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ABSTRACT: The principal components analysis and Hotelling’s T2 statistic are used in studying the clinker minerals
of Portland Cement Company of Northern Nigeria (CCNN). The cement produced is considered to be a mixture of
eight minerals, each being sensitive to the presence of fly ash. Effort was made in this paper to show that the
dependence on only one mineral in detecting fault or diagnosing noise was not effective but rather using the entire
components such that each component’s contribution to variation is measured thereby making a valid interpretation

about fault.
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INTRODUCTION

Jackson (1991) reported the increasing needs for
principal component analysis and Hotelling’s T2
approximated model, due to their efficiency in handling
large number of highly correlated variables,
measurement errors and missing data. Principal
Components Analysis (PCA) is used to solve several
tasks including, data rectification (Kramer and Mah,
1994), gross error detection (Tong and Crowe, 1995),
disturbance detection and isolation (Ku et al., 1995),
statistical process monitoring (Wise et al., 1990), and
fault diagnosis (Dunia et al., 1996; MacGregor et al.,
1994). If the measured variables are linearly related
and are contaminated by errors, the first few
components capture the relationship between the
variables, and the remaining components are
comprised only of the error. Thus, eliminating the less
important components reduces the contribution of
errors in the measured data and represents it in a
compact manner. Applications of PCA rely on its ability
to reduce the dimensionality of the data matrix while
capturing the underlying variation and relationship
between the variables (Jollife, 2002).

According to Kresta (1994) and Kourti (1996), faults
detection is improved by making use of Hotelling’s T2
statistic and data dimensionality reduction technique of
PCA and canonical variate analysis (CVA). The lower
dimensional representations of the technique can be
generalized without need for entire dimensionality. It is
observed that quality of Portland cement clinker
depends on its chemical and mineralogical composition.
Clay contains basically three oxides: SiO, AlO and FeO.
Limestone decomposes to CaO and CO, during firing.
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CO, is removed and CaO reacts to form alite
(3Ca0.Si0y), belite (2Ca0.Si0,), celite (3Ca0.AlOs),
and tetra calcium-alumino-ferrite (4Ca0.AlO;. FeQs),
abbreviated as CsS, C2S, C3A and C4AF respectively.
The composition was reported to be: 45-65%CsS, 15-
35%C2S, 4-14%C3A, and 10-18%C4AF (Komar, 1987)

MATERIALS AND METHODS

The data used in this study was a secondary dataset
obtained from Quality Control Division of Cement
Company of Northern Nigeria (CCNN). The data
consisted of the clinker minerals of aluminum oxide
(Al,O3), iron oxide (FeOs)), magnesium oxide (MgO),
sulphate (SQs), phosphorous oxide (P.0s), calcium
oxide (Ca0), silica oxide (SiO;), potassium oxide (K20)
and loss on ignition (LOI).

Principal component analysis procedure

Given a data matrix X constructed by m observation of
n variables, PCA projects it to a lower dimensional
space that explains a large fraction of variability in the
original data (Jackson, 1980, 1991 and Kresta et al,
1991). Each pair consists of a vector in n called the

loadings, p;, and a vector in m referred to as the
scores, t; Thus X can be written as:

k
X =t,p’ +t,p, +.+t,p +E=Ytp +E (1)

i=1

where E is the residual matrix.

The matrix of loadings vectors P forms a new
orthogonal basis for the space spanned by X and the
individual pi are the eigenvectors of the covariance
matrix of X, defined as:
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where Ais the eigenvalues associated with the

eigenvector pi. The loadings vectors P; are often
referred to as principal components. Each of the t; is
simply the projection of X onto the new basis vector pi:

t. = Xp (4)
The value of each A is an indicator of the covariance in
the data set in the direction pi. In fact fraction variance

(5)

in direction p. = A

in directi R
1 Z/‘l

In a data set scaled to have variables of zero mean and

unit standard deviations

> A=n (6)

where n is the number of variables in the data set. In
this case, each of the scores vectors t; would have
mean equals to zero and standard deviation equal to

(\//1_i ). closely related to Strang (1980) Singular Value

Decomposition (SVD). X is decomposed as

X =Usv’ (7
where V contains the eigenvectors (pi) and S is a
diagonal matrix containing the square roots of the
eigenvalues (the singular values) of the covariance
matrix of X.

