
*Available online at http://www.ajol.info/index.php/njbas/index
Nigerian Journal of Basic and Applied Science (June, 2021), 29(1): 43-48

DOI: http://dx.doi.org/10.4314/njbas.v29i1.5

ISSN 0794-5698

Comparative Analysis between Selection Sort and Merge Sort Algorithms

*1A. M. Rabiu, 2E. J. Garba, 3B. Y. Baha and 4M. I. Mukhtar
1Computer Science Department, Federal University, Dutse, Nigeria

2Computer Science Department, Modibbo Adama University of Technology, Yola, Nigeria
3Department of Information Technology, Modibbo Adama University of Technology, Yola, Nigeria

4Department of Software Engineering, Bayero University, Kano, Nigeria
[*Corresponding Author: E-mail: mambas86@fud.edu.ng; : +2348036408434]

43

F
u

ll
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

ABSTRACT
Sorting and merging are two problems that commonly arise in Computer Science especially in data
processing tasks. To solve these problems, several algorithms have been developed. Similarly, existing
merge and sorting algorithms have been improved to provide more efficient and accurate results. In this
paper, selection and merging algorithms were developed on an octa-core processing machine using
System.nanoTime methods in Java in order to compare their running times. The results obtained show
that Merge Sort performs far better than selection sort with careful implementations by taking advantage
of multiple processing cores in the test machine and some concurrency utility in Java. It was concluded
that implementing algorithms using a machine with multiple numbers of cores in their Central Processing
Unit (CPU) will result in a significant improvement in the performance of both algorithms.
Keywords: Algorithms, Concurrency, Machine, Merging, Running Time, Sorting.

INTRODUCTION
Two of the common problems in data
processing and computer science, in general,
are sorting and merging algorithms. Sorting
refers to the arrangement of data in statistical
order either in increasing, decreasing or
lexicographical order while merging on the
other hand employs a divide and
conquer approach to sort a given array of
elements (Rabiu et al., 2018; Robert, 2002).
There are many merging and sorting algorithms
that have been developed to solve the
problems of merging and sorting large data. So
also older sorting and merging algorithms have
been improved upon to lower their running
times and increase their speed to make them
more efficient (Rabiu et al., 2018). Some of the
sorting algorithms were developed as non-
comparison-based sorts and it was further
established that quicksort is a better sorting
algorithm than selection sort (Robert, 2002).

Performance of quicksort is better than that of
selection sort (Thomas et al., 2004) and Shell
sort was far better than selection sort (Adhikari
and Pooja, 2007; Muhammad et al, 2017;
Göetz et al., 2006). Linear search is also known
as a sequential searching algorithm while
binary search, in contrast, is based on the
divide and conquer approach (Knuth, 1997;

Zhuoer et al. 2011; Zongli, 2010; Sengupta,
2007). The time complexity of linear search was
in the order of O(n) while that of binary search
is in the order of O(log n) (Knuth, 1997; Thomas
et al., 2004; Ankit and Chadha, 2014; Mishra
and Garg, 2008). Different parallel algorithms
for linear algebra were explained and the
results show that performance improvement
could be achieved by careful implementation of
some parallelization techniques (Aleksandar,
2014).

To show how the performance improvement
could be achieved two concurrency frameworks
namely: “ServExecSort” and “NaïveParallelSort”
were compared on multi-core machines. The
results show that the “ServExecSort framework”
performs far better than “NaïveParallelSort”
(Rabiu et al., 2020). Some selected machine
algorithms used to predict cardiovascular
disease were surveyed and their performances
were compared. Investigation on the 18 types
of research so far conducted shows that
Decision Tree (DT)-J48 NB (Naïve Bayes) NB,
and Support Vector Machine (SVM) appeared
more frequently with RF having the least
frequency. It was concluded that no single
algorithm would be generalized to be the best in
Cardio Vascular Disease (CVD) prediction
(Yahaya et al., 2020). Multicore processors can

Rabiu et al. Comparative Analysis between Selection Sort and Merge Sort Algorithms

44

be used to improve the performance of
concurrent applications (Kaya, 1995; Ganesh
and Sondhi, 2018). Most of the literature
reviewed focused on measuring the
performance of algorithms by considering some
factors such as memory space and time
complexities only to measure their
performances, failing to take full advantage of
multi-core processors and newer concurrency
mechanisms to develop and improve the
performance of these algorithms. To fill in the
gap, this paper took advantage of multiple
processing cores in an octa-core machine to
measure the running times of selection and
merging algorithms to compare their running
times so as to establish co-relation between the
numbers of processing cores and the
performance gain.

