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ABSTRACT 
Interval between births plays an important role in maternal health as well as child health.  This study 
applies the methodology of Flexible parametric survival models to data on successive births among 
Nigeria women using the dataset from 2018 National Demographic Health survey. The flexible 
parametric survival model with Weibull baseline distribution was found to be the best among other fitted 
baseline distributions. The factors, zone of residence, educational qualification, religion, economic 
status and age at first birth were found to be significant in predicting the birth intervals. It was found that 
random effect parameter indicates that the interval between successive births is similar from the same 
woman. 
Keywords: Birth intervals, Baseline hazard, Mixed effect, Flexible parametric model, AIC. 

 
INTRODUCTION 
In improving both the maternal and child health, 
birth spacing plays a crucial role and it is also 
an essential factor in family planning and fertility 
control (Adhikari, 2010). Birth interval is the 
period between successive live births 
(University of Florida, 2008; John and Kristin, 
2019). World Health Organization (WHO) and 
other international organizations recommend a 
minimum of 2-3 years interval between 
pregnancies for the benefit of maternal health 
and reduction in child and infant mortality. 
United State Agency for International 
Development (USAID) suggests that a longer 
interval of 3-5years might be more beneficial 
(WHO, 2018).  
 
Both very short and very long inter-birth 
intervals are associated with health challenges 
for both the mother and the child (Grundy and 
Kravdal, 2014). Findings have revealed that 
short birth intervals, which are less than 24 
months are linked to health issues which 
include maternal morbidities such as uterine 
rupture and utero-placental bleeding disorders 
in the women and low birth weight, pre-term 
birth, small-for-gestational age, stunting growth 
in the babies (Kozuki et al., 2013; Kozuki and 
Walker, 2013; Fotso et al., 2013; Adekanmbi et 
al., 2012; Davanzo et al., 2008; Conde-Agudelo 
et al., 2006; Conde-Agudelo et al., 2007; 

Rustein, 2002). A very long birth interval 
influences increased risk of pre-eclampsia 
(Conde-Agudelo, 2012). Moreover, studies 
found that the risk of pre-eclampsia significantly 
increased between 10% to 12% for each 1-year 
increase in inter-pregnancy or birth interval 
since the first delivery (Skjaerven, et al., 2002).  
Aside from the health challenges that short birth 
interval poses, it also accelerates population 
growth and weakens developmental efforts. It 
limits the involvement of women in the 
economic development of their environment 
and their country at large thereby making them 
become less productive members of the society 
(Hailu et al., 2014). The population of Nigeria as 
at November 2019 was estimated at 
203,021,855 based on Worldmeters elaboration 
of the latest United Nations data which is 
equivalent to 2.6% of the total world population 
and fertility rate of 5.67 (Worldmeters, 2019). 
Fertility plays an important role in the 
component of population dynamics as it 
changes the size and structure of any 
population (Ayanaw, 2008; Yohannis et al., 
2003). Hence, this study aimed to examine birth 
intervals and its associated factors among 
women of reproductive age in Nigeria using the 
parametric multilevel mixed-effect survival time 
model. 
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MATERIALS AND METHODS 
Multilevel Mixed Effects Survival Models 
In many practical settings, clustered survival 
data are often observed. A typical application is 
the case of a recurrent event, where an 
individual experienced the event of interest in 
multiple times in the course of the follow-up 
time (Gutierrez, 2002). In meta-analysis, 
analysing the individual patient data Individual 
patient data (IPD) simultaneously within a 
hierarchical structure allows a direct adjustment 
for factors and inclusion of non-proportional 
hazards in covariate effects (Tudur-Smith et al. 
2005; Crowther et al., 2012; 2014). Other forms 
of clustering include the case of individuals 
living in the same area such as geographical 
location or patients treated in the same hospital 
or by the same medical practitioner. Such 
individuals may share the same unobserved 
features, such as environmental influence or 
medical care access (Charvat et al., 2016).  
 