Once the eigenvectors have been determined using
PCA or SVD, projections of the data onto the
eigenvectors can be made. These projections are
commonly referred to as "scores plots" and are often
useful for showing the relationships between the
samples (rows) in the data set. Plots can be done as
the projections of the samples onto a single eigenvector
versus sample number (or time) or onto the plane
formed by two eigenvectors. A projection of the
samples onto the two eigenvectors associated with the
largest eigenvalues depicts the largest amount of
information about the relationship between the samples
that can be shown in two (linear) dimensions. It is for
this reason that PCA is often used as a pattern
recognition and sample classification technique.

Plots of the coefficients of the eigenvectors, known as
"loadings plots", show the relationships between the
original variables in the data set. Correlations between

76

variables are shown. Hotelling (1933, 1947) and
Jackson (1980) provided Hotelling’s T2 for identifying
unusual variability within the normal subspace. The
value of T2 for one sample is equal to the sum of
squares of the adjusted (unit variance) scores on each
of the PCs in the model. That is:

Here k is the number of principal components retained
in the model. T2 is the squared length of the projection
of the current sample into the space spanned by the
PCA model.

(8)

This square is a measure of how far the PCA estimate
of the sample (as given by equation 9) is from the data
containing the multivariate mean. The statistical
confidence limits for T2 can be calculated by using
statistical F-distribution as follows:
2 _ k(m-12)
a,mk m- k

©)

a,m-K,k

where m is the number of samples in the data set used
in the calculations involved in PCA model, k is the
number of principal component vectors retained and &
corresponds to the standard normal deviate.

T2 statistic measures the variations inside the state
space. Then process faults are detected, selecting a

level of significance and using TG,2 to compute the
appropriate threshold.

RESULTS AND DISCUSSIONS

With the eigenvectors as loadings of the principal
components, spanning the new PCA coordinate
system, a composition of principal components
proportion reveals a clear picture of the variables that
capture and contribute high variation in the data (see
Table 1 and Figure 1 for the composition of PCA and
scree plot of the eigenvalues for the clinker minerals).
The result supports that component 1 has the highest
variation and contains most of the mineralogical and
chemical compositions. Three basic oxides were
identified as overall strength of the cement and which
also determine its quality (CaO, SiO; and Al,Os).

Table 1 reveals that Components 1 and 2 account for
27% and 18% respectively, with a corresponding
values of 1.57 and 1.26. Even though components with
lessthan 30% are not suppose to be retained, Kaiser
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(1960) argue that components that displays an
eigenvalue(s) greater than 1.00 are enough to account
for a greater amount of variance than had been
contributed by one variable. Therefore, in this study,
only four components were considered.

Table 1: Composition of the Principal Components

Proportion
Proportion  Std.dev Propt. Cumm
Comp.1 1.57 0.27 0.27
Comp.2 1.26 0.18 0.45
Comp.3 1.07 0.12 0.58
Comp.4 1.03 0.1 0.7
Comp.5 0.96 0.1 0.8
Comp.6 0.86 0.08 0.88
Comp.7 0.7 0.06 0.93
Comp.8 0.58 0.04 0.97
Comp.9 0.49 0.04 1

Cattell (1966) suggest the use of scree test in
determining the number of PCs to retain, that is by
making the use of the plot of eigenvalues associated
with each component and look for a “break” between
the components with relatively large eigenvalues and
those with small eigenvalues. The components that
appear before the break are assumed to be meaningful
and are retained for rotation (Figure 1). Those that
appeared after the break are assumed to be
unimportant and are not retained. Outliers are detected
with the use of biplot of the nine clinkers as shown in
Figure 2. In this case, only Cao is considered because
is the one that conforms to the negative correlation
among the entire clinker variables. Jollife (2002)
suggest that when there are more outliers and the p is
not too large, turning to correlation coefficient is
preferred. Table 2 shows the correlation matrix of the
nine clinker variables.

