

Modified Robust Regression-Type Estimators with Multi-Auxiliary Variables Using Non-Conventional Measures of Dispersion

*1A. Audu, ¹A. Gidado, ¹N. S. Dauran, ¹S. A. Abdulazeez, ¹M. A. Yunusa and ²I. Abubakar ¹Department of Mathematics, Usmanu Danfodiyo University Sokoto, Nigeria ²Department of Mathematical Sciences, Kaduna State University Kaduna, Nigeria [*Corresponding Author: Email: ahmed.audu@udusok.edu.ng; **2**: +2348065350476]

ABSTRACT

Auxiliary variables correlated with the study variables have been identified to be useful in improving the efficiency of ratio, product and regression estimators both at planning and estimation stages. The existing regression-based estimators are functions of auxiliary variables which are sensitive to outliers. In this paper, a modified class of estimators is proposed using robust nonconventional measures of dispersion which are robust against outliers or extreme values. The properties (Biases and Mean Squared Errors (MSEs)) of the modified class of estimator were derived up to the first order of approximation using Taylor series approach. The empirical studies were conducted using stimulation to investigate the efficiency of the proposed estimators over the efficiency of the existing estimators. The results revealed that the proposed estimators have minimum MSEs and higher Percentage Relative Efficiencies (PREs) among all the competing estimators. These results implied that the proposed estimators are more efficient and can produce better estimate of the population mean compared to other existing estimators considered in the study. Therefore, it can be concluded that proposed estimators have better predictive power for estimating population mean when the study (interest) variables are characterized with outliers or extreme values. **Keywords:** Robust estimators, Non-conventional measures, Efficiency, Outliers

Symbols and Notations

N- Population Size n- Sample Size f = n/N- Sampling fraction Y- Study Variable (Primary variable) X- Auxiliary Variable (Secondary variable) $R = \frac{\overline{Y}}{\overline{V}}$ $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$ - Population Mean of Study Variable Y $\overline{X} = \frac{1}{N} \sum_{i}^{N} X_{i}$ - Population Mean of Auxiliary Variable X $S_{y} = \sqrt{\sum_{i=1}^{N} (y_{i} - \overline{Y})^{2} / (N - 1)}$ - Population Standard Deviation of Study Variable Y $S_x = \sqrt{\sum_{i=1}^{N} (x_i - \overline{X})^2 / (N-1)}$ - Population Standard Deviation of Auxiliary Variable X $\rho_{yx} = S_{yx} / (S_y S_x)$ - Population Correlation Coefficient between Study and Auxiliary Variables $S_{yx} = \sum_{i=1}^{N} \left(y_i - \overline{Y} \right) \left(x_i - \overline{X} \right) / \left(N - 1 \right)$ - Population Covariance between Study and Auxiliary Variables $C_{_{\mathrm{V}}}=S_{_{\mathrm{V}}}$ / \overline{Y} - Population Coefficient of Variation of Study Variable Y $C_x = S_x / \overline{X}$ - Population Coefficient of Variation of Auxiliary Variable X $u_r = \frac{1}{N-1} \sum_{i=1}^{N} \left(X_i - \overline{X} \right)^r$ $\beta_{l(x)} = \frac{u_3}{\mu_2^{\frac{3}{2}}}$ - Population Coefficient of Skewness of Auxiliary Variable X $\beta_{2(x)} = \frac{u_4}{u_2^2}$ - Population Coefficient of Kurtosis of Auxiliary Variable X

$$\begin{split} HL &= Median[(X_{j} + X_{k})/2, 1 \leq j \leq k \leq N] \text{ - Hodges-Lehmann Estimator} \\ MR &= \frac{X_{(1)} - X_{(N)}}{2} \text{ - Population mid-range of Auxiliary Variable} \\ G &= \frac{4}{N-1} \sum_{i=1}^{N} \left(\frac{2i - N - 1}{2N} \right) X_{(i)} \text{ - Gini's Mean Difference for Auxiliary Variable} \\ D &= \frac{2\sqrt{\pi}}{N-1} \sum_{i=1}^{N} \left(i - \frac{N+1}{2N} \right) X_{(i)} \text{ - Downton's Method for Auxiliary Variable} \\ QD &= \frac{Q_3 - Q_1}{2} \text{ - Population Quartile Deviation of Auxiliary Variable} \\ DM &= \frac{D_1 + D_2 + \ldots + D_9}{9} \text{ - Decile Mean for Auxiliary Variable} \\ TM &= \text{- Trim Mean for Auxiliary Variable} \\ S_{pw} &= \frac{\sqrt{\pi}}{N^2} \sum_{i=1}^{N} (2i - N - 1) X_{(i)} \text{ - Probability Weighted Moments for Auxiliary Variable} \\ R_h &= \frac{\overline{Y}}{\overline{X}_h}, \ h = 1, 2, \dots r \\ S_{x_h}^2 &= \frac{1}{N_h - 1} \sum_{i=1}^{N_h} (X_{hi} - \overline{X}_h) (Y_{hi} - \overline{Y}_h), \qquad h = 1, 2, \dots r \\ \varphi_h &= \frac{A_h \overline{X}_h}{A_h \overline{X}_h + B_h}, \qquad h = 1, 2, \dots r \\ \overline{X}_h &= \frac{1}{N_h} \sum_{i=1}^{N_h} X_{hi}, \qquad h = 1, 2, \dots r \end{split}$$

 $A_i \& B_i$ are any of coefficients of variation, skewness, kurtosis and standard deviation of auxiliary variable X_i .

INTRODUCTION

Many modifications of the ratio and product estimators have been done to improve their efficiency by using a number of known parameters of the auxiliary variable such as the coefficient of variation $C_{\scriptscriptstyle x}$, the coefficient of kurtosis $\beta_2(x)$, standard deviation δ_x , the coefficient of skewness $\beta_1(x)$, the correlation coefficient between the study variable and an auxiliary variable $\,
ho_{_{\scriptscriptstyle V\!X}}$. Sisodia and Dwivedi (1981) have suggested a modified ratio estimator using the coefficient of variation C_{x} of an auxiliary variable X for estimating the population mean \overline{Y} . Upadhyaya and Singh (1999) suggested another modified ratio estimator using linear combinations of the coefficient of variation C_{x} and coefficient of the kurtosis $\beta_2(x)$. Singh and Tailor (2003) proposed another estimator using the correlation coefficient $ho_{_{_{YX}}}$ between X and Y. By using the population variance S_{x}^{2} of an auxiliary variable X, Singh (2003) proposed another modified ratio estimator which uses a linear combination of the coefficient of kurtosis $\beta_2(x)$ and standard deviation δ_x , and the coefficient of skewness $\beta_1(x)$ for estimating the population mean of the study variable \overline{Y} . Motivated by Singh (2003), Yan and Tian (2010) used a linear combination of the coefficient of $\beta_2(x)$, coefficient of skewness $\beta_1(x)$, kurtosis coefficient of variation C_x of the auxiliary variable X. More Subramani and Kumarapandiyan (2013) recently. suggested a new modified ratio estimator using known population median M_d of an auxiliary variable. Subramani and Kumarapandiyan (2012, 2013) have also suggested modified ratio estimators using the known median and the coefficient of kurtosis, median and coefficient of skewness, median and the coefficient of variation, and median and the coefficient of correlation. Other authors that had worked in this direction include Hartley and Ross (1954), Quenouille (1956), Singh (1965, 1967), Naik and Gupta (1991), Kadilar and Cingi (2003), Singh and Espejo (2003), Shabbir and Yaab (2003), Abu-Dayeh et al. (2003), Kadilar and Cingi (2005), Jhajj et al.

(2006), Khoshnevisan *et al.* (2007), Perri (2007), Singh *et al.* (2007), Gupta and Shabbir (2008), Sharma and Tailor (2010), Subramani and Kumarapandiyan (2012), Subramani and Kumarapandiyan (2013), Subramani and Kumarapandiyan (2014), Singh and Kumar (2011), Tailor *et al.* (2012), Lu (2013), Sharma and Singh (2014), Lu and Yan (2014), Verma *et al.* (2015), Ahmed and Singh (2015), Audu and Adewara (2017a,b), Audu and Muili (2019), Muili *et al.* (2020), Singh *et al.* (2020), Audu *et al.* (2020a,b,c,d), Audu *et al.* (2021a,b,c,d,e,f), Ahmed *et al.* (2016a,b,), Yunusa *et al.* (2021), Zaman *et al.* (2021), Audu and Singh (2021).

