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ABSTRACT 
Schauder’s fixed point theorem and its applications to delay differential equations (DDEs) cannot be over emphasized. In this 
work, interesting results regarding the sufficient conditions for nonoscillation of more generalized forms of DDEs are 
established and provides improvements on the results obtained in the past. However, applying the theorem and the 
characteristic equation of DDE with constant coefficients helps to determine those conditions. Lastly, to ascertain a claim 
from an existing literature for a solution that is nonoscillatory and has such larger solutions, comparison theorem is used and 
the results are found to be true. 
Keywords: Sufficient conditions, Nonoscillation, Schauder’s fixed point, DDEs 

 
INTRODUCTION 
Delay differential equations (DDEs) can be defined in 
terms of derivative of the unknown function at a certain 
time, which is for values of times given previously (Smith, 
2011). Similar definitions are found in Avci (2022); 
Hameed and Wadi (2016). DDEs’ contributions in the 
field of sciences and engineering are very significant 
(Smith, 2011). The study of Schauder’s fixed point 
theorem for DDEs received considerable attention by 
many authors recently and in the past few years. In 
general, qualitative properties of solutions to the DDEs 
and other forms of related functional differential equations 
(FDEs) are discussed extensively in the literature. For 
instance, Dahiya et al. (1984) examined the behaviour of 
solutions of linear FDEs for both oscillation and 
nonoscillation. Berezansky and Braverman (2003a) 
applied existing results to oscillatory properties of 
equations with several delays, as well as positive and 
negative coefficients integro-differential equations with 
oscillating kernels and mixed equations combined. 
Comparison theorems, an explicitly nonoscillatory and 
oscillatory results were also presented. Others include 
Candan and Dahiya (2003) who considered third order 
FDEs and then developed several theorems related to 
the oscillatory behaviour of those differential equations. 
On one hand, Grace (1994a) considered n th order 

neutral FDEs and some new criteria for the oscillation 
were established, while on the other hand, Grace (1994b) 
set some new criteria for the oscillation of FDEs with a 
middle term. Hamedani (1995) also presented an 

oscillation criterion for the n th order forced FDE. 

 
Particularly, concerning the results of Schauder’s fixed 
point theorem and applications or Comparison theorem, 
the works of Ardjouni and Djoudi (2015); Agarwal et al. 
(2004); Dix, (2013); Abasiekwere et al. (2018); Birabasa 
(2011); Candan, (2015); Berezansky et al. (2003); 
Berezansky and Braverman (2005) were considered. 
Others include Chu and Torres, (2007), Górniewicz and 
Rozploch-Nowakowska, (1996); Kumlin (2004); 
Berezansky and Braverman, (2003b); Browder (1977), 
Bonsall, (1962); Ŝeda, (2000); El-Morshedy and Grace 
(2005); Karpuz and Ŏcalan (2010); Wang et al. (2002); 

Das and Panda, (2011); Džurina, (1995); Mahfoud, 
(1979); Haddock et al. (1988); Baculiková and Džurina, 
(2013). Finally, Vazanova, (2020) used Schauder-
Tychonoff fixed point theorem to establish some results. 
This paper is focused on application of Schauder’s fixed 
point theorem to nonoscillatory properties of solutions of 
DDEs and further employed a comparison theorem to 
ascertain the claims. 
Ladas et al. (1984) applied the comparison theorem to 
the DDE 

      00,x t p t x t t t    

      1  

where   is a positive constant and  p t
 
is a  

periodic continuous function. It was remarked by Ladas et 

al. (1984) as an area of interest that for
1

K
e

 , implied 

that every solution of equation (1) is oscillatory when 

  0p t  . 

The study will establish the above hypothesis as a 
corollary to the claim done by Ladas et al. (1984) and in 
addition, consider equation (1) in a more general form as 
indicated below. 

       0

1

0,
n

i i

i

x t p t x t t t t


    

      2  

where  ip t  and  i t  are continuous functions 

such that when  
1

0
n

i

i

p t


  under the same 

remark as in Ladas et al. (1984), the hypothesis will still 
hold. 

Hypothesis 1: If 
1

K
e

  then equation (2) oscillates. 

