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ABSTRACT: The principal components analysis and Hotelling’s T2 statistic are used in studying the clinker minerals 
of Portland Cement Company of Northern Nigeria (CCNN). The cement produced is considered to be a mixture of 
eight minerals, each being sensitive to the presence of fly ash. Effort was made in this paper to show that the 
dependence on only one mineral in detecting fault or diagnosing noise was not effective but rather using the entire 
components such that each component’s contribution to variation is measured thereby making a valid interpretation 
about fault.  
Keywords: Hotelling’s T2 approximated model, Fault detection, PCA, Components treatments 

 
INTRODUCTION 
Jackson (1991) reported the increasing needs for 
principal component analysis and Hotelling’s T2 
approximated model, due to their efficiency in handling 
large number of highly correlated variables, 
measurement errors and missing data. Principal 
Components Analysis (PCA) is used to solve several 
tasks including, data rectification (Kramer and Mah, 
1994), gross error detection (Tong and Crowe, 1995), 
disturbance detection and isolation (Ku et al., 1995), 
statistical process monitoring (Wise et al., 1990), and 
fault diagnosis (Dunia et al., 1996; MacGregor et al., 
1994). If the measured variables are linearly related 
and are contaminated by errors, the first few 
components capture the relationship between the 
variables, and the remaining components are 
comprised only of the error. Thus, eliminating the less 
important components reduces the contribution of 
errors in the measured data and represents it in a 
compact manner. Applications of PCA rely on its ability 
to reduce the dimensionality of the data matrix while 
capturing the underlying variation and relationship 
between the variables (Jollife, 2002). 
 
According to Kresta (1994) and Kourti (1996), faults 
detection is improved by making use of Hotelling’s T2 
statistic and data dimensionality reduction technique of 
PCA and canonical variate analysis (CVA). The lower 
dimensional representations of the technique can be 
generalized without need for entire dimensionality. It is 
observed that quality of Portland cement clinker 
depends on its chemical and mineralogical composition. 
Clay contains basically three oxides: SiO, AlO and FeO. 
Limestone decomposes to CaO and CO2 during firing. 

CO2 is removed and CaO reacts to form alite 
(3CaO.SiO2), belite (2CaO.SiO2), celite (3CaO.AlO3), 
and tetra calcium-alumino-ferrite (4CaO.AlO3. FeO3), 
abbreviated as C3S, C2S, C3A and C4AF respectively. 
The composition was reported to be: 45-65%C3S, 15-
35%C2S, 4-14%C3A, and 10-18%C4AF (Komar, 1987). 

 
MATERIALS AND METHODS 
The data used in this study was a secondary dataset 
obtained from Quality Control Division of Cement 
Company of Northern Nigeria (CCNN). The data 
consisted of the clinker minerals of aluminum oxide 
(Al2O3), iron oxide (FeO3)), magnesium oxide (MgO), 
sulphate (SO3), phosphorous oxide (P2O5), calcium 
oxide (CaO), silica oxide (SiO2), potassium oxide (K2O) 
and loss on ignition (LOI).  
 
Principal component analysis procedure  
Given a data matrix X constructed by m observation of 
n variables, PCA projects it to a lower dimensional 
space that explains a large fraction of variability in the 
original data (Jackson, 1980, 1991 and Kresta et al, 
1991). Each pair consists of a vector in n called the 

loadings, ip , and a vector in m referred to as the 

scores, it  Thus X can be written as: 

1 1 2 2
1

...
k

T T T T
n n i i

i

X t p t p t p E t p E
=

= + + + + = +∑      (1)       

where E is the residual matrix.  
 
The matrix of loadings vectors P forms a new 
orthogonal basis for the space spanned by X and the 
individual pi are the eigenvectors of the covariance 
matrix of X, defined as: 
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( )1
cov(X)

1
TX X

m
=

−
  (2) 

Thus  

cov(X) i i ip pλ=    (3) 

where iλ is the eigenvalues associated with the 

eigenvector pi. The loadings vectors Pi are often 
referred to as principal components. Each of the ti is 
simply the projection of X onto the new basis vector pi:  

 i it Xp=    (4) 

The value of each iλ is an indicator of the covariance in 

the data set in the direction pi. In fact fraction variance 

in direction i
i

i

p
λ

λ
=
∑

   (5) 

In a data set scaled to have variables of zero mean and 
unit standard deviations 

i nλ =∑     (6) 

where n is the number of variables in the data set. In 
this case, each of the scores vectors ti would have 
mean equals to zero and standard deviation equal to 

( ).iλ  closely related to Strang (1980) Singular Value 

Decomposition (SVD).  X is decomposed as 
TX USV=     (7) 

where V contains the eigenvectors (pi) and S is a 
diagonal matrix containing the square roots of the 
eigenvalues (the singular values) of the covariance 
matrix of X.  
 