Regression estimator is often use to estimate the population characteristics such as population mean, total and variance when the regression line of y on x does not pass through the origin but makes an intercept along the y-axis. Many modifications of the regression type estimators have been done to improve their efficiency by using a number of known parameters of the auxiliary variable such as the coefficient of variation C_x , the coefficient of kurtosis

 $\beta_2(x)$, standard deviation δ_x , the coefficient of skewness

 $\beta_1(x)$, and the correlation coefficient between the study

variable and an auxiliary variable ρ_{yy} . Shabbir and Gupta

(2010) proposed a regression ratio-type exponential estimator by combining Rao's and Bedi's estimators (Rao, 1991; Bedi, 1996). Following these works, Grover and Kaur (2011) introduced a regression exponential type estimator. Ozqul and Cingi (2014) proposed a new class of exponential regression cum ratio estimator using functions of any known population parameters of the auxiliary variable, such as standard deviation, coefficient of variation, coefficient of skewness, coefficient of kurtosis and coefficient of correlation of the auxiliary variable for the estimation of finite population mean. Several authors like Kadilar and Cingi (2004), Kadilar and Cingi (2006), Subramani and Kumarapandiyan (2016), Abid et al. (2016), Subzar et al. (2017), Subzar et al. (2018 a, b, c) have proposed some regression-based estimators which utilized known functions of auxiliary variables. However, these auxiliary parameters are sensitive to outliers or extreme values that do present in the population distributions. Outliers are observations that are distant from other observations in the population. They tend to inflate average deviation of the entire observations from central values. When there are outliers in data, the auxiliary functions like Kurtosis, Skewness, Coefficient of variation, standard

deviation etc, will be affected and consequently the efficiency of the estimators which utilize these functions will drastically reduce. Some of the regression estimators in the above paragraph are function of these auxiliary functions. Similarly, regression slope in the regression estimators is also sensitive to outliers and its effect will decreases the efficiency of the estimators. Zaman and Bulut (2018), Zaman (2019) suggested robust regression slopes like Hampel M, Huber M, LTS and LAD methods proposed by Hampel (1971), Huber (1973), Fox (2002) and Nadia and Muhammad (2013), respectively, which are robust against outliers as an alternative to regression slope in the regression estimators of the previous authors. However, the problem of effects of outliers on auxiliary functions in the previous studies was not addressed. Similarly, Yadav and Zaman (2021) suggested non-conventional robust parameters of auxiliary variable which are robust against outliers. However, the problems of effects of outliers on regression slopes were not considered. This current study focused on the modification of robust regression estimators using robust non-conventional measures (Gini's mean, Downton's method, and probability weighted moment proposed by Gini, 1936, Downton, 1966 and Greenwood et al., 1979, respectively) and robust regression slopes simultaneously to address the effect of outliers on auxiliary functions and regression slopes respectively.

Several authors have proposed different regression-type estimators using different auxiliary information. The notable ones include Kadilar and Cingi (2004), Kadilar and Cingi (2006), Kadilar and Cingi (2007), Subramani and Kumarapandiyan (2016), Abid et al. (2016), Subzar et al. (2017), Subzaret al. (2018a), Subzar et al. (2018b), Subzar et al. (2018c), Zaman and Bulut (2018), Zaman (2019), Yadav and Zaman (2021). However, none of the estimators considered situations when the study variablesare associated with independentmulti-auxiliary variables like expenditure with salary and teacher-pupils ratio, GDP with inflation rate, export rate and import rate, obesity with body weight, height and blood pressure etc. Recently, Audu et al. (2020a) proposed regression-type class of estimators using multi-auxiliary variables. However, the estimator utilizes conventional measures of dispersion (Coefficients of Variation, Skewness and Kurtosis) which are sensitive to outliers or extreme values. Audu et al. (2020a) adopted transformation techniques to the work of Zaman (2019) and then proposed a general form of estimators as:

$$t_{p} = v \frac{\left[\overline{y} + \sum_{h=1}^{r} \alpha_{rbst(zb)h}(\overline{X}_{h} - \overline{x}_{h})\right]}{\prod_{h=1}^{r} \overline{x}_{h}} \prod_{h=1}^{r} \overline{X}_{h} + (1-v) \frac{\left[\overline{y} + \sum_{h=1}^{r} \alpha_{rbst(zb)h}(\overline{X}_{h} - \overline{x}_{h})\right]}{\prod_{h=1}^{r} (A_{h}\overline{x}_{h} + B_{h})} \prod_{h=1}^{r} (A_{h}\overline{X}_{h} + B_{h})$$
(1)

where A_j and B_j are either population coefficients of variation or kurtosis of j^{th} independent auxiliary variables X_j , $j = 1, 2, ..., r, A_h \neq B_h$

$$MSE(t_{p})_{\min} = \frac{1-f}{n} \left(S_{y}^{2} + \sum_{h=1}^{r} \left(\alpha_{rbst(zb)h} + R_{h} \varphi_{h} \right) \left(\left(\alpha_{rbst(zb)h} + R_{h} \varphi_{h} \right) S_{x_{h}}^{2} - 2S_{yx_{h}} \right) - \frac{D_{yx}^{2}}{D_{x}} \right)$$
(2)
Where $D_{m} = \sum_{k=1}^{r} R_{k} \left(1 - \varphi_{k} \right) \left(S_{x}^{2} \left(\alpha_{rbst(zb)k} + R_{k} \varphi_{k} \right) - S_{m} \right), D_{x} = \sum_{k=1}^{r} S_{x}^{2} R_{k}^{2} \left(1 - \varphi_{k} \right) \right)$

This study aimed at proposing some modified ratio-type estimators which are robust against outliers or extreme MATERIALS AND METHODSestimators which are robust against outliers or extreme values and more efficient than related existing estimators using robust non-conventional measures.

Proposed Estimators

Having studied the class of estimator by Audu et al. (2020a), using non-conventional measures of dispersion (Gini's Mean, Downton's Methods and Probability Weighted Moment) which are Robust against extreme values or outliers, the class of suggested estimator is as in (3)

$$t_{ik} = \theta \frac{[\bar{y} + \sum_{h=1}^{r} \alpha_{rbst(zb)h}(\bar{X}_{h} - \bar{x}_{h})]}{\prod_{h=1}^{r} \bar{x}_{h}} \prod_{h=1}^{r} \bar{X}_{h} + (1 - \theta) \frac{[\bar{y} + \sum_{h=1}^{r} \alpha_{rbst(zb)h}(\bar{X}_{h} - \bar{x}_{h})]}{\prod_{h=1}^{r} (\eta_{ih}\bar{x}_{h} + \eta_{jh})} \prod_{h=1}^{r} (\eta_{ih}\bar{X}_{h} + \eta_{jh}) (3)$$

$$\eta_{i}, \eta_{j}, ij = 1, 2, 3, \eta_{i} \neq \eta_{j} \in \{G \times n, D \times n, S_{pw} \times n\} \ k = 1, 2, ..., 6$$

Properties (Bias and MSE) of the Proposed Estimator t_{ik}

To obtain the bias and mean squared error (MSE) of t_{3k} , the error terms $e_0 = \frac{\overline{y} - \overline{Y}}{\overline{Y}}$ and $e_h = \frac{\overline{x} - \overline{X}_h}{\overline{X}_h}$ are defined such

that the expectations are given as:

$$E(e_{o}) = E(e_{h}) = 0, E(e_{o}^{2}) = \psi_{n,N}C_{y}^{2}, E(e_{h}^{2}) = \psi_{n,N}C_{x_{h}}^{2}, E(e_{o}e_{h}) = \psi_{n,N}\rho_{yx_{h}}C_{y}C_{x_{h}}$$

$$E(e_{h}e_{k}) = 0 \quad \forall \quad h \neq k = 1, 2, ..., r, E(e_{h}^{u}e_{0}^{m}) = 0 \quad \forall \quad u + m > 2, \quad \psi_{n,N} = 1/n - 1/N$$

$$(4)$$

Theorem 1: The bias of the suggested estimators t_{3k} (t_{3k} , k = 1, 2, 3, 4, 5, 6) to first order of approximation is:

$$Bias(t_{3k}) = \frac{1-f}{n} \left(\sum_{h=1}^{r} C_{xh}^2 \left(\overline{Y} \left(\nu + (1-\nu)\varphi_{ijh}^2 \right) + \alpha_{rbst(zb)h} \overline{X}_h \varphi_{ijh} \right) - \overline{Y} \sum_{h=1}^{r} \rho_{yxh} C_y C_{xh} \left(\nu + (1-\nu)\varphi_{ijh} \right) \right)$$
(5)