Furthermore, as main results of this study, equation (2) is 
extended to include both positive and negative 
coefficients in the form 
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           
1 1

0
r

i i j j

i j

x t p t x t t q t x t t 
 

      

      3  

where      , ,i j ip t q t t  and  j t  

are continuous functions and the conditions that are 
sufficient at which the equations to have an immense 
number of nonoscillatory solutions are obtained. 
Consequently, the following hypothesis is formulated and 
detail proof will be provided later on. 
Hypothesis 2: Consider equation (3) 

where      , ,i j ip t q t t  and  j t  

are continuous functions such that: 
 

 
 

Let , , , , , ,i j i j i j i jP Q T T A A B and B  be positive 

constants. Assume that 

1 1

ji

r
TT

i j

i j

P e Q e


 

      4  

has a positive root. Then the nonoscillatory solution of 
equation (3) is 

 
 

0

t

t
s d s

x t e


     5  

where
  t is a continuous function that is bounded. 

 
MATERIALS AND METHODS 
Employing the technique by Ladas et al. (1984) will pave 
way for us to provide proofs for hypotheses (1) and (2), 
which are constructed as the basis for obtaining the 
results of this study. 
 
Comparison and Schauder’s Fixed Point Techniques 
for First Order DDEs 
Ladas et al. (1984) applied comparison theorem to the 

DDE (1) where ip , i  are positive constants. Solution 

of equation (1) is nonoscillatory, provided the 
characteristic equation 

 
1

0i

n

i

i

f p e
  



      6  

has a real root. The condition, for instance, 

1

1n

i

i

p
e




 
 

 
     7  

where  1 2max , , , n     implies that 

   0 1/ 0f f    and therefore equation (6) 

has a negative real root in the interval  1/ , 0 . 

They also assume that if 0  is chosen as real root of 

equation (6) then equation (1) has a solution that is 
nonoscillatory. Therefore, 

0 t
e
  for any , 0R   .   8  

But it was stated based on comparison theorem that any 

solution of equation (1) with initial function  t  that 

satisfies 

    00 , 0
t

t e t
       and 

 0 0       9  

and any solution of equation (1) with initial function 

 t  that satisfies 

    00 , 0
t

t e t
      ,  

 0 0       10  

is nonoscillatory. In particular they had the result 
presented below. 
Lemma 1: If it is assumed that equation (6) has a real 
root, then any solution of equation (1) with initial function 

  or   that satisfies 

   0 , 0t t        and  0 0 

      11  

or 

   0 , 0t t       and  0 0 

      12  

is nonoscillatory. 
However, the following lemmas are important in 
establishing results of this study, using the application of 
the comparison theorem. 

Lemma 2: Consider equation (2) with  ip t ,  i t  

continuous such that 

     , ,i i i i i ip t P t T p t A     and 

  ,1, 2, ,i it B n    where , ,i i iP T A  and 

iB  are positive constants. If 

1

i

n
T

i

i

P e




      13  

has a positive root, then equation (2) has a solution that 
is nonoscillatory given as 

 
 

0

t

t
s d s

x t e


     14  

where  t  is a bounded continuous function. 

To prove lemma (2), Ladas et al. (1984) employed 
Schauder’s fixed point theorem where the sets 

  : bounded continuous functions mapping  into X t R R

 with sup-norm are defined, which is a Banach space, 
hence 

    0:M t X t     ,  15  

              

 

, , , , , ,

and , 1, 2, , , 1, 2, ,

i i j j i i j j i i j j i i

j j

p t P q t Q t T t T p t A q t A t B

t B i j r

  



        

   
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is a closed and convex subset of X . In conclusion, they 
found that theorem applied to their result. Consequently, 
the statements below follow immediate as a result of 
lemma (2); 
Corollary 1: Equation (2) is nonoscillatory provided that 
the DDE 

   
1

0
n

i i

i

x t P x t T


       16  

where iP  and iT  are defined in lemma (2), is 

nonoscillatory. 
Corollary 2: The FDE with both coefficients and 
arguments as constants 

   
1

0
n

i i

i

x t p x t 


       17  

is nonoscillatory provided that the DDE 

   
1

0
n

i i

i

x t p x t 


      18  

is oscillatory. 
It was demonstrated how the following comparison result 
was used by Ladas et al. (1984) to obtain a result 
indicating that if an FDE has a nonoscillatory solution, 
then it has a huge number of such solutions in such a 
way that it will be clarified below. 
Lemma 3: Consider DDE 

