ei,

where i=1, ....,a j=1,..,b k=1,...,n; uisthe
overall mean, o is the effect of the ith level of factor A,
[ is the effect of the jth level of factor B, (ap)j is the
effect of the interaction between the ith level of factor A
and the jth level of factor B, &y is the random error
associated with the kth replicate in cell (i, j), and Yix is
the kth observations in cell (i, J) .

The hypotheses usually tested by the two-way factorial
ANOVA for the A main effect, B main effect, and
interaction are, respectively,
Ho:ai=pi-pu=0foralli=1,...,a
Ho: gi=pj-pn=0foralj=1,...,b
Ho: aBij = pij - Wi — i+ 1 =0 for all

iy J.

Brunner and Puri (2002) claimed that the rank
procedures might test hypotheses where rank mean
counterparts are substituted for the appropriate p's in
the above hypotheses, but in reality they test truly
nonparametric  hypotheses. In  this  situation,
independent random variables Yj have distribution
function

Fij(y) =F(y- Hij) .

where p; = p+oy + B+ (o)

The nonparametric hypotheses are given as a function
of the cumulative distribution for each cell, Fj (y)
(Brunner et al. 1997 and Akritas et al., 1997). Fi. is the
average of the Fi(y) across the b levels of B, F; is the
average of the Fj(y) across the a levels of A, and F.. is
the average of the Fj(y) across the ab cells. Then the
hypotheses tested by these nonparametric methods for

the A main effect, B main effect, and interaction, are,
respectively,

Ho:ai=Fi.-F.=0foralli=1,...,a
Ho:Bj=Fj-F.=0forallj=1,...,b

Ho: afj=Fij(x)-Fi.-Fj+F.=0foralli=1,..., a, for
allj=1,...,b

These hypotheses are respectively equivalent to
Ho:CaF =0, Ho:CsF =0, Ho:CagF =0,

where

C,=P,®LJ,, C;=1J,®PR,, C,; =P,®P,,
P=1,-1J, P =1-1J,, 1, is the dx1
summing vector, J, =1,1} andl = diag{l,...1}.
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Q) is used to test these

P= ((_?11-1 (_?12-1 s
hypotheses using

1 b 1 n
Q- :EZHQ“' and Qij' :szleijk,

where Qijk(iz 1,2, ..,aj=1,2,..,b k=12 ..,n)

are the rank scores from normal, expected normal,
Mood or Wilcoxon scores. See Brunner and Puri (2002)
for more details.

Asymptotic 2 test (Wald-Type test)

The Wald -Type tests for factor A, B and AB interaction
are respectively as follows:

Q.=NP{CLCNC)ClP~ 42,
Qs = N.P'{CL(CaV Ch) Cy} P~ 12,
Qu = N.IS'{C;B (CM.\?.C,;BYCAB}-IS ~ Z(Za—l)(bfl)

Where |5 = (611.’612.’ A Qab.)”

Q2 _L c N )2
Sij1 - (n _1) ;(Qijk Qij_) )

~ N . . A
V :FXdlag(slzlll"'lSazbl) and N = abn

Modified Box- approximation test (ANOVA-Type
test)

The ANOVA-Type tests for factor A, B and AB
interaction are respectively as follows:

A =%r(\7)ﬁ'{c;[ckcg]-} P~F..,

i =%r(\7)ﬁ'{cg[cs.cg]-} P~Fpy

- mxi\:(\;) B'(ClalCrs Clal | P~ Fuyon
where f, = [tr(\i)]z , M is any element in

diag(C(CC/)-C) and Aq= diag(n, ..., n)