Once the eigenvectors have been determined using 
PCA or SVD, projections of the data onto the 
eigenvectors can be made. These projections are 
commonly referred to as "scores plots" and are often 
useful for showing the relationships between the 
samples (rows) in the data set. Plots can be done as 
the projections of the samples onto a single eigenvector 
versus sample number (or time) or onto the plane 
formed by two eigenvectors. A projection of the 
samples onto the two eigenvectors associated with the 
largest eigenvalues depicts the largest amount of 
information about the relationship between the samples 
that can be shown in two (linear) dimensions. It is for 
this reason that PCA is often used as a pattern 
recognition and sample classification technique. 
 
Plots of the coefficients of the eigenvectors, known as 
"loadings plots", show the relationships between the 
original variables in the data set. Correlations between 

variables are shown. Hotelling (1933, 1947) and 
Jackson (1980) provided Hotelling’s T2 for identifying 
unusual variability within the normal subspace. The 
value of T2 for one sample is equal to the sum of 
squares of the adjusted (unit variance) scores on each 
of the PCs in the model. That is: 

2 2
2

2
1 1

k k
i i

i ii i

t t
T

sλ= =

   
= =   

   
∑ ∑   (8) 

Here k is the number of principal components retained 
in the model. T2 is the squared length of the projection 
of the current sample into the space spanned by the 
PCA model.  
 
This square is a measure of how far the PCA estimate 
of the sample (as given by equation 9) is from the data 
containing the multivariate mean. The statistical 
confidence limits for T2 can be calculated by using 
statistical F-distribution as follows: 

2
, , , ,

( 1)
m k m k k

k m
T F

m kα α −
−=

−
  (9) 

 
where m is the number of samples in the data set used 
in the calculations involved in PCA model, k is the 

number of principal component vectors retained and α
corresponds to the standard normal deviate.  
 
T2 statistic measures the variations inside the state 
space. Then process faults are detected, selecting a 

level of significance and using 
2Tα  to compute the 

appropriate threshold. 
 
RESULTS AND DISCUSSIONS 
With the eigenvectors as loadings of the principal 
components, spanning the new PCA coordinate 
system, a composition of principal components 
proportion reveals a clear picture of the variables that 
capture and contribute high variation in the data (see 
Table 1 and Figure 1 for the composition of PCA and 
scree plot of the eigenvalues for the clinker minerals). 
The result supports that component 1 has the highest 
variation and contains most of the mineralogical and 
chemical compositions. Three basic oxides were 
identified as overall strength of the cement and which 
also determine its quality (CaO, SiO2 and Al2O3).  
 
Table 1 reveals that Components 1  and 2 account for 
27% and 18%  respectively, with a corresponding 
values of 1.57 and 1.26. Even though components with 
lessthan 30% are not suppose to be retained, Kaiser 
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(1960)  argue that components that displays an 
eigenvalue(s) greater than 1.00 are enough to account 
for a greater amount of variance than had been 
contributed by one variable. Therefore, in this study, 
only four components were considered.  
 
 
Table 1: Composition of the Principal Components 

Proportion 

 Proportion Std.dev Propt. Cumm 

Comp.1      1.57 0.27 0.27 

Comp.2      1.26 0.18 0.45 

Comp.3 1.07 0.12 0.58 

Comp.4 1.03 0.11 0.7 

Comp.5 0.96 0.1 0.8 

Comp.6 0.86 0.08 0.88 

Comp.7 0.71 0.06 0.93 

Comp.8 0.58 0.04 0.97 

Comp.9 0.49 0.04 1 

 
Cattell (1966) suggest the use of scree test in 
determining the number of PCs to retain, that is by 
making the use of the plot of eigenvalues associated 
with each component and look for a “break” between 
the components with relatively large eigenvalues and 
those with small eigenvalues. The components that 
appear before the break are assumed to be meaningful 
and are retained for rotation (Figure 1). Those that 
appeared after the break are assumed to be 
unimportant and are not retained. Outliers are detected 
with the use of biplot of the nine clinkers as shown in 
Figure 2. In this case, only Cao is considered because 
is the one that conforms to the negative correlation 
among the entire clinker variables. Jollife (2002) 
suggest that when there are more outliers and the p is 
not too large, turning to correlation coefficient is 
preferred. Table 2 shows the correlation matrix of the 
nine clinker variables.  
 