     
1

0, 0, 0
n

i i

i

x t p t x t t n


     

,      19  

where 0 10 n       are constants, 

0 1, , , np p p  are continuous functions and 

     1 2, , , np t p t p t  are positive on 

 0, . Let  , : , 0 R     be continuous 

in a manner at which 

   t t   on  , 0  and 

   0 0 0   .    20  

Assuming that x  and x  are the unique solutions of 

equation (19) with initial functions   and   

respectively. If we let 

  0x t   on  0, ,  21  

then 

   x t x t  on  0,  .   22  

Note that lemma (3) stated above is called Comparison 
Theorem and can be found in (Ladas et al., 1984). 
Remark 1: Let equation (19) having the solution with 

initial function   at 0t t  be denoted by 

 0, ,x t t  , then 

   0 0, , , ,x t t x t t    . From this 

observation, a dual to lemma (3) was obtained by 
changing the signs in inequalities (20), (21) and (22). 
That means, based on the hypotheses of lemma (3) we 

defined on the interval  0,  , 

   , 0, , 0, 0x t x t    and 

   , 0, , 0, 0x t x t     .  23  

Conclusively, using comparison theorem to equation (1) 
gave rise to lemma (1) above. However, in view of 
lemmas (2), (3) and remark (1), the following results were 
obtained by Ladas et al. (1984) to conclude that applying 
the comparison theorem to equation (2) the results 
established are nonoscillatory; 
Corollary 3: Consider equation (2) based on the 
hypotheses of lemma (2) and further assume that 

  0, 1, 2, ,ip t i n   and the condition 

(i)  0 t  equivalent to 0  and 
j  not equivalent to 0  

for 1, 2, ,j n  

(ii) 0  , thus  0 , 1, 2, ,j t j n     

is satisfied. Then any solution of equation (2) with initial 

function   or    that satisfies 

   0 , 0t t       and  0 0 

      24  

or 

   0 , 0t t       and  0 0 

      25  

is oscillatory. 

Corollary 4: Consider equation (1) where   a positive 

constant,  p t  is a   - periodic continuous function 

under the assumption that   0p t   and 

 
1t

t
K p s d s

e
      26  

holds. Then with initial function   or  , equation (1) 

has the solution that satisfies 

   0 0 0,t t t t t       and  0 0t 

      27  

or 

   0 0 0,t t t t t       and 

 0 0t       28  

is nonoscillatory. 

Corollary 5: If 
1

K
e

  for   0p t   then equation 

(1) is oscillatory. 
This provides an answer to the remark in Ladas et al. 
(1984), which was indicated as an area of interest and we 
set to achieve under hypothesis (1) by establishing 
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corollary (5). Based on what is obtained as corollary (5), it 
shows that their claim is quite justifiable. 
The following terminologies due to Gyori and Ladas 
(1991) are to be considered before Schauder’s fixed point 

theorem is stated. Suppose that M  is a subset of a 

Banach space. We can say that x X  is a limit point 

of M  if one will find a sequence of vectors in M  which 

converges to x . Also, for M  is said to be closed if it 

contains all of its limit points. Whereas the closure of M  

denoted by M  defines the union of M  and its limit 
points. The set is referred to as convex if for every 

,x y M  and for every  0,1 , the expression 

 1x y M    .    29  

Since a subset M  of a Banach space X  is compact if 

every sequence of vectors in M  contains a 

subsequence which converges in M , then M  is 

relatively compact if every sequence of vectors in M  
contains a subsequence which converges to a vector in 

X . In other words, M  is relatively compact if M  is 
compact. 

Assuming that M  is a subset of a Banach space and 

:T M M . We say that at the point 0x M , T  

is continuous if for every 0   there exists a 

 0, 0x     such that for all x M  with 

0x x    we have 0T x T x   . It is 

stated that if T  is continuous at every point x M  

then it means that :T M M  is a continuous 

function. Now Schauder’s fixed point theorem could be 
stated. 

Lemma 4: Assume that M  is a closed, convex and non-

empty subset of a Banach space X  and let 

:T M M      30  

to be a continuous function such that T M  is relatively 

compact. Then T  has at least one fixed point in M , 

which means that for x M  to have T x x . 