MATERIAL AND METHOD
Hardware Specifications
The following hardware specifications were
used for benchmarking in this paper. Firstly, a
single-core computer with 1.5Hz Core,
Windows 7 Operating System 32bits (OS) was
used to develop and run the program. That
gave us the basis for comparison with the
results obtained using machines with a higher
number of processing cores. Computer with
eight processing cores in its CPU was then
used on Windows 8, 64 bits Operating System,
having a frequency of 1GHz each, 2GB (64bit),
Disk space 20GB (64bit) to develop the two
algorithms of choice.

Software Specifications
Concurrency Tools
All concurrency mechanisms used to develop
the algorithms in this paper were those
provided by the Java programming language.
They included a thread pool for the creation and
management of threads, a framework for
asynchronous and synchronizations of threads
and task executions such as counting
semaphores, lock, atomic and condition
variables.

Java Development Kit (JDK)
The JDK 10 version was used in the
development of the two algorithms in this paper.
They were found to be more efficient than the
previous version of JDK because of the new
features included that could be fully utilized to
achieve good results.

Array Data Structure
The data structure used in this research is the
array data structure as shown in Table 1. An
integer was generated to fill the array with data.
This structure contained an array size ranging
from 5000 to 70,000. The increase in the
number of test runs is to minimize the effects of
background programs that can affects
measurement thereby minimizing the
overheads.

Table 1: Defined array data structure

NO OF RUNS ARRAY SIZE(N)

1000 5,000
2000 10,000
3000 20,000
4000 30,000
5000 40,000
6000 50,000
7000 60,000
8000 70,000

Data Generation
Having defined the size of the array, it was then
filled with the appropriate data type suitable for
merging and selection of elements.32-bit
integer was used in this paper. This is because
int (integer) in Java can contain positive values

(-1) ranging from 1 to about 2.1 billion and
was found to be more appropriate with defined
array structure used in this paper.

Algorithm Benchmarking
Two built-in functions are mostly used to
measure the start and the end time in java.
Namely: System.currentTimeMillis() and
System.nanoTime() methods. Since this paper
is interested in measuring the running time of
algorithms only, System.nanoTime() method
was the method used to measure the running
times of both the merging and selection

Nigerian Journal of Basic and Applied Science (June, 2021), 29(1): 43-48

45

algorithms. System.nanoTime() gives more
precise results suitable for comparison.

Selection Sort Algorithms
Selection sort is one of the comparison-based
sorting algorithms. It checks an array of
elements and tries to find the smallest element
in the array. It then exchanges the smallest
element with the element in the first position.
After finishing this step, this algorithm tries to
select the smallest element from the unsorted
part of the array after each iteration is carried
out. It then exchanges the selected smallest
element with the element in the unsorted part of
the array. This process continues until all
elements in the array are completely sorted
(Aliyu and Zirra, 2013; Mishra and Garg, 2008).

Pseudo-code of Selection Sort according to
Insertion Sort (2019)

Performance Analysis of Merge Sort
Merge Sort employs the “divide and
conquer approach” to sort a given array of
elements. “It works by dividing the input array
into two halves, and then merge-sort recursively
calls itself for the two halves and merges the
result of the two sorted halves” (Geeks for
Geeks, 2019).

RESULTS
Performance Analysis of Selection
Running time of selection sort algorithm using a
different number of array sizes and test runs is
shown in Table 2. For each array size number
of runs was repeated several times. The
number of run was varied as the size of the
array increases. The reason for doing this is to
minimize the effects of the background program
in our measurements and to summarize the
collections of test runs by a single typical value
suitable for comparison.

Table 2: Running times of selection sort
algorithm

NO OF
RUNS

ARRAY
SIZE(N)

RUNNING
TIME(SEC)

1000 5,000 0.392
2000 10,000 0.712
3000 20,000 2.140
4000 30,000 4.765
5000 40,000 9.182
6000 50,000 13.311
7000 60,000 19.302
8000 70,000 23.465

Figure 1: Running times of selection sort

algorithm

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 2 3 4 5 6 7 8

A
rr

ra
y

Si
ze

Running Times (sec)

Array
size(n)

Running
time(sec)

“Merge-Sort (arr [], l, k), If k> l

 Step 1: Determine the middle element so as

to dividethe array into two halves

 Middle M = (l+k)/2

 Step2: Call the Merge-sort for the 1st half:

 Call the merge-sort (arr, l, M)

 Step3: Call the Merge-sort for the 2nd half:

 Merge-sort (arr, M+1, k)

 Step 4: Merge the two sorted halves in step

2 and step 3:

 Call the Merge (arr, l, M, k)”

 (Geeks for Geeks, 2019)

i ← 1

while i < length(A)

j ← i

while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]

j ← j - 1

end while
i ← i + 1

end while

https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/

Rabiu et al. Comparative Analysis between Selection Sort and Merge Sort Algorithms

46

Table 3: Running times of merge sort
algorithms

NO OF
RUNS

ARRAY
SIZE(N)