Proof:

Express t_{3k} in terms of e_o and e_h , we have defined in section (3)

$$t_{3k} = v^* \frac{\left(\bar{Y}(1+e_o) - \sum_{h=1}^r \alpha_{rbst(zb)h} \bar{X}_h e_h\right)}{\prod_{h=1}^r (1+e_h) \bar{X}_h} \left(\prod_{h=1}^r \bar{X}_h\right) + \frac{(1-v^*) \left(\bar{Y}(1+e_o) - \sum_{h=1}^r \alpha_{rbst(zb)h} \bar{X}_h e_h\right)}{\prod_{h=1}^r \eta_{ih} (1+e_h) \bar{X}_h + \eta_{jh}} \prod_{h=1}^r (\eta_{ih} \bar{X}_h + \eta_{ih})$$

$$t_{3k} = v^* \left(\bar{Y}(1+e_o) - \sum_{h=1}^r \alpha_{rbst(zb)h} \bar{X}_h e_h\right) \prod_{h=1}^r (1+e_h)^{-1} + (1-v^*) \left(\bar{Y}(1+e_o) - \sum_{h=1}^r \alpha_{rbst(zb)h} \bar{X}_h e_h\right) \prod_{h=1}^r (1+e_h)^{-1}$$

$$(7)$$

$$Where \ \varphi_{ijh} = \frac{\eta_{ih} \bar{X}_h}{\eta_v \bar{X}_v + \eta_v}$$

 $\eta_{ih} \Lambda_h + \eta_{jh}$

Simplify (7) up to first order approximation, we have

$$t_{3k} = v^* \left(\overline{Y} - \overline{Y} \sum_{h=1}^r e_j + \overline{Y} \sum_{h=1}^r e_h^2 + \overline{Y} \sum_{h=1}^r e_h e_k + \overline{Y} e_o - \overline{Y} \sum_{h=1}^r e_o e_h - \sum_{h=1}^r \alpha_{rbst(zb)h} \overline{X}_h e_h + \sum_{h=1}^r \alpha_{rbst(zb)h} \overline{X}_h e_h^2 \right)$$

$$+ (1 - v^*) \left(\overline{Y} - \overline{Y} \sum_{h=1}^r \varphi_{ijh} e_h + \overline{Y} \sum_{h \neq k=1}^r \varphi_{ijh} \varphi_k e_h e_k + \overline{Y} e_o - \overline{Y} \sum_{h=1}^r \varphi_{ijh} e_o e_h - \sum_{h=1}^r \alpha_{rbst(zb)h} \overline{X}_h e_h + \sum_{h=1}^r \alpha_{rbst(zb)h} \varphi_{ijh} \overline{X}_h e_h^2 \right)$$

$$(8)$$

$$t_{3k} - \overline{Y} = \overline{Y}e_o - \sum_{h=1}^r \left(\overline{Y}\left(v^* + (1 - v^*)\varphi_{ijh}\right) + \alpha_{rbst(zb)h}\overline{X}_h\right)e_h - \overline{Y}\sum_{h=1}^r \left(v^* + (1 - v^*)\varphi_{ijh}\right)e_oe_h$$

$$+ \sum_{h=1}^r \left(\overline{Y}\left(v^* + (1 - v^*)\varphi_{ijh}^2\right) + \alpha_{rbst(zb)h}\overline{X}_h\varphi_{ijh}\right)e_h^2 + terms \ with \ cross \ product \ of \ X_h^s$$
(9)

Take expectation of (9) and apply the results of (4), $Bias(t_{3k})$ is obtained as in (5). Hence the proof

Theorem 2: The MSE of the suggested estimators t_{3k} (k = 1, 2, 3, 4, 5, 6) to first order of approximation is:

$$MSE(t_{3k}) = \frac{1-f}{n} \left(S_{y}^{2} + \sum_{h=1}^{r} S_{xh}^{2} \left(R_{h}^{2} \left(v^{*} + (1-v^{*})\varphi_{ijh} \right) + \alpha_{rbst(zb)h} \right)^{2} - 2\sum_{h=1}^{r} S_{yxh} \left(R_{h} \left(v^{*} + (1-v^{*})\varphi_{ijh} \right) + \alpha_{rbst(zb)h} \right) \right)$$
(10)
where $R_{h} = \frac{\overline{Y}}{\overline{X}_{h}}$

Proof:

Square both sides of (9),

$$(t_{3k} - \overline{Y})^2 = \overline{Y}^2 e_0^2 + \sum_{h=1}^r (\overline{Y} (v + (1 - v)\varphi_{ijh}) + \alpha_{rbst(zb)h}\overline{X}_h)^2 e_h^2 - 2\overline{Y} \sum_{h=1}^r (\overline{Y} (v + (1 - v)\varphi_{ijh}) + \alpha_{rbst(zb)h}\overline{X}_h) e_0 e_h$$
(11)

Take expectation of (11) and apply the results of (4), $MSE(t_{3k})$ is obtained as in (10). Hence the proof.

Theorem 3: The minimum MSE of t_{3k} is

$$MSE(t_{3k})_{\min} = \frac{1-f}{n} \left(S_{y}^{2} + \sum_{h=1}^{r} \left(\alpha_{rbst(zb)h} + R_{h} \varphi_{h} \right) \left(\left(\alpha_{rbst(zb)h} + R_{h} \varphi_{h} \right) S_{x_{h}}^{2} - 2S_{yx_{h}} \right) - \frac{E_{yx}^{2}}{E_{x}} \right)$$
(12)
Where $E_{yx} = \sum_{h=1}^{r} R_{h} (1-\varphi_{ijh}) \left(S_{xh}^{2} (\alpha_{rbst(zb)j} R_{h} \varphi_{ijh}) - S_{yx_{h}} \right), \quad E_{x} = \sum_{h=1}^{r} S_{xh}^{2} R_{h}^{2} \left(1-\varphi_{ijh} \right)^{2}$ $i = 1, 2, 3 \ j = 1, 2, 3 \ i \neq j$

Proof:

Differentiate partially (10) with respect to v, equate to zero and solve for v. that is,

$$\frac{\partial \left(MSE\left(t_{3k}\right)\right)}{\partial v} = 0 \tag{13}$$

$$v^{*} = -\frac{\sum_{h=1}^{r} R_{h} (1 - \varphi_{ijh}) \left(S_{xh}^{2} (\alpha_{rbst(zb)j} R_{h} \varphi_{ijh}) - S_{yx_{h}} \right)}{\sum_{h=1}^{r} S_{xh}^{2} R_{h}^{2} \left(1 - \varphi_{ijh} \right)^{2}}$$
(14)

Substitute (14) in (10), minimum $MSE(t_{3k})$ is obtained as in (12). Hence the proof.

Data for Empirical Studies

To investigate the robustness of the proposed estimators against outliers or extreme values, the data for the study variable were generated using cubic equation $Y = 5X_1 + 20X_2^2 + 10X_3^3 + e$ and the auxiliary variables were generated from non-normal discrete and continuous (poison and exponential) distributions as

presented in Table 1.The simulation studies were conducted to assess the performance of the proposed estimators t_{3k} with respect to *some* related existing estimators by mean squared error (MSE) and percentage relative efficiency (PRE) using data obtained from Table 1 and the results were presented in Tables 2-9.