Monte Carlo Simulation
For two-way table with a levels of factor A, b levels of
factor B, n >1 observations per cell, and level of
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significancea.. A set of data xix (i=1, 2, ..., a; ] =1, 2,
., by k=12 .. n)were obtained from the probability
distribution. From these data (x;), test statistics were
computed, and used to determine whether to accept or
reject their corresponding null hypotheses. In this study
a=b=4,and n=5, 10, 15, 20, 25, 30 replicates were
used. The power of the tests for main effects were
obtained for only factor A at 0;=0.5, as= — 0.5, a =
ou=0. However, the power for tests of interaction was
first generated when main effects are null and then
when main effects are non-null (o1 = 0.5, oz = - 0.5,
o2 = as = P1=Ps= 0, = 0.5,8s= -0.5) using the
interaction effects af11= 1, of13=0.5, af2=-0.5, ofis3
= -1, aPa2 = 0.5, afas = 0.5, the remaining ofj = 0.
In addition, the probability distributions used for the
study are N(u, o?), exponential, lognormal and mixed
normal [0.75xN(u, 62+ 0.25x N(10+u, ¢?)], where &2
= 1. Data generated from each distribution are
converted to rank score (yj). The estimate of Type |
error rate for a particular test is obtain by plugging i in
the two-way table, computing

|0, if the true null hypothesis is accepted
" |1, if the true null hypothesis is rejected
G
2.C
and T =—=—.
G
Then T is the required Type | error rate. Similarly, the

power of the test is obtained by computing
B {0, if the false null hypothesis is accepted

1, if the false null hypothesis is rejected

3D,
and P ==L |

P is the required power of the test, where G =1000.

Robustness
Empirical Type | error rates (r) within the confidence
interval

a7 /Mgﬂgmza all-a)
G G

for a test is considered robust for validity, where G and
o are the number of replications and level of
significance, respectively (Lin and Myers, 2006). This
criterion is used with G=1000 and o =0.05. That is, a
test is robust for validity if 0.036 < = < 0.064.
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A test with empirical power (Pa) is considered robust for
efficiency over another test with empirical power (Py) if

[Pa = Py | > 2xZ, xSE(P), where the quantity

2><Z% x SE (PA) is the difference between the upper
and lower limits of the confidence interval for p,

PA-P)
G

SE (PA)= and p denote independent

Bernoulli trial probability of success (Steidl and
Thomas, 2000). At G = 1000 and p = 0.5, two tests with
empirical power difference (from the same population)
within +0.062 are considered equal.

RESULTS

In Table 1 through Table 5, QW, QM, QN, QE are Wald
Type tests for Wilcoxon-score, Mood-score, normal-
score, and expected normal-score respectively, while
AW, AM, , AN, AE are ANOVA Type tests for Wilcoxon-
score, Mood-score, normal-score, expected normal-
score respectively. Table 1 and Table 2 show the Type
| error rates for factor A and interaction tests,
respectively. Table 3 shows the power for tests of factor
A, while Tables 4 and 5 show the power for tests of
interaction. The power for QN and QE are similar and
therefore only the power for QN is reported. Similarly,
the power for AN and AE are similar and only the power
for AN is reported.

Table 1 shows the Type | error rates for tests of factor
A. The bolded values are the Type | error rates outside
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the interval of robustness (0.036 0.064). At n = 5, the
Type | error rates of QW, QM, QN and QE are outside
the interval (0.036 0.064) while for the remaining
sample sizes, the rates are within the interval. The Type
| error rates for AW, AM, AN and AE are within the
interval for all sample sizes and populations studied.

Table 2 shows the Type I error rates for the interaction
tests. The Type | error rates of QW, QM, QN and QE
are outside the interval (0.036 0.064) in most of the
sample sizes and populations studied. The Type | error
rates for AW, AM, AN and AE are within the interval for
all sample sizes and populations studied.

In Table 3, the results indicate that QM and AM have
low power for all sample sizes and populations studied.
The tests QW, AW, QN and AN are powerful and have
similar power for all sample sizes and populations used
in the study.

When main effects are null, the power of interaction
tests are given in Table 4. The results show that QW
has some power advantage over other tests, especially
for small sample size. The test AN has smaller power
than other tests.