Multilevel Mixed Effect Parametric Survival 
Models 
Consider the case of a study of G-independent 

clusters,         (e.g. individuals with 
repeated events or Hospital, study centres), 

with each cluster having          events or 
individuals. Tij denotes the survival times for 

individual   from group   and     is the 

corresponding right censoring time. Let    be 

the observed survival time for the    individual 

or event in the    cluster or individual, 
assuming the censoring times are independent 
of the survival times, the observed times are 

        (       ) and the censoring 

indicator      {       }
 which takes the value 

of 1 if the event has occurred and 0 if 
otherwise. For each subject, we observe the 

explanatory variable,    .  

 
Application to Data on Birth Interval 
Dataset on repeated five successive birth 
intervals for 11952 women, aged 15-49 from 
the 2018 Nigeria Demographic and Health 
Survey (NDHS) were analysed. Only women 
who already have five successive births were 
considered and therefore, there were no 
censored observations. The birth intervals were 

recorded in months and the methodology of 
Flexible parametric survival model was applied. 
Permission to use data from NDHS (2018) was 
obtained through online registration with Macro 
International Incorporation via the DHS website 
(www.measuredhs.com).  
 
The outcome of interest is the interval between 
five successive births, each woman considered 
have experienced five consecutive births with 
four intervals resulting in a total of 47808 
events. Each woman was considered as 
random because of the repeated birth intervals 
(events) measured. The geopolitical zone, 
religion, highest educational qualification, 
economic status and respondent age at first 
birth (demographic and economic factors) were 
considered as explanatory variables. In order to 
have three categories for the Economic Status 
variable, the “poorest‟ and “poorer”, from 
wealth index in NDHS data were combined as 
“poor”, “middle” remained as “middle” while 
“richer” and “richest” were combined as rich. 
The two major religions being practiced were 
considered as Christianity and Islam while the 
educational qualification was categorised as No 
education, Primary, Secondary and Higher. The 
geopolitical zones in the country are North-
Central, North-East, North-West, South-East, 
South-South and South-West, respectively 
while the location of residence is classified as 
Urban and Rural. The age at first birth is a 
continuous variable  
 
The overall aim is to fit the Flexible parametric 
survival model with different baseline 
parametric distribution. Model assessment was 
based on Akaike Information Criterion (AIC), 
(Akaike, 1974) given as: 
 

2 2AIC logL p    

Where logL is the log likelihood and p is the 
number of parameters in the model. A model 
with lower AIC is preferred. 
 
Ethical Approval  
Permission to use data from NDHS 2018 was 
obtained through online registration with Macro 
International Incorporation via the DHS website 
(www.measuredhs.com). Respondent 

http://www.measuredhs.com/
http://www.measuredhs.com/
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confidentiality was intact as no names and 
addresses were included in the data set and 
therefore the respondents cannot be identified 
by the researcher. 
 
The Proportional Hazards Parametric 
Survival Model 
The Cox proportional hazards mixed effect 
survival model is expressed as                                        

   ( )    ( )   ( 
       

    ) (1) 

(Yamaguchi, 2002). 
 

where   ( ) is the specified baseline hazard 
function of any of the distributions; exponential, 
Weibull or Gompertz, lognormal or log-logistic. 

β is the fixed effect and    is the random effect, 

the random effects are assumed to follow a 
multivariate normal distribution, with 

    (   ). 

 
Flexible Parametric Model 
Royston and Parmar (2002) provided the 
flexible parametric model as an alternative to 
the traditional proportional hazard. It has the 
potential for handling repeated event data. It 
was modelled on the cumulative hazard scale 
and extended by Crowther et al. (2014) to 
incorporate random effects. The flexible 
parametric model is given as;  
 
   ( )    ( )   [   

      
   ] (2) 

 
If expressed in log, the model becomes; 
 
   [   ( )]     ,  ( )-     

      
    (3) 

 
Where β is the fixed effect, bj is the random 

effect and  ( )is the cumulative baseline 
hazard function. The spline basis is derived 
from the log cumulative hazard function of a 
Weibull proportional hazards model. The 
restricted cubic splines were used to relax the 
linear relationship with log time Royston and 
Parmar (2002) and Royston and Lambert 

(2011). Therefore, the restricted cubic spline 

function of    ( ), with knots   , as 
 *   ( )     +. With K knots if      ( ) 
is written as: 
 

 (      )                 
         (4). 
 

with derived variables   (basic functions) and 

parameter vector γ, where; 
 

         (5) 

   (    ) 
 
   (      ) 

  

(    )(      ) 
   (6). 