Table 1: Populations used for empirical study on sample mean, t_p and proposed estimators t_{3k}				
POPULATIONS	AUXILIARY VARIABLE (X)	METHODS FOR ROBUST REGRESSION SLOPE $\left(lpha_{\textit{rbst}(zb)} \right)$	STUDY VARIABLE (Y)	
1	$X_1 \sim pois(0.1)$ $X_2 \sim pois(0.2)$ $X_3 \sim pois(0.3)$	Huber MM Hampel M Least Trimmed Squares (LTS) Least Absolute Deviation (LAD)	$Y = 5X_1 + 20X_2^2 + 10X_3^3 + e,$ where, $e \sim (0, 4)$	
II	$X_1 \sim \exp(0.1)$ $X_2 \sim \exp(0.2)$ $X_2 \sim \exp(0.3)$	Huber MM Hampel M Least Trimmed Squares (LTS) Least Absolute Deviation (LAD)		

RESULTS

In this section, numerical results on the efficiency of the proposed estimators over sample mean and Audu *et al.* (2021a) estimators were presented. Table 2 shows the numerical results of MSEs and PREs of the proposed and some existing estimators using data generated from population I under Huber MM methods. The result revealed that the proposed estimators t_{3k} , k = 1, 2, 3, 4, 5, 6 have minimum MSEs and higher PREs compared to sample mean and estimators t_p , i = 1, 2, ..., 16. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

Table 3 shows the numerical results of MSEs and PREs of the proposed and some existing estimators using data generated from population I under Hampel M methods. The result revealed that the proposed estimators $t_{3k}, k = 1, 2, 3, 4, 5, 6$ have minimum MSEs and higher PREs compared to sample mean and estimators $t_p, i = 1, 2, ..., 16$. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

Table 4 shows the numerical results of MSEs and PREs of the proposed and some existing estimators using data generated from population I under LTS methods. The result revealed that the proposed estimators $t_{3k}, k = 1, 2, 3, 4, 5, 6$ have minimum MSEs and higher PREs compared to sample mean and estimators $t_p, i = 1, 2, ..., 16$. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

Table 5 shows the numerical results of MSEs and PREs of the proposed and some existing estimators using data generated from population I under LAD methods. The result revealed that the proposed estimators $t_{3k}, k = 1, 2, 3, 4, 5, 6$ have minimum MSEs and higher PREs compared to sample mean and estimators $t_p, i = 1, 2, ..., 16$. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

ESTIMATORS	AUXILIARY PARAMETERS	MSEs	PREs
*Sample Mean	Not Applicable	5622.305 6803.234	100 82.64165
t_1	$A_j = 1, B_j = S_{x_j}$		
t_2	$A_j = 1, B_j = C_{x_j}$	205.9036	2730.553
<i>t</i> ₃	$A_j = 1, B_j = \beta_1(x_j)$	196.4039	2862.624
t_4	$A_j = 1, B_j = \beta_2(x_j)$	364.4835	1542.54
<i>t</i> ₅	$A_j = S_{x_j}, B_j = C_{x_j}$	36.36093	15462.49
<i>t</i> ₆	$A_j = S_{x_i}, B_j = \beta_1(x_j)$	330.7688	1699.769
<i>t</i> ₇	$A_i = S_{x_i}, B_i = \beta_2(x_i)$	36.43422	15431.39
t ₈	$A_j = C_{x_i}, B_j = S_{x_i}$	6582.704	85.41027
<i>t</i> ₉	$A_{j} = C_{x_{i}}, B_{j} = \beta_{1}(x_{j})$	27.87464	20169.96
<i>t</i> ₁₀	$A_{j} = C_{x_{i}}, B_{j} = \beta_{2}(x_{j})$	262.6451	2140.647
<i>t</i> ₁₁	$A_{i} = \beta_{1}(x_{i}), B_{i} = S_{x_{i}}$	5651.147	99.48962
<i>t</i> ₁₂	$A_{i} = \beta_{1}(x_{i}), B_{i} = C_{x_{i}}$	44.85158	12535.35
<i>t</i> ₁₃	$A_{j} = \beta_{1}(x_{j}), B_{j} = \beta_{2}(x_{j})$	271.0474	2074.288
<i>t</i> ₁₄	$A_i = \beta_2(x_i), B_i = S_{x_i}$	89010.03	6.316485
<i>t</i> ₁₅	$A_{i} = \beta_{2}(x_{i}), B_{i} = C_{x_{i}}$	661.6049	849.798
<i>t</i> ₁₆	$A_{j} = \beta_{2} \left(x_{j} \right), B_{j} = \beta_{1} \left(x_{j} \right)$	804.9148	698.4969
Proposed Estin	nator t_{3k}		
<i>t</i> ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{jh} = D_h \times n$	25.12698	22375.57
t ₃₂	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	25.31404	22210.23
<i>t</i> ₃₃	$\eta_{ih} = D_h \times n, \ \eta_{jh} = G_h \times n$	25.64438	21924.12
t ₃₄	$\eta_{ih} = D_h \times n, \ \eta_{jh} = S_{pw_h} \times n$		34945.91
	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$		21823.46
t_{35}	$\eta_{ih} = \mathcal{S}_{pw_h} \wedge n, \ \eta_{jh} = \mathcal{S}_h \wedge n$		

Table 2: MSEs and PREs of sample Mean, t_p and proposed estimators using population I under Huber MM method

22065.32

 $\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = D_h \times n$ 25.48027

 t_{36}

^{*} Adapted from Audu *et al.* (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; tp = Audu *et al.* (2020a) estimators

Table 6 shows the numerical results of MSEs and PREs of the proposed and some existing estimators using data generated from population II under Huber MM methods. The result revealed that the proposed estimators $t_{3k}, k = 1, 2, 3, 5, 6$ with exception of t_{34} have minimum MSEs and higher PREs compared to sample mean and estimators $t_p, i = 1, 2, ..., 16$. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

Table 7 shows the numerical results of MSEs and PREs of the proposed and some existing estimators using data generated from population II under Hampel M methods. The result revealed that the proposed estimators t_{3k} , k = 1, 2, 3, 5, 6 with exception of t_{34} have minimum MSEs and higher PREs compared to sample mean and estimators t_p , i = 1, 2, ..., 16. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

Table 8 shows the numerical results of MSEs and PREs of the proposed and some existing estimators using data generated from population II under LTS methods. The result revealed that the proposed estimators $t_{3k}, k = 1, 2, 3, 4, 5, 6$ have minimum MSEs and higher PREs compared to sample mean and estimators $t_p, i = 1, 2, ..., 16$. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

Table 9 shows the numerical results of MSEs and PREs of the sample mean, t_p and proposed estimators using data generated from population II under LAD methods. The result revealed that the proposed estimators t_{3k} , k = 1, 2, 3, 5, 6 with exception of t_{34} have minimum MSEs and higher PREs compared to sample mean and estimators t_p , i = 1, 2, ..., 16. This implies that the proposed estimators are more efficient and have higher precision than other estimators in the study.

DISCUSSION

Sample observations are often prone to be characterized by outliers or extreme values due to randomness in their selection. These outliers or extreme values affect the

estimate of the estimators by either over-estimation or under-estimation and consequently the centrality characteristics of the corresponding population parameters are is violated. This is the case with Audu et al. (2021a) classes of estimators. This problem was addressed by using robust non-conventional statistics (Gini's Mean, Downton's Methods and Probability Weighted Moment) as alternative to conventional ones and robust regression slopes (Hampel M, Huber M, LTS and LAD) as alternative to conventional regression slope in Audu et al. (2021a) estimators. The properties (Biases and MSEs) of the proposed estimators were derived using first order approximation procedure and numerical results of the properties were obtained for efficiency comparison ton sample mean and Audu et al. (2021a) estimators $t_{p}, i = 1, 2, ..., 16$ using data generated as presented in Tables 2-9. The assessments of the efficiency (proximity of the estimators to the population) ware done using MSEs of the estimators and their efficiency gains were assessed using PREs.

From all the numerical results obtained in Tables 2-9with exception of few cases under normal and non-normal distributions, the proposed estimators have smallest MSEs and largest PREs compared to sample mean and Audu *et al.* (2021a) estimators t_p , i = 1, 2, ..., 16. These results mean higher gaining in efficiency of the new proposed estimators in both situations when sample data is characterized by outliers or extreme values and when not.

CONCLUSION

From the foregone results, it was revealed that the suggested estimators have minimum MSE compared to other competing estimators considered in literature. Hence, the suggested estimators demonstrated high level of efficiency over the other estimators considered in the study. These results shows that the proposed estimators are highly robust in the estimation of population means when the sample observations obtained from the study variables are characterized by extreme values or outliers due improper use of sampling techniques, data collection instruments or inexperienced interviewers. The suggested estimators are recommended for use in the estimation of population means of any variable of interest especially when the study and auxiliary variables are highly associated or correlated.