RUNNING
TIME(SEC)

1000 5,000 0.019
2000 10,000 0.040
3000 20,000 0.073
4000 30,000 0.134
5000 40,000 0.170
6000 50,000 0.192
7000 60,000 0.205
8000 70,000 0.512

Figure 2: Running times of merge sort algorithm

Table 4: Performance comparisons between

selection sort and merge sort algorithms
ARRAY
SIZE

 RUNNING TIME
OF SELECTION
SORT (sec)

RUNNING TIME
OF MERGE
SORT (sec)

 5,000 0.392 0.019
 10,000 0.712 0.040
 20,000 2.140 0.073
 30,000 4.765 0.134
 40,000 9.182 0.170
 50,000 13.311 0.192
 60,000 19.302 0.205
 70,000 23.465 0.512

DISCUSSION
From Table 2, and Figure 1, it is noticeable that

the running times of selection sort increase as

the size of the array. This is in accordance with

the findings of Rabiu et al. (2018). Therefore, it

can be observed that the times it takes to sort a

given element in the array are dependent upon

the number of elements within the array using

selection sort

Figure 3: Performance of selection sort and

merge sort algorithms
When the array sizes sorted were around
10,000 the time taken is 0.712s and when the
array size increases to 20,000 the time taken to
sort the given array increases to 2.140s. The
difference between the two sorting times is
1.428s which is almost 1.5 times. It can also be
observed that when the array size increases
from 30,000 to 40,000 elements with the
corresponding running time of 4.765s and
9.182s respectively, the difference between the
two running times is approximately four times.
Unfortunately, when the size of the array is
doubled, the time required for sorting it with
selection sort increases four times, making it
less effective.

Therefore, increasing the size of the array by a
factor of 2 will lead to the corresponding
increase in the sorting times by a factor of 200
using selection sort. These can be observed
from the results obtained in Table 2 and Figure
1 respectively. From Table 3, Figure 2, Table 4,
and Figure 3 it can be similarly observed that
the merging sort algorithm exhibits better
performances on both smaller and larger array
sizes as compared to the Selection sort
algorithm throughout the sorting process. This
is in agreement with the findings made by
Rabiu et al. (2020) and Aliyu and Zirra, (2013)
that the performance of algorithms is a factor of
the input size of the array. It can be seen from
Figure 4 that algorithms whose “time
complexity” is in the order of O (n log(n)) exhibit
better performances when compared with those
algorithms whose time complexity is in the

order of O() as in the case of selection sort.

0

20,000

40,000

60,000

80,000

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

e
le

m
e

n
ts

(t

h
au

sa
n

d
s)

Running Times (sec)

Array
size(n)
Running
time(sec)

0

5

10

15

20

25

5
,0

0
0

1
0

,0
0

0

2
0

,0
0

0

3
0

,0
0

0

4
0

,0
0

0

5
0

,0
0

0

6
0

,0
0

0

7
0

,0
0

0

n
u

m
b

e
r

o
f

e
le

m
e

n
ts

(t

h
au

sa
n

d
s)

Array size

Running
time of
Selection
Sort (sec)

Running
time of
Merge Sort
(sec)

Nigerian Journal of Basic and Applied Science (June, 2021), 29(1): 43-48

47

This is in line with the findings of Aliyu and
Zirra, (2013); Rabiu et al. (2018); Thomas et al.,
2004; Ankit and Chadha, 2014; Mishra and
Garg, 2008) that the order in which complexity
of a given algorithm is defined determines the
efficiency of that particular algorithm. Based on
the results obtained, and the comparisons
made so far, from Table 2, Table 3, Table 4,
Figure 1, Figure 2, and Figure 3, suppose that
both merge sort and selection sort algorithms
take 0.712s to sort an array of 10,000 elements
on the same octa-core machine. Then, it would
take about 0.712 × 150, which equals 106.8s
which is less than two minutes to sort a million
array sizes. However, it would take selection
sort more than two hours to sort the same array
elements. Hence, it is worth time and effort to
spend several hours learning about a better
algorithm no matter its complexity than using a
simpler one which could be learned in less time.

CONCLUSION
From the results obtained so far, it can be
concluded that merge sort is the better sorting
algorithm considering the size of the data sets
used throughout the experiment. Secondly,
increasing the processing core also increases
the performance of both the selection and
merge sort algorithms. It was also concluded
further that the order of complexity of an
algorithm determines its efficiency. Other
popular algorithms such as quick-sorts, heap-
sort, and insertion-sort have the potentials to
exhibit similar behaviour and performances
using the same approaches on different test
machines with a different number of processing
cores in their CPUs. Hence, these algorithms
and other popular ones deserve further
research to see if they can give the same
results when measured on different machines.