Table 3 indicates the compositions of principal 
components. The first component that accounts for 
27% of the total variance has a linear combination of: 
 

PC1= 0.132A - 0.957C + 0.146F + 0.018K + 0.077M
+ 0.015P + 0.19Si + 0.03S + 0.002L

 

We notice that the PC1 is a contrast between the 
calcium (C) and silica, iron and aluminium oxide. 

Defining T2 to be the sum of squares of the adjusted 
(unit variance) as in equation (8), it was obtained and 
compared with the values of F-ratio according to 
equation (9) as follows

 
 

   
   
   

∑ ∑
2

2k k
2 2i i

2
i=1 i=1i i

t t
T = = = 2.1658 = 4.68

λ s
 

Taking α = 0.05, the F-statistic value is 4.77 which is 

the upper 100 α % critical point of the F-distribution with 

k, m-k degrees of freedom. Having the test value of T2 

calculated greater than F- statistic presumes that a fault 

has occurred. 
 
Table 2 reveals the values of correlations and Table 3 
the covariance matrix of the clinker variables 

 

Figure 1: Scree-plot of the eigenvalues of the clinker 
minerals

  

Figure 2: Biplot of the clinker minerals 
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Table 2: Correlation matrix of clinker variables 

Variable Al2O3 CaO Fe2O3 K2O MgO P2O5 SiO2 SO3 LOI 

Al2O3 1.00 -0.54 0.30    0.61 0.21   0.12   0.25 -0.06 -0.12 
CaO -0.54   1.00 -0.35 -0.32 -0.30 -0.17 -0.25 -0.19 -0.04 
Fe2O3   0.30 -0.35 1.00 0.24 -0.04 0.49 -0.14 -0.11 0.04 
K2O 0.61 -0.32 0.24 1.00 0.06 0.17 -0.05 0.00 -0.29 
MgO 0.21 -0.30 -0.04 0.06 1.00 -0.14 0.12 0.08 -0.04 
P2O5 0.12 -0.17 0.49 0.17 -0.14 1.00 -0.01 -0.01 -0.02 
SiO2 0.25 -0.25 -0.14 -0.05 0.12 -0.01 1.00 0.11 -0.20 
SO3 -0.06 -0.19 -0.11 0.00 0.08 -0.01 0.11 1.00 -0.09 
LOI -0.12 -0.04 0.04 -0.29 -0.04 -0.02 -0.20 -0.09 1.00 

 
Table 3: Eigen analysis of the covariance matrix of the clinker 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Al2O3 0.132 -0.018 -0.127   -0.295       0.186 0.561 -0.710 -0.000 
CaO -0.957 -0.146 -0.189 -0.113 -0.024 -0.019 -0.115 -0.003 
Fe2O3 0.146 0.310 -0893 -0.090 -0.137 -0.216 0.008 0.107 
K2O 0.018 0.017 -0.019 -0.046 -0.026 0.144 -0.090 -0.085 
MgO 0.077 -0.026 0.190 -0.899 -0.072 -0.375 0.037 -0.050 
P2O5 0.015 0.024 -0.105 0.040 -0.033 -0.011 0.007 -0.989 
SiO2 0.192 -0.934 -0.273 0.031 0.041 -0.113 0.010 0.008 
SO3 0.039 -0.036 0.157 0.196 -0.758 -0.288 -0.525 0.017 
LOI 0.002 0.088 0.062 0.204 0.602 -0.617 -0.444 -0.019 

 
CONCLUSION 
The analysis carried out reveals that about four 
components need to be retained in order to meet 70% 
total variance; this reflects the variation in overall quality 
of the Portland cement. The relationship between the 
aluminium and iron makes the process to be in control 
despite the presence of fault. Insufficient aluminium and 
Iron which may lead to difficulty in burning the clinker 
and excessive amounts also which may lead to low 
strength, due to dilution of the silicate by aluminates 
and ferrites, were avoided. The PCA exhibits higher 
sensitivity in detecting outliers than is the case with 
Hotelling’s.  
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