ESTIMATORS	AUXILIARY PARAMETERS	MSEs	PREs
Sample Mean	Not Applicable	5622.305	100
t_1	$A_{j} = 1, B_{j} = S_{x_{j}}$	6780.805	82.91501
t_2	$A_j = 1, B_j = C_{x_i}$	217.9533	2579.592
<i>t</i> ₃	$A_j = 1, B_j = \beta_1(x_j)$	208.2082	2700.329
t_4	$A_i = 1, B_i = \beta_2(x_i)$	380.8541	1476.236
<i>t</i> ₅	$A_j = S_{x_i}, B_j = C_{x_i}$	41.18567	13651.12
t ₆	$A_j = S_{x_i}, B_j = \beta_1(x_j)$	346.075	1624.591
t ₇	$A_j = S_{x_i}, B_j = \beta_2(x_j)$	41.27859	13620.39
t ₈	$A_j = C_{x_i}, B_j = S_{x_i}$	6442.649	87.26697
t_9	$A_i = C_{x_i}, B_i = \beta_1(x_i)$	31.88466	17633.26
<i>t</i> ₁₀	$A_{i} = C_{x_{i}}, B_{i} = \beta_{2}(x_{i})$	276.681	2032.053
<i>t</i> ₁₁	$A_i = \beta_1(x_i), B_i = S_{x_i}$	5527.406	101.7169
t ₁₂	$A_{i} = \beta_{1}(x_{i}), B_{i} = C_{x_{i}}$	50.22644	11193.91
<i>t</i> ₁₃	$A_j = \beta_1(x_j), B_j = \beta_2(x_j)$	285.2647	1970.908
t ₁₄	$A_i = \beta_2(x_i), B_i = S_{x_i}$	87936.19	6.393619
t ₁₅	$A_{j} = \beta_{2}(x_{j}), B_{j} = C_{x_{j}}$	637.3852	882.089
t ₁₆	$A_j = \beta_2(x_j), B_j = \beta_1(x_j)$	777.515	723.1121
Proposed Estimate	or t_{3k}		
t ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{ih} = D_h \times n$	25.12954	22373.29
t ₃₂	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	25.3271	22198.77
t ₃₃	$\eta_{ih} = D_h \times n, \ \eta_{ih} = G_h \times n$	25.66177	21909.26
22	in n in n in		

Table 3: MSEs and PREs of sample mean, t_n and proposed estimators using population I under Hampel M method

;	* Adapted from Audu et al. (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; t	p = Audu et a

al. (2020a) estimators

25.7869

25.49629

21802.95

22051.46

 $\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$

 $\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = D_h \times n$

*t*₃₅

 t_{36}

rimmed squares (LT ESTIMATORS	AUXILIARY PARAMETERS	MSEs	PREs
*Sample Mean	Not Applicable	5657.39	100
t_1	$A_j = 1, B_j = S_{x_j}$	6664.464	84.8889
t_2	$A_j = 1, B_j = C_{x_j}$	218.5775	2588.277
t_3	$A_j = 1, B_j = \beta_1(x_j)$	209.0238	2706.577
t_4	$A_j = 1, B_j = \beta_2(x_j)$	377.6542	1498.035
t_5	$A_j = S_{x_j}, B_j = C_{x_j}$	43.64495	12962.3
t_6	$A_j = S_{x_i}, B_j = \beta_1(x_j)$	343.7608	1645.735
t_7	$A_j = S_{x_j}, B_j = \beta_2(x_j)$	43.7337	12936
t ₈	$A_j = C_{x_j}, B_j = S_{x_j}$	6123.623	92.38632
t_9	$A_j = C_{x_j}, B_j = \beta_1(x_j)$	34.21597	16534.35
<i>t</i> ₁₀	$A_j = C_{x_j}, B_j = \beta_2(x_j)$	276.0345	2049.523
<i>t</i> ₁₁	$A_j = \beta_1(x_j), B_j = S_{x_j}$	5249.783	107.7643
<i>t</i> ₁₂	$A_j = \beta_1(x_j), B_j = C_{x_j}$	52.83651	10707.35
<i>t</i> ₁₃	$A_j = \beta_1(x_j), B_j = \beta_2(x_j)$	284.4231	1989.075
<i>t</i> ₁₄	$A_j = \beta_2(x_j), B_j = S_{x_j}$	84132.29	6.724399
<i>t</i> ₁₅	$A_{i} = \beta_{2}(x_{i}), B_{i} = C_{x_{i}}$	594.9157	950.9567
t ₁₆	$A_{j} = \beta_{2} \left(x_{j} \right), B_{j} = \beta_{1} \left(x_{j} \right)$	727.4799	777.6697

Table 4: MSEs and PREs of sample mean, t_p and proposed estimators using population I under least trimmed squares (LTS) Method

Proposed Estimator t_{3k}

<i>t</i> ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{jh} = D_h \times n$		22478.1
t_{32}	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	25.16845	22317.95
t ₃₃	$\eta_{ih} = D_h imes n, \ \eta_{jh} = G_h imes n$	25.34906	22028.28
t ₃₄	$\eta_{ih} = D_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	25.6824	35176.69
<i>t</i> ₃₅	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$	16.08278	21999.12
<i>t</i> ₃₆	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = D_h \times n$	25.71644	22214.87

^{*} Adapted from Audu *et al.* (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; tp = Audu *et al.* (2020a) estimators

ESTIMATORS	AUXILIARY PARAMETERS	MSES	PRES
*Sample Mean t ₁	Not Applicable	5622.305 6798.448	100 82.69983
t_1 t_2	$A_{j} = 1, B_{j} = C_{x_{j}}$	208.493	2696.64
t_3	$A_j = 1, B_j = \beta_1(x_j)$	198.9319	2826.246
t_4	$A_j = 1, B_j = \beta_2(x_j)$	368.0625	1527.541
t_5	$A_j = S_{x_j}, \ B_j = C_{x_j}$	37.36166	15048.33
t_6	$A_j = S_{x_i}, B_j = \beta_1(x_j)$	334.1092	1682.774
t_7	$A_j = S_{x_i}, B_j = \beta_2(x_j)$	37.43919	15017.17
t_8	$A_j = C_{x_j}, B_j = S_{x_j}$	6551.429	85.81799
t_9	$A_j = C_{x_i}, B_j = \beta_1(x_j)$	28.69575	19592.81
t_{10}	$A_j = C_{x_j}, B_j = \beta_2(x_j)$	265.684	2116.163
<i>t</i> ₁₁	$A_j = \beta_1(x_j), \ B_j = S_{x_j}$	5623.277	99.98272
<i>t</i> ₁₂	$A_j = \beta_1(x_j), B_j = C_{x_j}$	45.9762	12228.73
<i>t</i> ₁₃	$A_j = \beta_1(x_j), B_j = \beta_2(x_j)$	274.1325	2050.944
<i>t</i> ₁₄	$A_j = \beta_2(x_j), B_j = S_{x_j}$	88752.91	6.334784
<i>t</i> ₁₅	$A_j = \beta_2(x_j), B_j = C_{x_j}$	656.5924	856.2854
<i>t</i> ₁₆	$A_j = \beta_2(x_j), B_j = \beta_1(x_j)$	799.3109	703.394
Proposed Estim	nator t_{3k}		
<i>t</i> ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{jh} = D_h \times n$	25.13041	22372.52
<i>t</i> ₃₂	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	25.31999	22205.01
t ₃₃	$\eta_{ih} = D_h imes n, \ \eta_{jh} = G_h imes n$	25.65152	21918.02
t ₃₄	$\eta_{ih} = D_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	16.08507	34953.56
<i>t</i> ₃₅	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$	25.77115	21816.27
<i>t</i> ₃₆	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = D_h \times n$	25.48685	22059.63

Table 5: MSEs and PREs of sample mean, t_p and proposed estimators using population I under least absolute deviation (LAD) method

* Adapted from Audu *et al.* (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; tp = Audu *et al.* (2020a) estimators