Lemma (4) is being referred to as Schauder’s Fixed Point 
Theorem. Both the theorem and its proof are found in 
Gyori and Ladas, (1991). 
 
RESULTS 
As stated earlier, the study aims at applying Schauder’s 
fixed point theorem to obtain nonoscillatory conditions for 
solutions of DDEs and in addition employ a comparison 
theorem to ascertain the claim. This section presents the 
main results, the conditions sufficient for nonoscillatory 
solution of first order linear DDEs with both positive and 
negative coefficients  
 
Conditions for Nonoscillatory Solutions of DDEs by 
Schauder’s Fixed Point Theorem 
Here is to obtain the conditions sufficient where by 
equation (3) has a huge number of nonoscillatory 

solutions. The results to obtain will provide an 
improvement on some of the results in the past. 
However, by Schauder’s fixed point theorem as well as 
the characteristic equation of DDEs with constant 
coefficients will help to determine those conditions 
sufficient for the solutions of equation (3) to be 
nonoscillatory. Again, employing a comparison theorem 
will serve as a tool to ascertain the claim that if equation 
(3) is to have a solution that is nonoscillatory, then it has 
a large number of such solutions. 

Theorem 1: Consider the DDE (3) where  ip t , 

 jq t ,  i t  and  j t  are continuous 

functions such that  i ip t P ,  j jq t Q , 

 i it T  ,  j jt T  ,  i ip t A  , 

 j jq t A  ,  i it B    and 

 j jt B  , 1, 2, ,i  , 1, 2, ,j r  

where iP , 
jQ , iT , 

jT , iA , 
jA , iB  and 

jB  are 

positively unvarying. Suppose that 

1 1

ji

r
TT

i j

i j

P e Q e


 

      31  

has a positive root then a nonoscillatory solution of 
equation (3) has the form 

 
 

0

t

t
s d s

x t e


     32  

where  t  is bounded and continuous function. 

Proof: Suppose 0  is chosen as a positive root of 

equation (31), then 

00

0

1 1

ji

r
TT

i j

i j

P e Q e


 

   .   33  

To show that equation (3) has a nonoscillatory solution of 
the form (32), we substitute equation (32) into equation 
(3) to get 

   
 

   
 

 

1 1

tt

t tt t ji

r s d ss d s

i j

i j

t p t e q t e







 


  

.  34  

Lemma (2) and equation (15) have indicated that 
equation (34) has a bounded solution. This means that, 
by implication, Schauder’s fixed point theorem is 
applicable to our result. 
Recall that: 

  : bounded continuous functions mapping  into X t R R

 
with sup-norm, is termed to be Banach space. Also recall 
that 

    0:M t X t     , 

is a closed and convex subset of X . Now considering a 

function F  on M  express as 
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   
 

   
 

 

1 1

tt

t tt t ji

r s d ss d s

i j

i j

F t p t e q t e







 


   .

  35  

Based on that 

   
 

   
 

 

1 1

tt

t tt t ji

r s d ss d s

i j

i j

F t p t e q t e







 


  

00

0

1 1

ji

r
TT

i j

i j

P e Q e
 

 

    .  36  

Hence, :F M M . 

Now in order to show that equation (34) has a solution; it 

is adequate to show that the function F  has a fixed 

point. This can be done by first showing that F  is 

uninterrupted and F M  is comparably compact subset 

of X . However, showing that each of the mappings 
below 

 
 

, 1, 2, ,

t

t
s d s

F t e i


     

  37  

 
 

, 1, 2, ,

t

t r

s d s

rF t e j r


    with 

r n     38  

is continuous, indicates that F  is continuous. Choose 

k n  so that , r k  and let k   where 

,k M  . Then 

         
 

 
1

k

i r j i

F t
F t F t F t F t F t

F t


    


    

 
 

 
      1 exp 1

t
r k

j k
t

r

F t
F t F t s s d s

F t 


   

 
      

      exp 1
r

t

r k
t

F t s s d s


  


     .

      39  

But 

       
r

t t

k k
t t

s s d s s s d s
 

   
 

         

  0k k rT T           as 

k  .     40  

Since  F t  is bounded so is  rF t . 

