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ABSTRACT 
Multivariate statistical techniques such as principal component analysis (PCA), factor analysis (FA), and 
hierarchical cluster analysis (HCA) were utilized for the evaluation of metal distribution and variations in 
the soil at Awwal mining site. PCA was used to determine a reduced number of three principal 
components (PC) indicating about 82% of the total variation in the soil samples. The result of FA 
justifies the results of the PCA obtained. HCA classified the soil samples at the sites into two clusters, 
with cluster one having the higher metal levels, while cluster two had low metal levels but characterized 
with dominant toxic heavy metals (As and Pb). The results of the multivariate analysis showed that 
natural percentage abundance in soil and mineral composition of the mining ores were the main sources 
of the metals under study. Due to high metal levels in the soils, disposal and management of the mining 
waste/tailings and rehabilitation of the mining site after closure of mining should be done with care and 
caution to avoid leaching of the toxic metals to surface and underground water for the protection of 
health and safety of the neighboring community.   
Keywords: Soil, Metals, Mining, Multivariate analysis, Awwal.  

 
INTRODUCTION 
Mineral exploration is one of the main sources 
of income to government and local inhabitants. 
However, it poses challenges in Northwestern 
part of Nigeria due to the methods of mining 
employed, which involves the use of crude 
implements, as well as ignorance or lack of 
proper understanding of metal levels and 
distributions in soils of the mining districts. This 
results in poor safety and improper disposal of 
the mining wastes without considering the 
environmental and human health 
consequences. Mining activities in recent time 
have been of concern to scientists in developed 
and developing countries around the world due 
to the associated environmental pollution (Dong 
et al., 2001). Mineral extraction has caused 
serious environmental pollution, especially 
contamination due to metalloids and heavy 
metals (Acosta et al., 2011). Therefore, 
evaluation of spatial variability of the metals in 
soil of the mining area is essential for better 
understanding of the relationship between the 
variables, and for successful land management 
after closure of the mining operation (Burgos et 
al., 2008). 
 

One of the consequences of soil pollution due 
to mining is health complications such as 
poisoning and subsequent death. These cases 
were reported in some mining districts in 
Zamfara State where hundreds of children died 
as a result of high blood lead level (Dooyema et 
al., 2012). This sad incidence could have been 
averted by proper understanding of levels and 
metal distributions in soil of the mining zones. 
The local miners had no idea on the metal 
levels in waste/tailings and its distribution at 
different stages of mining, thereby 
indiscriminately discarding the waste posing 
health complications to the nearby 
communities, and abandoning the excavated 
sites without future plans for rehabilitation. 
Leaching of toxic metals associated with mining 
was reported in surface and underground water 
of neighboring settlements, thereby elevating 
the metal levels far beyond recommended 
permissible limits in drinking water (Bhuiyan et 
al., 2010; Malm et al., 1990; Razo et al., 2004; 
Tiwary and Dhar, 1994). Contamination of 
agricultural soils due to mining raises the metal 
concentrations to significant levels, which could 
also be a threat to humans through food chain 
(Garcia-Sanchez and Alvarez-Ayuso, 2003; 
Sultana et al., 2016; Tembo et al., 2006). Poor 
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or lack of rehabilitation policies at mining sites 
to conserve the environment has been 
described as a challenge to developing 
countries in a recent time (Hancock, 2004; 
Lubke and Avis, 1999).  
 
The application of multivariate statistical 
analysis offers a better understanding of the 
distribution of metals, and classification of soil 
based on the metal levels (Acosta et al., 2011). 
Multivariate statistical analysis extracts 
important information from large data with 
variations, without missing useful information by 
recognizing representative parameters and 
identifying the most significant parameter 
responsible for the variation (Juahir et al., 2010; 
Juahir et al., 2011; Koki et al., 2017; Low et al., 
2016). The most commonly used multivariate 
statistical techniques in environmental studies 
are; PCA, FA, and HCA. PCA is a pattern 
recognition technique that interprets the 
variance within a large set of intercorrelated 
variables by converting them into a smaller set 
of independent variables. It provide information 
on the most significant parameters used to 
describe the entire data set  (Simeonova et al., 
2003). This technique has been used to 
evaluate the relationship between metal 
pollutants and soil properties (Borůvka et al., 
2005; Peris et al., 2008). FA is a data reduction 
technique which suggests how many variables 
are important to explain the variance in the data 
(Alkarkhi et al., 2009). The PCs generated by 
PCA are sometimes not easily interpreted, it is 
therefore advisable to rotate the PCs (eigen 
value > 1) by varimax rotation so as to reveal 
any hidden latent variable using FA (Juahir et 
al., 2011). HCA is a multivariate technique 
applied on the data set to classify objects 
(sampling sites) based on their similarities. The 
aim is to group similar objects within each 
cluster, however, the clusters are dissimilar to 
each other (Zhao et al., 2012). 
 