ESTIMATORS	AUXILIARY PARAMETERS	MSEs	PREs
*Sample Mean	Not Applicable	15577841	100
t_1	$A_j = 1, \ B_j = S_{x_j}$	15404221	101.1271
t_2	$A_j = 1, B_j = C_{x_j}$	18779513	82.95125
<i>t</i> ₃	$A_j = 1, B_j = \beta_1(x_j)$	11261172	138.3323
t_4	$A_j = 1, B_j = \beta_2(x_j)$	10302385	151.2062
t_5	$A_j = S_{x_j}, B_j = C_{x_j}$	19044512	81.79701
t_6	$A_i = S_{x_i}, B_i = \beta_1(x_i)$	45586359	34.17215
t_7	$A_j = S_{x_j}, B_j = \beta_2(x_j)$	18984165	82.05703
t_8	$A_j = C_{x_j}, \ B_j = S_{x_j}$	12183912	127.8558
t_9	$A_j = C_{x_j}, B_j = \beta_1(x_j)$	11301055	137.8441
t_{10}	$A_j = C_{x_j}, B_j = \beta_2(x_j)$	10322031	150.9184
<i>t</i> ₁₁	$A_j = \beta_1(x_j), \ B_j = S_{x_j}$	25866786	60.22333
<i>t</i> ₁₂	$A_j = \beta_1(x_j), B_j = C_{x_j}$	82155012	18.96152
t_{13}	$A_{j} = \beta_{1}(x_{j}), B_{j} = \beta_{2}(x_{j})$	13550323	114.9629
<i>t</i> ₁₄	$A_j = \beta_2(x_j), B_j = S_{x_j}$	55665730	27.98462
<i>t</i> ₁₅	$A_i = \beta_2(x_i), B_i = C_{x_i}$	252042525	6.18064
<i>t</i> ₁₆	$A_{j} = \beta_{2}(x_{j}), B_{j} = \beta_{1}(x_{j})$	33909924	45.93889
Proposed Estim	ator t_{3k}		
<i>t</i> ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{jh} = D_h \times n$	8534916	182.519
t_{32}	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	8508981	183.0753
t_{33}	$\eta_{ih} = D_h imes n, \ \eta_{jh} = G_h imes n$	8502274	183.2197
t ₃₄	$\eta_{ih} = D_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	15346305	101.5087
t ₃₅	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$	8534666	182.5243
t ₃₆	$\eta_{ih} = S_{_{pw_h}} \times n, \ \eta_{_{jh}} = D_h \times n$	8534916	182.4283

Table 6: MSEs and PREs of sample Mean, t_p and proposed estimators using population II under Huber MM method

* Adapted from Audu *et al.* (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; tp = Audu *et al.* (2020a) estimators

ESTIMATORS		MSEs	PREs
*Sample Mean	Not Applicable	15577841	100
t_1	$A_j = 1, \ B_j = S_{x_j}$	15417937	101.0371
<i>t</i> ₂	$A_j = 1, B_j = C_{x_j}$	17202827	90.55396
t_3	$A_j = 1, B_j = \beta_1(x_j)$	10741086	145.0304
t_4	$A_j = 1, B_j = \beta_2(x_j)$	9904268	157.2841
<i>t</i> ₅	$\boldsymbol{A}_{j} = \boldsymbol{S}_{\boldsymbol{x}_{j}}, \ \boldsymbol{B}_{j} = \boldsymbol{C}_{\boldsymbol{x}_{j}}$	17415425	89.44853
t ₆	$A_j = S_{x_i}, B_j = \beta_1(x_j)$	39108031	39.83284
<i>t</i> ₇	$A_j = S_{x_j}, B_j = \beta_2(x_j)$	17387140	89.59404
t ₈	$A_j = C_{x_j}, B_j = S_{x_j}$	11585570	134.459
t_9	$A_i = C_{x_i}, B_i = \beta_1(x_i)$	10775818	144.563
<i>t</i> ₁₀	$A_j = C_{x_i}, B_j = \beta_2(x_j)$	9921650	157.0086
t ₁₁	$A_j = \beta_1(x_j), B_j = S_{x_j}$	23593206	66.02681
t_{12}	$A_j = \beta_1(x_j), B_j = C_{x_j}$	69938696	22.27357
t_{13}	$A_i = \beta_1(x_i), B_i = \beta_2(x_i)$	12730680	122.3646
<i>t</i> ₁₄	$A_{j} = \beta_{2} \left(x_{j} \right), B_{j} = S_{x_{j}}$	49237388	31.63824
t ₁₅	$A_j = \beta_2(x_j), B_j = C_{x_j}$	208129611	7.484683
<i>t</i> ₁₆	$A_{j} = \beta_{2}(x_{j}), B_{j} = \beta_{1}(x_{j})$	29912641	52.07779
Proposed Estimation	ator t_{3k}		
<i>t</i> ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{jh} = D_h \times n$	8520909	182.819
<i>t</i> ₃₂	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	8505158	183.1576
t ₃₃	$\eta_{ih} = D_h \times n, \ \eta_{jh} = G_h \times n$	8508830	183.0785
t ₃₄	$\eta_{ih} = D_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	12199128	127.6964
t ₃₅	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$	8522052	182.7945
t ₃₆	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = D_h \times n$	8523564	182.762

Table 7: MSEs and PREs of sample mean, t_p and proposed estimators using population II under Hampel M method

* Adapted from Audu *et al.* (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; tp = Audu *et al.* (2020a) estimators

trimmed squares (LTS) Method				
ESTIMATORS	AUXILIARY PARAMETERS	MSEs	PREs	
*Sample Mean	Not Applicable	15574466	100	
t_1	$A_{j} = 1, B_{j} = S_{x_{j}}$	15483421	100.588	
t_2	$A_j = 1, B_j = C_{x_j}$	14323793	108.7314	
<i>t</i> ₃	$A_j = 1, B_j = \beta_1(x_j)$	9796152	158.9855	
t_4	$A_j = 1, B_j = \beta_2(x_j)$	9176541	169.7204	
<i>t</i> ₅	$A_j = S_{x_j}, B_j = C_{x_j}$	14453062	107.7589	
t ₆	$A_j = S_{x_j}, B_j = \beta_1(x_j)$	28247419	55.13589	
<i>t</i> ₇	$A_j = S_{x_j}, B_j = \beta_2(x_j)$	14461568	107.6956	
t ₈	$A_j = C_{x_i}, B_j = S_{x_i}$	10407421	149.6477	
<i>t</i> ₉	$A_i = C_{x_i}, B_i = \beta_1(x_i)$	9821856	158.5695	
<i>t</i> ₁₀	$A_i = C_{x_i}, B_i = \beta_2(x_i)$	9190076	169.4705	
<i>t</i> ₁₁	$A_i = \beta_1(x_i), B_i = S_{x_i}$	18985302	82.03433	
<i>t</i> ₁₂	$A_j = \beta_1(x_j), B_j = C_{x_j}$	48315906	32.23466	
<i>t</i> ₁₃	$A_j = \beta_1(x_j), B_j = \beta_2(x_j)$	11223581	138.7656	
<i>t</i> ₁₄	$A_{j} = \beta_{2}(x_{j}), B_{j} = S_{x_{j}}$	36400723	42.78614	
<i>t</i> ₁₅	$A_j = \beta_2(x_j), B_j = C_{x_j}$	132188334	11.78203	
<i>t</i> ₁₆	$A_{j} = \beta_{2}(x_{j}), B_{j} = \beta_{1}(x_{j})$	22769246	68.40133	
Proposed Estima	ator t_{3k}			
<i>t</i> ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{jh} = D_h \times n$	8579578	181.5295	
t_{32}	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	8579946	181.5217	
t ₃₃	$\eta_{ih} = D_h \times n, \ \eta_{jh} = G_h \times n$	8600990	181.0776	
<i>t</i> ₃₄	$\eta_{ih} = D_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	7034920	221.388	
t ₃₅	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$	8582475	181.4682	
55				

Table 8: MSEs and PREs of Sample Mean, t_p and proposed estimators using population II under least trimmed squares (LTS) Method

 t_{36} $\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = D_h \times n$ 8579730 181.5263 * Adapted from Audu *et al.* (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; tp = Audu *et al.* (2020a) estimators