Table 3 indicates the compositions of principal
components. The first component that accounts for
27% of the total variance has a linear combination of:

PC1=0.132A-0.957C + 0.146F + 0.018K + 0.077M
+0.015P + 0.19Si+ 0.03S + 0.002L

We notice that the PC1 is a contrast between the

calcium (C) and silica, iron and aluminium oxide.
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Defining T2 to be the sum of squares of the adjusted
(unit variance) as in equation (8), it was obtained and
compared with the values of F-ratio according to
equation (9) as follows

"33

k t2
= Z[—'zj =2.1658% = 4.68

i=1 i
Taking a = 0.05, the F-statistic value is 4.77 which is
the upper 100 a % critical point of the F-distribution with
k, m-k degrees of freedom. Having the test value of T2
calculated greater than F- statistic presumes that a fault
has occurred.

Table 2 reveals the values of correlations and Table 3
the covariance matrix of the clinker variables

n
N7 -

Index

Figure 1: Scree-plot of the eigenvalues of the clinker
minerals
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Figure 2: Biplot of the clinker minerals
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Table 2: Correlation matrix of clinker variables

Variable AI203 Ca0 Fe203 K20 MgO P205 Si02 S03 LOl
Al,O3 1.00 -0.54 0.30 0.61 0.21 0.12 0.25 -0.06 -0.12
Ca0 -0.54 1.00 -0.35 -0.32 -0.30 -0.17 -0.25 -0.19 -0.04
Fe203 0.30 -0.35 1.00 0.24 -0.04 0.49 -0.14 -0.11 0.04
K20 0.61 -0.32 0.24 1.00 0.06 0.17 -0.05 0.00 -0.29
MgO 0.21 -0.30 -0.04 0.06 1.00 -0.14 0.12 0.08 -0.04
P20s 0.12 -0.17 0.49 0.17 -0.14 1.00 -0.01 -0.01 -0.02
SiO; 0.25 -0.25 -0.14 -0.05 0.12 -0.01 1.00 0.11 -0.20
SO; -0.06 -0.19 -0.11 0.00 0.08 -0.01 0.11 1.00 -0.09
LOI -0.12 -0.04 0.04 -0.29 -0.04 -0.02 -0.20 -0.09 1.00
Table 3: Eigen analysis of the covariance matrix of the clinker

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Al,Os 0.132 -0.018 -0.127 -0.295 0.186 0.561 -0.710 -0.000
Ca0 -0.957 -0.146 -0.189 -0.113 -0.024 -0.019 -0.115 -0.003
Fe20; 0.146 0.310 -0893 -0.090 -0.137 -0.216 0.008 0.107
K20 0.018 0.017 -0.019 -0.046 -0.026 0.144 -0.090 -0.085
MgO 0.077 -0.026 0.190 -0.899 -0.072 -0.375 0.037 -0.050
P20s 0.015 0.024 -0.105 0.040 -0.033 -0.011 0.007 -0.989
SiO, 0.192 -0.934 -0.273 0.031 0.041 -0.113 0.010 0.008
SO3 0.039 -0.036 0.157 0.196 -0.758 -0.288 -0.525 0.017
LOI 0.002 0.088 0.062 0.204 0.602 -0.617 -0.444 -0.019
CONCLUSION of Chemical Engineer’s Journal, 42(10): 2797-

The analysis carried out reveals that about four
components need to be retained in order to meet 70%
total variance; this reflects the variation in overall quality
of the Portland cement. The relationship between the
aluminium and iron makes the process to be in control
despite the presence of fault. Insufficient aluminium and
Iron which may lead to difficulty in burning the clinker
and excessive amounts also which may lead to low
strength, due to dilution of the silicate by aluminates
and ferrites, were avoided. The PCA exhibits higher
sensitivity in detecting outliers than is the case with
Hotelling’s.
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