ACKNOWLEDGEMENTS
We must acknowledge the efforts and
contributions of the former Director of
Information and Communication Technology
(ICT) Federal University, Dutse, Jigawa State,
Nigeria, in the person of Prof. Ahmed Baita
Garko who despite his tight schedules took his
time to go through this, and other related
manuscripts to make some recommendations

and suggestions on how to improve on their
contents.

REFERENCES
Adhikari, P. & Pooja, A. (2007). Review of

sorting algorithms: A comparative study
of two sorting algorithms. Mississippi
State, Mississippi Press, Pp. 20-24.

Aleksandar, V. (2014). Manual parallelization
versus state-of-the-art: parallelization
techniques.

Ankit, R. & Chadha, (2014). Modified binary
search algorithm. International Journal
of Applied Information Systems,
(IJAIS), 7(13): 1-10.

Aliyu, A. M. & Zirra, P. B. (2013). A comparative
analysis of sorting algorithms on
integer and character arrays. The
International Journal of Engineering
and Science, .2(7): 25-30.

Ganesh, A. & Sondhi, G. (2018). An overview of
multi-core. International Journal of
Innovative Science and Research
Technology, 3(4): 261-263.

Geeks for Geeks. (2019). Merge sorting
algorithms. Pp.1-10. Retrieved from:
https://www.geeksforgeeks.org/merge-
sort/. Accessed 3rd Jan., 2020.

Göetz, B., Peierls, T., Bloch, J., Bowbeer, J.,
David, H., & Lea, D. (2006). Java
concurrency in practice. Addison,
Wesley Professional. Pp. 1-10.

Insertion Sort (2019). Insertion Sort. Retrived
from:
https://en.wikipedia.org/wiki/Insertion_s
ort.Accessed 23rd Mar. 2018.

Kaya, D. (1995). Parallel algorithms for
numerical linear algebra on a shared
memory multiprocessor [Doctorate
Thesis].The University of Newcastle
Upon Tyne Department of Computing
Science, 1-123.

Knuth, D.E. (1997). The art of computer
programming, sorting and searching
(3rd ed.). New York, Addison Wasley,
Pp. 395-409.

Mishra, A. D., & Garg, D. (2008). Selection of
the best sorting algorithm. International
Journal of Intelligent Information
Processing, 2(2): 363-368.

https://www.geeksforgeeks.org/merge-sort/
https://www.geeksforgeeks.org/merge-sort/
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Insertion_sort

Rabiu et al. Comparative Analysis between Selection Sort and Merge Sort Algorithms

48

Muhammad R. A., Harith Z., Farouk S., Dauda
B. (2017). Comparison of bubble sort
and selection sort with their enhanced
versions. Department of Electrical
Engineering Univeristy of Lahore,
Pakistan.1-10.

Rabiu, A.M., Garko, A.B., &Abdullahi, A.M.
(2018).Effects of multi-core processors
on linearand binary sorting
algorithms.Dutse Journal of Pure and
Applied Sciences, 2(4):130-140

Rabiu, A.M., Garba, E.G., Baha, B.Y. &
Mukhtar, M.I. (2020). Optimizing
frameworks for building more efficient
concurrent application in Java.Islamic
University Multidisciplinary Journal
(IUMJ), 7(2):348-355.

Rabiu, A.M., Garko, A.B., Abdullahi, A.M, Umar,
H.A., & Babagana, M. (2018).
Performance evaluation of three quick-
sorting algorithms on single and multi-
core processors. Dutse Journal of Pure
and Applied Sciences 2(4), 254-263.

Robert, L. (2002). Data structures and
algorithms in java (3rd Ed).Retrieved
from:http://www.resaechgate.net.Acces
sed 2nd Oct. 2018.

Sengupta, D. L. (2007). Algorithms in java
(3rded.). New York, A. Wasley, Pp. 5-
23.

Suleiman, A. K. (2013). Review on sorting
algorithms: A comparative study.
International Journal of Computer
Science and Security (IJCSS),
3(7):120-126.

Thomas, H. C., Charles, E. L., Ronald, L. R. &
Clifford, S. (2004). Introduction to
Algorithms (4th Ed.).NY: Addison-
Wesley Professional, 50-51.

Yahaya, L., Hassan, I. & Rabiu, A.M. (2020). A
survey of performance of some
selected machine learning
algorithms for cardiovascular disease
predictions. BIMA Journal of Science
and Technology, 4(1): 165-180.

Zhuoer, L., Chenghong, Z., & Yunfa, H. (2011).
Backwards search algorithm of double-
sorted inter-relevant successive trees.
Fifth International Conference on Fuzzy
Systems and Knowledge Discovery,
3(23):2-12.

Zongli, J. (2010). A tag feedback based sorting
algorithms for social search.
International Conference on System
and Informatics, (ICSAI2012),3(2): 12-
32.

http://www.resaechgate.net/