The objectives of this research were to 
determine the levels and metal variations in the 
soil of the mining zones, and to examine the 
distribution of the metals across the mining 
sites so as to give an idea on the safety of the 

mining waste, and rehabilitation of the mining 
zone.  
 
MATERIAL AND METHODS 
Study Area 
Preliminary surveys were conducted to give 
direction to areas at which soil/tailing samples 
were collected. Awwal is located in Fakai local 
government (Figure 1) on the southern part of 
Kebbi state between longitudes 4°45’ and 4°50’ 
E of the prime meridian and latitudes 11°35’ 
and 11°40’ N of the equator. The geology of the 
study area revealed that main ore minerals are 
gold, galena, arsenopyrite, pyrite, chalcopyrite 
and iron oxides deposits (Ramadan and Abdel 
Fattah, 2010). 
 
Sampling and Sample Pretreatment 
Soil sampling procedure involves the use of an 
auger. The instrument was used in each of the 
cases to burrow to a depth of about 20-30 cm 
of chiseled rock materials. At each sampling 
location, three sub-samples were collected, 
mixed together to form a composite sample. 
Each soil composite sample made was emptied 
into a black polyethylene-sampling bag, tied 
and labeled. The bags were double-bagged to 
reduce chances of cross-contamination of 
samples. The consciousness of knowledge of 
leaching effect was the guiding factor in the 
sampling procedure. A total of 57 samples were 
collected for analysis, weighed and grounded in 
an agate mortar. Binder (Poly Vinyl Chloride 
dissolved in Toluene) was added to the sample, 
carefully mixed and pressed in a hydraulic 
press into a pellet. 
 
Procedure for Analysis of Samples 
Mini Pal is a compact energy dispersive x-ray 
spectrometer designed for the elemental 
analysis of a wide range of samples. The 
system is controlled by a computer running the 
dedicated Mini pal analytical software. The Mini 
pal 4 version used in this study is PW4030 x-
ray spectrometer, which is energy dispersive 
microprocessor controlled analytical instrument 
designed for the detection and measurement of 
elements in a sample (solids, powders and 
liquids). The prepared pellet was loaded in the 
sample chamber of the spectrometer and 
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voltage (30kv max.) and a current (1mA max.) 
is applied to produce the x-rays to excite the 
sample for a preset time 30 min. The spectrum 
from the sample was analyzed to determine the 
concentration of the elements in the sample 
(Tursunov et al., 2015; Isah et al., 2017). 

Statistical Analysis 
Descriptive statistics and analysis of variance 
(ANOVA) was carried out using MS Excel 2010, 
while JMP Pro 12 was used for the multivariate 
statistical analysis. 

 

 
 

Figure 1. Map of the study area showing sampling location 
 
RESULTS AND DISCUSSION 
The statistical summary of studied metals in soil 
samples is presented in Table 1. The mean and 
standard deviation is displayed for the three 
sample locations. The results of ANOVA 
showed a significant difference (P < 0.05) 
indicating notable differences in mean metal 
concentration of the soils. The concentration of 
Si was significantly the most dominant, while 
Cu concentration was the least. High Si 
concentration could be attributed to high 
percentage natural abundance, which 
accounted for about 28% of the earth crust (Ma, 
2005; Martin, 2013), it is considered inert and 
essentially non-toxic (Nielsen, 2009). Rb was 
also very high in the soils under study, and 
considered non-essential for any living 
organism. Other metals of much concern are 
As and Pb which are very toxic to humans and 
potential carcinogen (Kalia and Flora, 2005). 
Soil samples at the milling shed contains higher 
concentration of As, while Pb was higher at the 

sedimentation zone. The values of these metals 
reported in this study were alarming, and are 
significantly higher than permissible 
concentrations in soil based on risk of exposure 
(Dudka and Miller, 1999). 
 