 

for          , (    ) 
 

is equal to 

(    )
 
if the value is positive and 0 

elsewhere, and 
 

   
       

         
 (7). 

 
This is now substituted for the log cumulative 
baseline hazard in equation (3). 
 

   [   ( )]       (   ( )      )  

   
     

     (8) 

 
Transforming the hazard and survival scales, 
we have; 
 

   ( )  0
 

 

  (   ( )     )

    ( )
1    (   ),

    ( )     [    (   )] (9) 

 
The proportional cumulative hazard is assumed 
in equation (3). Crowther et al. (2014). 
 
Table 1 presents some probability distributions 
with their survival, hazard and cumulative 
survival functions. 
 

 
 
 
  



Adeniyi et al. Factors Determining Birth Intervals: A Multilevel Mixed Effect Parametric … 
 

32 

Table 1: Probability distribution, survival, hazard and cumulative hazard functions of the parametric 
distributions 

DISTRIBUTIONS PROBABILITY 
DISTRIBUTION 

FUNCTIONS 

SURVIVAL 
FUNCTIONS 

HAZARD 
FUNCTIONS 

CUMULATIVE 
HAZARD 

FUNCTIONS 

Exponential                 

Weibull                              

Gompertz       
 

 
(     )

   
 

 
(     )

       

 
(     ) 

Log-logistic   (  )   

(  (  ) ) 
 

 

  (  ) 
 

  (  )   

  (  ) 
 

  ( 
 (  ) ) 

Lognormal  

√    
 
 

(  ( )  ) 

    
 

  4
   ( )   

 
5 

 

  
 .

   ( )  

 
/

   .
   ( )  

 
/

 

 

Gamma           

 ( )
 

    (  )           

(    (  )) ( )
 

 

 
Likelihood and estimation 
Under the mixed effect survival models, the 

likelihood for the     cluster is defined as; 
  

   

∫ 0∏  (            )
  
   1 (    )   

 

  
  (10) 

With parameter vector θ, under a hazard model 

 (            )  

 (   )
   

   0 ∫  (   )
   

 
1 (11). 

 

With  ()defined in eq. (1). Assuming 
proportional hazards under the flexible 
parametric survival model; 
 
 (            )  

[{
 

   

  (   (   )     )

    (   )
}    (   )]

   

   {    (   )}

 (12) 

The random effects are assumed to follow a 
multivariate normal distribution  

 (    )  (     ) 
 

 ⁄    2 
  
     

 
3

 (13). 
 
Where V is a variance-covariance matrix and q 
is the number of random effects. Due to 
possibly multi-dimensional integral, the integral 
in equation (10) is analytically intractable and 
therefore, requires numerical techniques for its 
evaluation. 
 
RESULTS AND DISCUSSION 
Firstly, the Flexible parametric survival model 
was fitted with exponential, Weibull, lognormal, 
loglogistic and gamma baseline distributions. 
The results showing values of AIC of the 
models are presented in Table 2.  

 
Table 2: The values of the AIC for Flexible parametric survival models with different baseline distribution 