ESTIMATORS	AUXILIARY PARAMETERS	MSEs	PREs
*Sample Mean	NA	15577841	100
t_1	$A_j = 1, \ B_j = S_{x_j}$	15416497	101.0466
t_2	$A_j = 1, B_j = C_{x_j}$	17614813	88.43603
<i>t</i> ₃	$A_j = 1, B_j = \beta_1(x_j)$	10877779	143.2079
t_4	$A_j = 1, B_j = \beta_2(x_j)$	10007816	155.6568
<i>t</i> ₅	$A_j = S_{x_j}, B_j = C_{x_j}$	17840700	87.31631
t ₆	$A_j = S_{x_j}, B_j = \beta_1(x_j)$	40834142	38.14906
<i>t</i> ₇	$A_j = S_{x_i}, B_j = \beta_2(x_j)$	17804959	87.49159
<i>t</i> ₈	$A_j = C_{x_j}, B_j = S_{x_j}$	11735546	132.7407
<i>t</i> ₉	$A_j = C_{x_i}, B_j = \beta_1(x_j)$	10913921	142.7337
<i>t</i> ₁₀	$A_i = C_{x_i}, B_i = \beta_2(x_i)$	10025835	155.377
<i>t</i> ₁₁	$A_j = \beta_1(x_j), B_j = S_{x_j}$	24145436	64.51671
<i>t</i> ₁₂	$A_i = \beta_1(x_i), B_i = C_{x_i}$	73051247	21.32454
<i>t</i> ₁₃	$A_{i} = \beta_{1}(x_{i}), B_{i} = \beta_{2}(x_{i})$	12945372	120.3352
<i>t</i> ₁₄	$A_{i} = \beta_{2}(x_{i}), B_{i} = S_{x_{i}}$	50781262	30.67636
<i>t</i> ₁₅	$A_i = \beta_2(x_i), B_i = C_{x_i}$	219235125	7.105541
<i>t</i> ₁₆	$A_j = \beta_2(x_j), B_j = \beta_1(x_j)$	30949924	50.3324
Proposed Estim	ator t_{3k}		
t ₃₁	$\eta_{ih} = G_h \times n, \ \eta_{ih} = D_h \times n$	8525925	182.7115
t ₃₂	$\eta_{ih} = G_h \times n, \ \eta_{jh} = S_{pw_h} \times n$	8507641	183.1041
t ₃₃	$\eta_{ih} = D_h \times n, \ \eta_{ih} = G_h \times n$	8508691	183.0815
	, j	12997279	119.8546
t ₃₄	$\eta_{ih} = D_h \times n, \ \eta_{jh} = S_{pw_h} \times n$ $\eta_{ih} = S_{pw_h} \times n$	8526730	182.6942
<i>t</i> ₃₅	$\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = G_h \times n$	0500076	100 6/61

Table 9: MSEs and PREs of sample mean, t_p and proposed estimators using population II under least absolute deviation (LAD) Method

 t_{36} $\eta_{ih} = S_{pw_h} \times n, \ \eta_{jh} = D_h \times n$ 8528976 182.6461 * Adapted from Audu *et al.* (2020a); MSE =Mean squared error; PRE= Percentage relative efficiency; tp =Audu *et al.* (2020a) estimators

REFERENCES

- Abid, M., Abbas, N., Sherwani, R. A. K. and Nazir, H. Z. (2016). Improved ratio estimators for the population mean using non-conventional measure of dispersion. *Pakistan Journal of Statistics and Operations Research*, **12**(2): 353-367.
- Abu-Dayeh, W. A., Ahmed, M. S., Ahmed, R. A. and Muttlak, H. A. (2003). Some Estimators of a Finite Population Mean Using Auxiliary Information. *Appl. Math Compute*,**13**(9): 287-298.
- Ahmed, A. and Singh, R. V. K. (2015). Improved exponential type estimators for estimating population variance survey sampling. *International Journal of Advance Research*, **3**(4): 1-16.
- Ahmed, A., Adewara, A. A. and Singh, R. V. K. (2016a): Class of ratio estimators with known functions of auxiliary variable for estimating finite population variance. Asian Journal of Mathematics and Computer Research, 12(1): 63-70.
- Ahmed, A., Adewara, A. A. and Singh, R. V. K. (2016b). Ratio and Product type Exponential Estimators of Population Variance under transformed Sample Information of Study and Supplementary Variables. Asian Journal of Mathematics and Computer Research, 11(3): 175-183.
- Audu, A., Singh, R. and Khare, S. (2021a). New regression-type compromised imputation class of estimators with known parameters of auxiliary variable. *Communication in Statistics-Simulation* and Computation, **1**: 1-13.
- Audu, A. and Singh, R. V. K. (2021). Exponential-type regression compromised imputation class of estimators. *Journal of Statistics and Management Systems*, **24**(6): 1253-1266.
- Audu, A., Singh, R., Khare S. and Dauran N. S. (2021b). Almost unbiased estimators for population mean in the presence of non-response and measurement error. *Journal of Statistics and Management Systems*, **24**(3): 573-589.
- Audu, A., Ishaq, O. O., Abubakar, A., Akintola, K. A., Isah, U., Rashida, A. and Muhammad, S. (2021c). Regression-type Imputation Class of Estimators using Auxiliary Attribute. Asian Research Journal of Mathematics, **17**(5): 1-13.
- Audu, A., Danbaba, A., Ahmad, S. K., Musa, N., Shehu, A., Ndatsu, A. M. and Joseph, A. O. (2021d). On the efficient of almost unbiased mean imputation when the population mean of auxiliary variable is unknown. *Asian Journal of Probability and Statistics*,**15**(4): 235-250.

- Audu, A., Yunusa, M. A., Ishaq, O. O., Lawal, M. K., Rashida, A., Muhammad, A. H., Bello, A. B., Hairullahi, M. U. and Muili, J. O. (2021e). Difference-cum-ratio estimators for estimating finite population coefficient of variation in simple random sampling. *Asian Journal of Probability* and Statistics, **13**(3):13-29.
- Audu, A., Yunusa, M. A., Zoramawa, A.B., Buda, S. and Singh, R. V. K. (2021f). Exponential-ratio-type imputation class of estimators using nonconventional robust measures of dispersions. *Asian Journal of Probability and Statistics*, **15**(2): 59-74.
- Audu, A. and Adewara, A. A. (2017a). Modified factor-type estimators under two-phase sampling. *Punjab Journal of Mathematics*, **49**(2): 59-73.
- Audu, A. and Adewara, A. A. (2017b). A Factor-type estimator with known functions of auxiliary variable under single-phase sampling. ABACUS, *Mathematics Science Series*, **44**(1): 171-177.
- Audu, A. and Muili, J. O. (2019). Modification of ratio estimator for population mean. *Annals Computer Science Series*, **17**(2): 74-78.
- Audu, A., Ishaq, O. O., Muili, J. O., Abubakar, A., Rashida, A., Akintola, K. A. andIsah, U. (2020a). Modified estimators of population mean using robust multiple regression. *NIPES Journal of Science and Technology Research*, 2(4): 12-20.
- Audu, A., Muili, J.O., Agwamba, E.N., Erinola, Y.A., Yunusa, M.A. and Hamzat, M.A. (2020b). Modified ratio-cum-product estimators of population mean using two auxiliary variables. *Asian Journal of Research in Computer Science*,6(1): 55-65.
- Audu, A., Ishaq, O. O., Muili, J., Zakari, Y., Ndatsu, A. M. and Muhammed, S. (2020c). On the efficiency of imputation estimators using auxiliary attribute. *Continental Journal Applied Sciences*, **15**(1): 1-13.
- Audu, A., Olawoyin, I. O., Zakari, Y., Wisdom, D. D., Muili, J. and Ndatsu, A. M. (2020d). Regression-cumexponential ratio imputation class of estimators of population mean in the presence of nonresponse. *Science Forum Journal of Pure and Applied Science*, **20**: 58-63.
- Bedi, P.K. (1996). Efficient utilization of auxiliary information at estimation stage. *Biometric Journal*, **38**(8): 973-976.
- Downton, F. (1966). Linear estimates with polynomial coefficients. *Biometrika*, **53**: 129–141.
- Fox, J. (2002). Robust Regression. An R and S-Plus Companion to Applied Regression, 1: 1-21.

- Gini, C. (1936). On the Measure of Concentration with Special Reference to Income and Statistics. *Colorado College Publication*, **208**: 73–79.
- Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. *Water Resources Research*, **15**: 1049-1054.
- Grover, L. K. and Kaur, P. (2011). An improved estimator of the finite population means in simple random sampling. *Model Assisted Statistics and Applications*, **6**(1): 47-55.
- Gupta, S. and Shabbir, J. (2008). On the improvement in estimating the population mean in simple random sampling. *Journal of Applied Statistics*, **35**(5): 559-566.
- Hampel, F. R. (1971). A general qualitative definition of robustness. *The Annals of Mathematical Statistics*, 42(6): 1887–1896.
- Hartley, H. O. and Ross, A. (1954). Unbiased ratio estimators. *Nature*, **17**(4): 270- 271.
- Huber, P. J. (1973). Robust regression: asymptotics, conjectures and MonteCarlo. *The Annals of Statistics*, 1: 799-821.
- Jhajj, H. S., Sharma, M. K. and Grover, L. K. (2006). A family of estimators of population means using information on auxiliary attributes. *Pakistan Journal of Statistics*, **22**(1): 43–50.
- Kadilar, C. and Cingi, H. (2003). Ratio estimators in stratified random sampling. *Biometrical Journal*, 45: 218-225.
- Kadilar, C. andCingi, H. (2004). Ratio estimators in simple random sampling. *Applied Mathematics* andComputation,**151**(3): 893-902.
- Kadilar, C. and Cingi, H. (2005). A new estimator using two auxiliary variables. Applied Mathematics and Computation, 16(2): 901-908.
- Kadilar, C. and Cingi, H. (2006). An improvement in estimating the population mean by using the correlation coefficient, *Hacettepe Journal of Mathematics and Statistics*, **35**(1): 103-109.
- Kadılar, C. and Cingi, H. (2007). Ratio estimators using robust regression. *Hacettepe Journal of Mathematics and Statistics*,**36**: 181-188.
- Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N. and Smarandache, F. (2007). A general family of estimators for estimating population means using known value of some population parameter(s). *Far east journal of theoretical statistics*. **22**(2): 181-191.
- Lu, J. (2013). The chain ratio estimator and regression estimator with linear combination of two auxiliary variables. *PLoS ONE*, **8**(11): 890-899.