A clear metal distribution at the sites is clearly 
shown in Figure 2 using PCA biplot indicating 
that mining cafe has the highest variation of 
most metals studied. Three significant PCs with 
eigen value > 1 were extracted with a total of 
81.69% of the total variance in the soil data set 
(Table 2). The first principal component (PC1) 
accounting for 49.20% of the total variation in 
the entire data set and is strongly loaded with 
Fe, K, Al, and Ti. These are metals 
representing high percentage abundance in the 
mining area with respect to natural geological 
distribution. The second PC accounting for 
22.40% of the total variance was dominated 
with toxic metals As and Pb from the mineral 
ore under exploration (Da Silva et al., 2004). 
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These metals are not required by organisms 
and obvious source of contamination to the 
environment, hence the need to properly 

discard the mining waste. The third PC was 
much correlated to As and Al which represent 
metals associated with ore variability. 

 
Table 1. Mean metal concentration in soil samples at Awwal mining site (x104 ppm) 

Element 
Milling Shed 

(MS) 
Mining Cafe 

(CS) 
Sedimentation 

Zone (TS) 

Al 2.40 ± 0.50 6.02 ± 0.86 1.88 ± 0.86 
Si 37.58 ± 1.92 26.32 ± 5.49 38.40 ± 5.15 
K 1.49 ± 0.26 5.46 ± 1.93 2.04 ± 0.78 
Ti 0.17 ± 0.02 0.97 ± 0.57 0.66 ± 0.15 
Fe  4.57 ± 1.88 7.80 ± 4.76 2.11 ± 0.51 
Cu 0.09 ± 0.02 0.06 ± 0.02 0.05 ± 0.02 
Rb 8.59 ± 3.20 6.27 ± 5.49 20.11 ± 7.49 
Rh 0.45 ± 0.17 0.73 ± 0.27 0.67 ± 0.35 
Pb 1.70 ± 1.12 1.75 ± 0.35 2.86 ± 0.91 
As 0.31 ± 0.15 0.19 ± 0.09 0.09 ± 0.06 

 

 
 

Figure 2. Bi plot of elemental distribution at the Awwal mining site 
 

 
Figure 3. Scree plot 

 
A scree plot was used to give visual support in 
selection of the appropriate number of PCs to 
be retained. The sharp elbow bent determine 
the number of significant PCs, other 
subsequent PCs are not considered (Shiker, 
2012). The elbow point was noted at the third 
component as shown in Figure 3.  
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Table 2: Principal component loadings of 10 
variables on the significant PCs in Awwal 
mining site  

Variables PC1 PC2 PC3 

As 0.14 0.50 0.39 
Cu 0.16 0.55 0.13 
Fe 0.38 0.10 0.23 
K 0.37 -0.31 0.19 
Pb 0.25 0.39 -0.19 
Rb 0.28 0.04 -0.75 
Rh 0.27 0.15 -0.09 
Si -0.43 0.06 0.20 
Al 0.33 -0.33 0.31 
Ti 0.39 -0.24 0.08 

Eigen Value 4.92 2.24 1.00 

Variability (%) 49.20 22.40 10.09 

Cumulative (%) 49.20 71.60 81.69 
Bold PC loading are significant (> 0.30) 

 
The results of the rotated factor loading (Table 
3) revealed that first VF explained 55.26% of 
the total variance and was best represented by 
Fe, K, Al, Ti. This factor represents metals high 
percentage abundance in the earth crust. VF2 
had a strong loading on As, Cu, Fe, and Pb and 
explained 23.59% of the total variance. As and 
Pb are of much environmental concern, and are 
usually associated with the local gold mining in 
the area (Koki et al., 2017). This implies that 
soil and tailings in the zones under study 

should be properly discarded and the 
excavated sites rehabilitated to avoid metal 
leaching to underground water. Cu and Fe 
could possibly be influenced by weathering and 
leaching of rocks. VF3 explained 10.42% of the 
total variation with a strong positive loading on 
Rb and negative loading on Si which could be 
due to differences in the geogenic distributions 
of the metals in the soils. 
 