The powers of interaction tests when main effects are
non-null are given in Table 5. The results show that QN
and QW have some power advantage over other tests
for small samples.
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Table 1: Type | error rate for test of factor A

Test Statistic Population n
5 10 15 20 25 30
QW Normal 0.080 0.058 0.066 0.049 0.058 0.046
Exponential 0.075 0.061 0.052 0.054 0.059 0.062
Lognormal 0.085 0.062 0.053 0.052 0.054 0.052
Mixed normal 0.078 0.059 0.052 0.050 0.046 0.047
QM Normal 0.089 0.062 0.066 0.045 0.050 0.059
Exponential 0.076 0.066 0.064 0.063 0.049 0.063
Lognormal 0.087 0.059 0.062 0.045 0.048 0.049
Mixed normal 0.089 0.063 0.052 0.061 0.051 0.053
AW Normal 0.048 0.046 0.057 0.046 0.047 0.050
Exponential 0.040 0.048 0.047 0.052 0.054 0.057
Lognormal 0.060 0.050 0.051 0.044 0.046 0.052
Mixed normal 0.045 0.046 0.047 0.044 0.040 0.068
AM Normal 0.058 0.051 0.056 0.042 0.049 0.052
Exponential 0.043 0.049 0.054 0.063 0.048 0.060
Lognormal 0.053 0.046 0.043 0.043 0.042 0.042
Mixed normal 0.054 0.051 0.048 0.055 0.052 0.048
QN Normal 0.071 0.063 0.056 0.042 0.049 0.043
Exponential 0.074 0.061 0.056 0.060 0.054 0.062
Lognormal 0.082 0.064 0.055 0.050 0.048 0.050
Mixed normal 0.068 0.059 0.055 0.057 0.041 0.063
QE Normal 0.070 0.063 0.056 0.041 0.049 0.042
Exponential 0.074 0.061 0.055 0.060 0.055 0.064
Lognormal 0.082 0.063 0.055 0.050 0.048 0.051
Mixed normal 0.070 0.058 0.056 0.055 0.040 0.064
AN Normal 0.048 0.047 0.045 0.039 0.043 0.044
Exponential 0.037 0.051 0.052 0.054 0.052 0.058
Lognormal 0.057 0.053 0.055 0.052 0.047 0.055
Mixed normal 0.046 0.050 0.048 0.048 0.045 0.062
AE Normal 0.047 0.048 0.043 0.039 0.045 0.044
Exponential 0.038 0.052 0.052 0.054 0.053 0.058
Lognormal 0.057 0.053 0.054 0.053 0.047 0.055
Mixed normal 0.046 0.049 0.048 0.049 0.046 0.063
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Table 2: Type | error rate for test of interaction

Test Statistic Population n
5 10 15 20 25 30
QW Normal 0.245 0.113 0.098 0.075 0.067 0.061
Exponential 0.211 0.115 0.104 0.079 0.068 0.065
Lognormal 0.225 0.116 0.090 0.076 0.067 0.059
Mixed normal 0.211 0.134 0.094 0.073 0.065 0.059
QM Normal 0.230 0.100 0.091 0.069 0.067 0.068
Exponential 0.204 0.115 0.089 0.097 0.077 0.081
Lognormal 0.218 0.123 0.089 0.072 0.091 0.065
Mixed normal 0.236 0.141 0.089 0.072 0.065 0.076
AW Normal 0.050 0.045 0.048 0.051 0.047 0.043
Exponential 0.042 0.044 0.064 0.050 0.044 0.037
Lognormal 0.047 0.053 0.046 0.046 0.051 0.044
Mixed normal 0.043 0.064 0.052 0.045 0.042 0.044
AM Normal 0.038 0.046 0.049 0.038 0.048 0.051
Exponential 0.037 0.045 0.043 0.055 0.047 0.045
Lognormal 0.046 0.045 0.048 0.045 0.064 0.049
Mixed normal 0.044 0.058 0.045 0.046 0.044 0.063
QN Normal 0.213 0.101 0.085 0.079 0.064 0.060
Exponential 0.184 0.098 0.105 0.077 0.066 0.062
Lognormal 0.196 0.113 0.085 0.071 0.061 0.058
Mixed normal 0.198 0.116 0.088 0.074 0.067 0.053
QE Normal 0.211 0.100 0.084 0.079 0.063 0.060
Exponential 0.182 0.097 0.103 0.078 0.065 0.063
Lognormal 0.192 0.115 0.084 0.072 0.060 0.056
Mixed normal 0.192 0.114 0.088 0.073 0.066 0.053
AN Normal 0.054 0.048 0.048 0.049 0.047 0.046
Exponential 0.042 0.037 0.060 0.049 0.048 0.050
Lognormal 0.048 0.053 0.044 0.045 0.048 0.050
Mixed normal 0.045 0.060 0.048 0.044 0.043 0.041
AE Normal 0.053 0.048 0.046 0.048 0.046 0.044
Exponential 0.042 0.036 0.060 0.050 0.048 0.050
Lognormal 0.046 0.053 0.044 0.046 0.048 0.050
Mixed normal 0.044 0.059 0.048 0.046 0.040 0.040
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Table 3: Power for test of factor A at oz = 0.5, 02 =0, ais=-0.5, 04 = 0