Therefore, it implies that F  and rF  are continuous, 

consequently, F  is continuous. 

Next, to prove that F M  is a proportionately compact 

subset of X , it demands to prove that if a positive, K  

constant and a function,   is in X  with K  , 

then   F t 
 is uniformly bounded. This resulted 

to having 

    
 

           
 

 

1 1

1

t t

t t t ti i

s d s s d s

i i i i

i i

F t p t e p t t t t t e 
 

     

 

           
  
 

 
 

           
1 1

1

t

t tj

r rs d s

j j j j

j j

q t e q t t t t t




   


 

        
 


 

 

 
 

t

t tj

s d s

e









,     41  

and therefore, 

  
1 1 1 1

j ji i

r r
K T K TK T K T

i i i j j j

i i j j

F t A e P K B e A e Q K B e
   

          
   
   

.      42  

The proof is complete and we say that Schauder’s fixed 
point theorem applies. 
It is worthy to note that since the right-hand side of 

equation (31) is a positive convex function of   this 

means that equation (31) has either one, no, or two roots. 
By corollaries (1) and (2), the consequences that 
immediately follow theorem (1) are indicated below. 
Corollary 6: Equation (3) is nonoscillatory provided that 
the majorant DDE 

     
1 1

0
r

i i j j

i j

x t P x t T Q x t T
 

      

      43  

where iP , 
jQ , iT  and 

jT  are in the same manner 

defined in theorem (1), is nonoscillatory. 
Corollary 7: The FDE with constants coefficients and 
arguments 

     
1 1

0
r

i i j j

i j

x t p x t q x t 
 

      

      44  

is nonoscillatory provided that the DDE 

     
1 1

0
r

i i j j

i j

x t p x t q x t 
 

      

      45  

is nonoscillatory. 
Remark 2: For the DDE 

     
1 1

0
r

i i j j

i j

x t p x t q x t 
 

      

      46  

whose coefficients and delays are positive constants will 
have every solution to be oscillatory if and only if the 
characteristic equation has no real roots. 
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1 1

0ji

r

i j

i j

p e q e




 

     

      47  

Alternatively, equation (46) has a solution that is 
nonoscillatory if and only if equation (47) has a real root. 
Similar results were obtained by some authors in the 
past, which include Yuanji (1990), Agwo (1999) and 
Elabbasy et al. (2000). 
Looking closely at lemma (3), which is a comparison 
theorem and remark (1) exhibits that the functional 
arguments in 

         
1 1

0
r

i i j j

i j

x t p t x t q t x t 
 

      

      48  

where 0 10         , 

0 10 r         are constants, 

0 1, , ,p p p ; 0 1, , , rq q q  are continuing 

functions and      0 1, , ,p t p t p t ; 

     0 1, , , rq t q t q t  positive on  0,  

are not necessarily constants. The result can be true if it 

is assumed that the functions  i t  and  j t  are 

continuous satisfying the following conditions; 

(i)  0 0t   and   0j t  ’for 

1, 2, ,j  ; 

(ii) 0   such that  0 j t   , 

1, 2, ,j  ; 

(iii)  0 0t   and   0i t  ’for 

1, 2, ,i r ; 

(iv) 0   such that  0 i t   , 

1, 2, ,i r . 

Remark 3: As a corollary to lemma (3), comparison 
theorem can be applied to equation (46), which contains 
a nonoscillatory solution provided that equation (47) has 
a real root that is to say, 

 
1 1

0ji

r

i j

i j

f p e q e
 



 

     .

      49  

Since 

 
1 1

0 0
r

i j

i j

f p q
 

     and 

1 1 1

1 1
0

r r

i j j

i j j

e
f p e q e q e
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 


    

  
         

   
  

, where  1max , ,   , 

 1max , , r    hence f  has a zero in 

1
, 0



 
 

 
, f  has a zero in 

1
, 0



 
 

 
. 