Table 3:. Factor loadings of 10 variables on the 
significant varimax-rotated PCs in Awwal 
mining site 

Variables VF 1 VF 2 VF 3 

As 0.01 0.81 -0.06 

Cu -0.05 0.87 0.10 

Fe 0.67 0.55 0.17 

K 0.96 -0.02 0.16 

Pb 0.11 0.64 0.45 

Rb 0.20 0.08 0.94 

Rh 0.34 0.41 0.29 

Si -0.74 -0.26 -0.61 

Al 0.93 -0.05 0.02 

Ti 0.91 0.07 0.29 

Eigen Value 4.84 2.07 1.01 

Variability (%) 55.26 23.59 10.42 

Cumulative (%) 55.26 78.85 89.27 

Bold VFs are significant (> 0.50) 
 

 
 

Figure 4: Two-way HCA of the metals in soil samples 
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Application of two-way HCA using ward’s 
method shows grouping among the sites with 
the corresponding metal concentrations in 
Figure 4. The samples were grouped into two 
major clusters 1 and 2; cluster 2 was further 
grouped into two sub clusters. Cluster overlap 
was observed in cluster 2 which could be 
attributed to unequal distribution of the metals 
at some locations in the mining sites. Many 
researchers reported differences in mineral 
compositions of soil and ores at various 
locations (Alloway, 2013; Naldrett et al., 1982; 
Paul, 2014). It can be inferred from Figure 4 
that mining zone contains dominantly K, Ti, Al, 
Fe and Rb which are metals with natural 
percentage abundance. Milling shed under 
cluster 2 contains As, Pb, and Cu associated 
with the mineral ores. Sedimentation zone 
contains the least metal loadings, but with 
strong Si concentrations attributed to the 
natural abundance in soils. The distribution of 
the metals under study reveals that soil 

samples in sedimentation zone though contain 
the highest Pb concentration is less polluted 
with other metals, followed by milling shed, and 
the most polluted is soil sample from mining 
café. HCA is therefore a good approach for the 
evaluation of pollution distribution among 
different groups (Koki et al., 2018). 
 
The correlation matrix of metals obtained in soil 
from three zones in the mining site was 
examined. A strong positive correlation was 
observed between As, Cu, and Pb, while Si has 
strong negative correlation with Fe, K, Pb, Rb, 
Rh, Al, and Ti. This indicates that Si and toxic 
metals associated with mining share different 
origin sources. Metals such as Pb, Cu and As 
occur in combination with other minerals in the 
ore (Acosta et al., 2011). Al and Ti have a 
strong positive correlation with Fe and K. The 
correlation between the metals is further 
supported with the findings of PCA and FA 
(Table 2 and Table 3).  

 
Table 4: Correlation matrix of selected elements in soil at Awwal mining site 

         As     Cu     Fe      K      Pb       Rb       Rh       Si       Al     Ti 

As 1.00          
Cu 0.68 1.00         
Fe 0.36 0.40 1.00        
K 0.01 -0.01 0.57 1.00       

Pb 0.59 0.46 0.54 0.12 1.00      
Rb 0.03 0.17 0.31 0.35 0.49 1.00     
Rh 0.12 0.55 0.49 0.41 0.23 0.35 1.00    
Si -0.19 -0.23 -0.73 -0.79 -0.55 -0.75 -0.52 1.00   
Al 0.05 -0.13 0.54 0.91 0.15 0.21 0.22 -0.72 1.00  
Ti 0.03 0.05 0.75 0.92 0.23 0.47 0.42 -0.85 0.78 1.00 

 
CONCLUSION 
The distribution of metals in Awwal mining site 
has been successfully analyzed using 
multivariate analysis. The results revealed 
variations in metal distribution among zones 
under study which is attributed to the 
differences in natural percentage abundance, 
and mineral composition of the targeted ore. 
PCA identified the variations and sources of the 
metals at the mining site, with dominance of Al, 
Fe, K and Ti, and toxic metals As and Pb. The 
result of factor analysis justifies the metal 
sources and variations. HCA categorizes the 
soil samples into two clusters with mining cafe 

in cluster 1, while milling shed and 
sedimentation zone formed separate group in 
cluster 2. Some metals show strong correlation 
with other metals signifying the same origin. 
Hence, the chemometric techniques applied in 
this study identified the possible source of the 
metals and there various distributions making 
the rehabilitation, remediation and management 
of the mining soil and wastes easier. These 
results serves as part of the preliminary data on 
the area upon which baseline data can be 
developed for the region under study, 
furthermore, it should be considered for future 



Nigerian Journal of Basic and Applied Science (June, 2019), 27(1): 17-24 
 

23 

planning of the environmental monitoring by 
government and other enforcement agencies.  
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