Test Statistic Population n
5 10 15 20 25 30
QW Normal 0.748 0.973 0.996 1.000 1.000 1.000
Exponential 0.145 0.203 0.251 0.334 0.400 0.458
Lognormal 0.765 0.972 0.996 0.998 1.000 1.000
Mixed normal 0.840 0.989 1.000 1.000 1.000 1.000
QM Normal 0.096 0.123 0.130 0.181 0.199 0.223
Exponential 0.045 0.058 0.074 0.085 0.090 0.110
Lognormal 0.115 0.123 0.139 0.157 0.224 0.241
Mixed normal 0.099 0.137 0.178 0.191 0.233 0.275
AW Normal 0.697 0.968 0.997 1.000 1.000 1.000
Exponential 0.099 0.170 0.234 0.315 0.385 0.432
Lognormal 0.709 0.968 0.997 0.999 1.000 1.000
Mixed normal 0.794 0.986 1.000 1.000 1.000 1.000
AM Normal 0.050 0.097 0.120 0.169 0.185 0.218
Exponential 0.040 0.044 0.062 0.078 0.091 0.108
Lognormal 0.062 0.088 0.098 0.144 0.198 0.228
Mixed normal 0.058 0.112 0.157 0.178 0.221 0.263
QN Normal 0.749 0.980 1.000 1.000 1.000 1.000
Exponential 0.147 0.203 0.264 0.346 0421 0.474
Lognormal 0.781 0.976 0.997 1.000 1.000 1.000
Mixed normal 0.842 0.989 1.000 1.000 1.000 1.000
AN Normal 0.719 0.978 0.999 1.000 1.000 1.000
Exponential 0.096 0.174 0.247 0.328 0.407 0.460
Lognormal 0.733 0.976 0.997 1.000 1.000 1.000
Mixed normal 0.807 0.989 1.000 1.000 1.000 1.000
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Table 4: Power for tests of interaction when main effects are null