- Lu, J. and Yan, Z. (2014). A class of ratio estimators of a finite population mean using two auxiliary variables. *PLoS ONE*, **9**(2): 890-899.
- Muili, J. O., Adebiyi, A. and Agwamba, E. N. (2020). Improved ratio estimators for estimating population mean using auxiliary information. International Journal of Scientific and Research Publications, **10**(5): 937-945.
- Nadia, H. and Mohammad, A. A. (2013). Model of robust regression with parametric and nonparametric methods. *Mathematical Theory and Modeling*, **3**: 27-39.
- Naik, V. and Gupta, P. (1991). A general class of estimators for estimating population mean using auxiliary information, *Metrika- International Journal for Theoretical and Applied Statistics*, **38**(1): 11-17
- Ozgul, N. and Cingi, H. (2014). A new class of exponential regression cum ratio estimator in two phase sampling. *Hacettepe Journal of Mathematics and Statistics*, **43**(1): 131–140.
- Perri, P. F. (2007). Improved ratio-cum-product type estimators. *Statistics in Transition*, **8**(2), 51–69.
- Quenouille, M. H. (1956). Notes on bias in estimation. *Biometrika*, **4**(3),353-360.
- Rao, T. J. (1991). On certain methods of improving ratio and regression estimators. *Communications in Statistics-Theory and Methods*, **20**(10): 3325-3340.
- Shabbir, J. and Yaab, Z. (2003). Improvement over transformed auxiliary variables in estimating the finite population mean. *Biometrical Journal*, 45(6):723–729.
- Shabbir, J. and Gupta, S., (2010). Estimation of the finite population mean in two-phase sampling when auxiliary variables are attribute. *Hacettepe Journal of Mathematics and Statistics*. **39**(1): 121-129.
- Sharma, B. and Tailor, R. (2010). A new ratio-cum-dual to ratio estimator of finite population mean in simple random sampling. *Global Journal of Science Frontier Research*,**10**:27-31.
- Sharma, P. and Singh, R. (2014). Improved ratio type estimators using two auxiliary variables under second order approximation. *Mathematical Journal of Interdisciplinary Sciences*, **2**(2): 193-204.
- Singh, M. P. (1965). On the estimation of ratio and product of the population parameters. *Sankhya B*, **2**(7): 231-328.
- Singh, M. P. (1967). Ratio cum product method of estimation. *Metrika*, **1**(2), 34-42.
- Singh, H. P. and Tailor, R. (2003). Use of known correlation coefficient in estimating the finite population means. *Stat Transit*, 6(4):555-560.

- Singh, H. P. and Espejo, M. R. (2003). On linear regression and ratio-product estimation of a finite population mean. *Journal of the Royal Statistical Society. Series D (The Statistician*),**52**(1): 59-67.
- Singh, G. N. (2003). On the improvement of product method of estimation in sample surveys. *Journal* of the Indian Society of Agricultural Statistics, 56(3): 267–275.
- Singh, R., Cauhan, P., Sawan, N. and Smarandache, F. (2007). Auxiliary information and a priori values in construction of improved estimators. *Renaissance High Press. First Edition*, 1-74
- Singh, R. and Kumar, M. (2011). A note on transformations on auxiliary variable in survey sampling. *MASA*,**6**(1):17-19.
- Singh, R., Mishra, P., Audu, A. and Khare, S. (2020): Exponential Type Estimator for Estimating Finite Population Mean. *International Journal of Computational and Theoretical Statistics*, **7**(1): 37-41
- Sisodia, B. V. S. and Dwivedi, V. K. (1981). Modified ratio estimator using coefficient of variation of auxiliary variable. *Journal of the Indian Society* of Agricultural Statistics, **33**(2): 13-18
- Subramani, J. and Kumarapandiyan, G (2012). Estimation of population mean using co-efficient of variation and median of an auxiliary variable *International Journal of Probability and Statistics*, 1(4):111–118.
- Subramani, J. and Kumarapandiyan, G. (2013). A new modified ratio estimator of population mean when median of the auxiliary variable is known. *Pakistan Journal of Statistics and Operation Research*,9(2): 137-145.
- Subramani, J. and Kumarapandiyan, G. (2014). Some Modified Estimators for estimating of Population Mean using known parameters of an auxiliary variable. *Statistical Modeling and Analysis Techniques*, 93-101.
- Subramani, J. and Kumarapandiyan, G. (2016). Estimation of population mean using known correlation coefficient and median, *Journal of Statistical Theory and Applications*, **13**(4): 333-343.
- Subzar, M., Maqbool, S., Raja, T. A. and Shabeer. M. (2017). A New Ratio Estimators for estimation of Population mean using Conventional Location parameters. *World Applied Sciences Journal*, **35**(3): 377-384.
- Subzar, M., Maqbool, S., Raja, T. A., Mir, S. A., Jeelani, M.
 I. and Bhat, M. A. (2018a). Improved family of ratio type estimators for estimating population

mean using conventional and non-conventional location parameters. *Investigación Operacional*, **38**(5): 510-524.

- Subzar, M., Maqbool, S., Raja, T. A. and Abid, M. (2018b). Ratio estimators for estimating population mean in simple random sampling using auxiliary information, *Applied Mathematics and Information Sciences Letters*, **6**(3): 123-130.
- Subzar, M., Maqbool, S., Raja, T. A., Pal, S. K. and Sharma, P. (2018c). Efficient estimators of population mean using auxiliary information under simple random sampling. *Statistics in Transition New Series*, **19**(2): 219-238.
- Tailor, R., Chouhan, S. and Garg, N. (2012). A ratio-cumproduct estimator of population mean in stratified random sampling using two auxiliary variables. *STAT/STICA*, **72**(3): 1-17.
- Upadhyaya, L. N. and Singh, H. P. (1999).Use of transformed auxiliary variable in estimating the finite population mean. *Biometrical Journal*, **41**(5): 627–36.
- Verma, H. K., Sharma, P. and Singh, R. (2015). Some Families of Estimators Using Two auxiliary variables in stratified random sampling. *Revista Investigacion Operacional*, **36**(2):140-150.
- Yadav, S. K. and Zaman, T. (2021). Use of Some Conventional and Non-conventional parameters for Improving the Efficiency of ratio-type estimators. *Journal of Statistics and Management Systems*::1-24.
- Yan, Z. and Tian, B. (2010). Ratio method to the mean estimation using coefficient of skewness of auxiliary variable. *ICICA Part II CCIS106*: 103-110.
- Yunusa, M. A., Audu, A., Musa, N., Beki, D. O., Rashida, A., Bello, A. B. and Hairullahi, M. U. (2021). Logarithmic ratio-type estimator of population coefficient of variation. *Asian Journal of Probability and Statistics*,**14**(2): 13-22.
- Zaman, T. and Bulut, H. (2018). Modified ratio estimators using robust regression methods. *Communication in Statistics- Theory and Methods*, **1:** 1-10.
- Zaman, T. (2019). Improved modified ratio estimators using robust regression methods. *Applied Mathematics and Computations*, **34**(8): 627-631.
- Zaman, T., Dunder, E., Audu, A., Alilah, D. A., Shahzad, U. and Hanif, M. (2021). Robust Regression-Ratio-Type Estimators of the Mean Utilizing Two Auxiliary Variables: A Simulation Study. *Hindawi Mathematical Problems in Engineering*, **2021**: Article ID 6383927.