BASELINE HAZARD DISTRIBUTION LOG LIKELIHOOD AIC 

Exponential -214910.5 429847.1 
Weibull -34800.38 69630.75 

Lognormal -192239.7 384509.3 
Log logistic -191798.9 383627.8 

Gamma -193777.2 387584.3 

 
As observed from Table 2, Flexible parametric 
survival model with Weibull baseline hazard 
distribution has the least AIC value and 

therefore performed best compared to other 
baseline hazard distributions. Further 
discussions of effects of the observed factors 
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on birth intervals are therefore based on the 
model with the least AIC value. 
The estimates of the hazard ratio and p-values 
for Flexible parametric survival model with 
Weibull baseline hazard distribution are 
presented in Table 3. From the p-values, all the 
factors considered were found to be significant 
in explaining the variation in the interval of 
successive births in women. The birth intervals 
were measured in months, therefore, the 
hazards increased or decreased by the hazard 
ratio in months. It was observed that the hazard 
ratio increased with 0.0271 as the age 
increased. Findings from EDHS showed similar 
conclusion (EDHS, 2011). For the different 
zones of residence, hazard increased with 
0.2053, 0.3011, 0.3191 and 0.0813 for women 
from North-east, Northwest, South-east and 
South-south, respectively compared to women 
from the North-central but the hazard 
decreased by 0.1454 for women in the South-
west compared to women from the North-
central. 
 
Also, for the highest educational qualification, 
the hazard for women with secondary education 
increased by 0.0447 compared to women with 
no education while the hazard decreased for 
women with primary and higher education with 
0.046 and 0.1196 respectively compared to 
women with no education. The findings on the 
educational qualification as a determinant of 
birth interval are consistent with findings of 
Abdurrahman and Majid (2007), Youssef (2005) 
and Yohannes et al. (2011). The economic 
status shows that the hazard of women 

decreased by 0.0463 and 0.095 for women 
whose economic status was middle and rich, 
respectively compared to women whose 
economic status was poor. The findings on 
economic status are similar with the result of 
the study conducted in Ethiopia which revealed 
that the length of birth interval increased with 
increasing economic status (Yohannes et al. 
2011). The hazard of Christian women 
decreased by 0.1959 compared to Muslim 
women. 
 
The estimated frailty standard deviation is 
0.5699 (95% CI: 0.5545, 0.5858), indicating a 
non-heterogeneous baseline hazard function 
which implies that the interval between 
repeated births from a woman is similar. 
 
CONCLUSION 
Findings of this study reveal Akaike Information 
Criterion (AIC) indicate Flexible parametric 
survival model with Weibull baseline hazard 
distribution was best to describe the recurrence 
of birth in individual woman. All the factors 
considered were found to influence the interval 
between births.  In estimating the random effect 
parameter, it was revealed that the intervals 
between successive births are similar from the 
same woman, which implies that repeated birth 
intervals from the same woman are 
homogenous. Therefore, the childbirth spacing 
is dependent on the individual woman and the 
intervals between successive births from the 
same woman are similarly spaced.    
 

 
Table 3: Hazard ratio, p-value and 95% confidence interval of the hazard ratio of flexible parametric 
survival model with Weibull baseline 

FACTORS HAZ. RATIO (S.E) P-VALUE 95% C.I 

Age at first Birth 
Age 1.0271(0.0022) <0.0001   1.0227     1.0314    
Zone 
North-East 1.2053(0.0295) <0.0001 1.1488     1.2646 
North-West 1.3011(0.0308) <0.0001 1.2422     1.3629 
South-East 1.3191(0.0399) <0.0001 1.2431     1.3997 
South-South 1.0813(0.0348) 0.0150 0.8041     0.9082 
South-West 0.8546(0.0265) <0.0001 0.8042     0.9082 
Highest Educational Qualification 
Primary 0.9540(0.0197) 0.0230 0.9161     0.9935 
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Secondary 1.0447(0.0256) 0.0750 0.9956     1.0962 
Higher 0.8804(0.0363) 0.0020 0.8121     0.9545 
Economic Status 
Middle 0.9537(0.0182) 0.0130 0.9186     0.9901 
Rich 0.9050(0.0185) <0.0001 0.8694     0.9421 
Religion 
Christian 0.8041(0.0183) <0.0001 0.7691     0.8407 
Constant 0.0001(0.0000) <0.0001 0.0001     0.0001 
Random Effects        
Random Effects 
Parameters  Estimate Std. Error 95% C.I 
Woman 0.5699 0.008 0.5545     0.5858 
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