Test Statistic Population n
5 10 15 20 25 30
QW Normal 0.909 0.938 0.995 0.998 1.000 1.000
Exponential 0.851 0.886 0.950 0.977 0.989 0.999
Lognormal 0.916 0.938 0.992 0.997 1.000 1.000
Mixed normal 0.902 0.944 0.991 0.999 1.000 1.000
QM Normal 0.668 0.722 0.754 0.794 0.798 0.858
Exponential 0.693 0.731 0.793 0.814 0.838 0.880
Lognormal 0.711 0.718 0.747 0.808 0.816 0.860
Mixed normal 0.699 0.700 0.755 0.787 0.792 0.859
AW Normal 0.156 0.372 0.769 0.910 0.983 0.993
Exponential 0.088 0.257 0.461 0.661 0.835 0.919
Lognormal 0.140 0.376 0.712 0.911 0.982 0.993
Mixed normal 0.157 0.408 0.769 0.918 0.988 0.996
AM Normal 0.039 0.049 0.088 0.158 0.191 0.297
Exponential 0.026 0.068 0.107 0.196 0.247 0.320
Lognormal 0.031 0.080 0.114 0.137 0.196 0.317
Mixed normal 0.023 0.063 0.090 0.165 0.224 0.310
QN Normal 0.574 0.639 0.667 0.683 0.741 0.773
Exponential 0.439 0.477 0.544 0.620 0.729 0.768
Lognormal 0.585 0.620 0.645 0.728 0.750 0.805
Mixed normal 0.619 0.650 0.691 0.702 0.767 0.836
AN Normal 0.018 0.018 0.060 0.083 0.143 0.168
Exponential 0.016 0.021 0.023 0.025 0.027 0.028
Lognormal 0.013 0.026 0.042 0.072 0.093 0.190
Mixed normal 0.014 0.031 0.044 0.077 0.137 0.200
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Table 5: Power for tests of interaction when main effects are non-null

Test Statistic Population n
5 10 15 20 25 30
QW Normal 0.973 0.999 1.000 1.000 1.000 1.000
Exponential 0.898 0.950 0.987\  0.998 1.000 1.000
Lognormal 0.984 1.000 1.000 1.000 1.000 1.000
Mixed normal 0.981 1.000 1.000 1.000 1.000 1.000
QM Normal 0.814 0.838 0.870 0.946 0.964 0.989
Exponential 0.832 0.777 0.820 0.872 0.923 0.966
Lognormal 0.821 0.822 0.870 0.925 0.965 0.984
Mixed normal 0.819 0.839 0.879 0.918 0.966 0.989
AW Normal 0.408 0.917 0.996 1.000 1.000 1.000
Exponential 0.146 0.454 0.734 0.902 0.975 0.996
Lognormal 0.420 0.932 0.999 1.000 1.000 1.000
Mixed normal 0.446 0.962 0.999 1.000 1.000 1.000
AM Normal 0.055 0.170 0.289 0.448 0.591 0.731
Exponential 0.059 0.124 0.216 0.349 0.451 0.605
Lognormal 0.041 0.147 0.307 0.461 0.587 0.752
Mixed normal 0.052 0.179 0.307 0.438 0.616 0.767
QN Normal 0.950 0.997 1.000 1.000 1.000 1.000
Exponential 0.745 0.672 0.679 0.715 0.757 0.827
Lognormal 0.971 0.997 1.000 1.000 1.000 1.000
Mixed normal 0.978 0.998 1.000 1.000 1.000 1.000
AN Normal 0.239 0.758 0.970 0.997 1.000 1.000
Exponential 0.024 0.057 0.077 0.116 0.160 0.223
Lognormal 0.250 0.761 0.969 0.998 1.000 1.000
Mixed normal 0.309 0.860 0.984 1.000 1.000 1.000
DISCUSSION AN tests are found to be robust for both validity and

The results show that QW, QM, QN and QE tests for
both main effect and interaction are not robust for
validity, especially for small sample sizes. The results
also show that the Type | error rates for AW, AM, AN
and AE tests are within the interval (0.036 0.064) for all
sample sizes, factor effects and populations studied.
Therefore, AW, AM, AN and AE tests are robust for
validity.

The tests QW, AW, QN and AN are found to be
powerful in testing main effect or interaction. Low power
was observed for QM and AM tests for small sample
sizes. A slit power advantage was observed for QN and
QW tests over other tests for interaction in small
sample sizes. In terms of power, QW, AW, QN and AN
tests are robust for efficiency. However, only AW and
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efficiency.

CONCLUSION

Monte Carlo simulation was performed to compare
Wald-Type test and ANOVA-Type test for two-factor
designs using rank score functions Wilcoxon-score,
Mood-score, normal-score and expected normal- score.
The results show that ANOVA-Type test on Wilcoxon-
score, normal-score and expected normal-score is
robust for both validity and efficiency, while the Wald-
Type test on the score functions is non-robust.
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