Similar results can be found in Ahmad (2003). This 
implies that 

1 1

r

i j

i j

p q
 

   and 
i j  .  50  

This means that if equation (46) has all its solutions to be 
oscillatory then 

1 1

1r

i i j j

i j

p q
e

 
 

   , 1, 2, ,i  , 

1, 2, ,j r .     51  

However, if for instance, 

1

1
i

i

p e
e

 
 

 
  where  1max , ,   ,

      52  

then it implies that  
1

0 0f f


 
  

 
 and 

therefore, equation (49) contains a negative real root in 

1
, 0



 
 

 
. Similarly,  

1
0 0f f



 
  

 
 has a 

negative real root in 
1

, 0


 
 

 
 where 

 1max , , r   . 

Corollary 8: By lemma (1), if equation (49) has a real root 

0  then equation (46) has the nonoscillatory solution 

0 t
e
  for any R , 0  .   53  

Corollary 9: By statement of the theorem on comparison, 
it means that any solution of equation (46) with initial 

function  t  that satisfies 

    00
t

t e
  , 0t   , 0t    

and  0 0       54  

and any solution of equation (46) with initial function 

 t  satisfying 

    00
t

t e
  , 0t   , 0t    

and  0 0    55  

is nonoscillatory. 
Finally, by corollary (3) comparison theorem is applied to 

equation (2) where i  are positive constants 

1, 2, ,i n  and  ip t  is a   periodic 

continuous function,  1max , , n    with 
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  56  

Considering the above hypotheses, we conclusion that 
equation (2) contains a nonoscillatory solution 
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with 0  . Substituting inequality (57) into equation (2) 

results to 
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.  58  

Therefore, 

 
1 1 0

nt

i
t i i

p s d s

e









 
 
 
 


   

  1 0Kg e         59  

where K   
1
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it i
i

p s d s




 
 
 
 
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It needs to be shown that  g   has a negative root. 

Case 1. If 0K   then  g    , 

 0 1g  . Thus,  g   contains a root in 

 , 0 . 

Case 2. If 0K   then 1    is also a root. 

Case 3. If 0K   then 

 11
0

K e
g

K K e

 
   

 
 and  0 1g  . 

Therefore,  g   contains a root in 
1

, 0
K

 
 

 
. 

Accordingly, each case of equation (2) has its 
nonoscillatory solution to be in form of inequality (57). If in 

addition to inequality (56), we consider  
1

0
n

i

i

p t


  

then comparison theorem applies. Consequently, 
corollary (4) holds for equation (2) provided that 

 
1

0
n

i

i

p t


  and inequality (56) holds. 

Corollary 10: If 
1

K
e

  then equation (4.4.27) is 

oscillatory. 
This provides an answer to our claim where we 
generalized equation (1) form of equation (2) and 

ascertained that when  
1

0
n

i

i

p t


  and 
1

K
e

  

the result is true for equation (1), the hypothesis will also 
be true for equation (2); then equation (2) oscillates. 
 
DISCUSSION 
This section is dedicated to the discussion of the results 
obtained in this study. Theorem (1) gave a new set of 
results for Nonoscillation of equation (3), which provides 
a sharp improvement of the results obtained in the past. 
In addition to that, applying Schauder’s fixed point 
theorem and characteristic equation of DDE with constant 
coefficients helped in determining the conditions whereby 
equation (3) has a nonoscillatory solution. Also, 
comparison theorem was used to further strengthen the 
claim that if equation (3) contains a solution, which found 
to be nonoscillatory then it has a sizeable number of such 
solutions. Lastly, based on the remark by Ladas et al. 

(1984) that if ,  then every 

solution of equation (1) oscillates. We were able to 
generalise equation (1) in the form of equation (2) and 

ascertained that when  and  

the result is true for equation (1), the hypothesis will also 
be true for equation (2); then equation (2) oscillates. 
Again, applying Schauder’s fixed point theorem and 
characteristic equation of DDE with constant coefficients 
helped in determining the conditions where by equation 
(3) has its solution to be termed as nonoscillatory. 
Comparison theorem was also introduced to further 
strengthen the claim that if equation (3) owns a solution 
that is nonoscillatory then it has a sizeable number of 
such solutions. 
 
CONCLUSION 
The importance of DDEs to physical problems cannot be 
over emphasized. Many authors in the past have 
contributed tremendously in making the area of DDEs an 
interesting one. It is our hope that the contributions put 
together in this work will go a long way in providing 
lasting solutions to many impending problems regarding 
DDE and it application to physical problems that require 
its input. 
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