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ABSTRACT: Attenuated Total Reflectance Fourier transform infrared spectroscopy together with 

multivariate statistical regression was used to produce calibrations between spectra of standard 

mineral mixtures and gas shale reservoir rocks. A Classical Least Square (CLS) model was developed 

from the attenuated spectra of mixtures of five mineral standards chosen to represent the most 

frequently encountered minerals in shale-type reservoir rocks namely: quartz, illite/smectite (30:70), 

kaolinite, calcite and dolomite. The CLS model developed was able to quantify the mineral 

components of independent mixtures with an absolute error between 1 to 3wt% for all the pure 

minerals in the mixtures. Samples from a suite of shale reservoir rocks were analysed using standard 

Quantitative X-Ray Diffraction (QXRD) and with FTIR. Unknown mineral concentrations in the 

samples were then predicted using spectra and the calibration equations. Good correlations were 

achieved between the QXRD and ATR-CLS predicted concentrations (r
2
>0.8), with average absolute 

error of between 1 to 6wt%. This provides evidence that attenuated FTIR is a promising method for 

rapid and accurate determination of minerals in reservoir rocks for building higher resolution data 

without additional time consuming and expensive traditional analyses. 

Keywords: Attenuated Total Reflectance Infrared Fourier Transform Spectroscopy; Classical Least 

Square analysis; Mineralogy; Reservoir rocks; Shales 

 

 INTRODUCTION 

The depletion of conventional petroleum 

sources and the increase in oil prices urge the 

search for alternative energy sources. The 

production of shale gas from gas shale is one 

of the energy generation alternatives 

available. Gas shale is one of the most 

promising sources of energy, with large 

deposits situated in many parts of the world. 

The term shale gas refers to unconventional, 

continuous-type, self-sourced resources 

contained in fine grained (ranging from clay to 

very fine sandstone), organic-rich, low 

permeability reservoirs in which thermogenic 

or biogenic methane is stored as free gas in 

the matrix or fracture porosity, or as 

adsorbed/dissolved gas on the organics 

and/or clays (Faraj et al., 2004;  Montgomery 

et al., 2005; Ross and Bustin, 2007; Bustin et 

al., 2008; Ross and Bustin, 2008). 

The composition and origin of produced 

natural gas is fundamental for assessing 

reservoirs and guiding exploration strategies 

and has an impact on the overall economics of 

a gas shale play. Shale gases are primarily 

methane with minor amounts of other gases, 

including ethane, carbon dioxide and nitrogen. 

The key elements for successful development 

of shale gas are the presence of adequate gas 

in place and either the existence of adequate 

permeability or a rock of suitable mechanical 

properties for efficient completion and 

fracture stimulation. The presence of gas in 

place requires adequate gas generative 

organic matter to generate either biogenic or 

thermogenic gas, and to retain significant gas.  

The shale gas petroleum system is self-

contained. Shales act as the critical lithological 

units for most or all the key components of 

the shale gas petroleum system. Definition 

and prediction of the geochemical, fluid flow 

and geomechanical properties of shale-rich 

sequences must therefore be placed at the 

heart of any risking methodologies for shale 

gas exploration and production.  

The inorganic constituent of the shales affects 

the reactions of the organic matter both 

physically and chemically (Karabakan and 

Yürüm, 2000). Previous researches 

acknowledged the fact that the minerals in 

the shale influence the conversion of kerogen 

and the release of gas during shale processing 
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(Bhargava et al., 2005). (Karabakan and Yürüm, 

1998) studied the effects of mineral matrix in 

the reactions of oil shales using pyrolysis and 

oxidation reactions of Turkish Goynuk and US 

Green River oil shales. They reported the 

inhibition effects of silicate minerals and 

catalytic effects of the carbonate minerals on 

the pyrolysis reactions of the samples they 

studied. The specific mineralogical 

compositions can be very important in 

understanding fluid/rock interactions, 

acidizing challenges and kerogen adsorption 

and desorption. Accordingly, the quantitative 

determination of mineral matter in gas shale 

is an important analytical problem and one 

this work seeks to address. Such mineralogical 

data is useful in: the initial exploration phase; 

the construction of geological models and 

ensuing plans for the development and 

production; as well as the planning and 

execution of improved/enhanced oil recovery 

treatments (Breen et al., 2008).  

The development of non-destructive, rapid 

logging techniques such as X-ray fluorescence 

(XRF) for major elements, reflected light for 

bulk carbonate, and, magnetic susceptibility 

for continental supply, have radically changed 

the potential for generating continuous high 

quality, and high resolution reservoir data 

(Deaton and Balsam, 1991). Despite progress 

in scanning technologies (i: e, the use of 

Nuclear Magnetic Resonance, 3-D Sonic 

Scanning and micro-resistivity logs), one of 

the most fundamental parameters in reservoir 

evaluation; mineralogy, is still not routinely 

determined using scanning techniques with 

high accuracy. Furthermore, the paucity of 

mineralogical quantification cannot be 

overemphasised giving the continuous decline 

in production from conventional sandstone 

reservoirs and the paradigm shifting towards 

shale gas exploration.  

This study demonstrates that the method of 

Fourier transform infrared spectroscopy (FTIR) 

can be applied to reservoir rocks for the rapid 

determination of minerals. Spectroscopic 

methods have been used for almost 40 years 

in marine science (Deaton and Balsam, 1991; 

Mitchell, 1993; A.C. et al., 1995). Mid-infrared 

spectroscopy has been used for the 

determination of relative abundances of 

quartz, clay and calcite in a range of deep sea 

sediments (Herbert et al., 1992). Few studies 

have used Near-infrared spectroscopy 

(Basalm and Deaton, 1996); (Chang et al., 

2005) and its full potential is yet to be fully 

realised. Spectra give a graphical 

representation of how infrared light acts with 

inter atomic bonds in inorganic rock materials 

(particularly SiO2, Al2O3, and Fe2O3) and it is 

the excitation of these bonds which gives rise 

to different spectra with the absorption being 

directly related to the mineral concentration 

in these rocks (AC. et al., 1995). 

Several studies have demonstrated the 

feasibility of combining infrared Fourier-

transform spectra and multivariate statistical 

analyses to provide a simple, rapid 

chemometric technique for the simultaneous 

qualitatative and quantitative analysis of soil 

properties. For example a methodology for 

obtaining quantitative mineral concentrations 

from transmission FTIR spectroscopy was 

presented by Abigail and Michael (1993). The 

study of Holman et al. (1994) highlight the 

fact that ATR-FTIR spectroscopy can provide 

accurate quantitative results when applied to 

analyse complex mixtures. Janik et al. (1995) 

demonstrated how experimentally derived 

soil mineralogical and organic components 

may be correlated with the infrared spectra of 

some of these components based on the 

theory that Mid-infrared diffuse reflectance 

Fourier transform (DRIFT) spectra of 

powdered soils present the major 

components, relative to their concentrations. 

They used PLS to model the properties of 

some 298 eastern and southern Australian 

soils and their spectra and then used the 

model to classify the soil spectra and their 

associated major oxides including SiO2, Al2O3, 

Fe2O3, TiO2, MgO and CaO. The PLS predicted 

values for SiO2, Al2O3 and Fe2O3 versus X-Ray 

Fluorescence (XRF) resulted with linear 

regression R
2
 values of 0. 973 - 0. 917. 

Regressions for the other oxides, e.g. TiO2, 

MgO and CaO, were generally curved with a 

linear calibration giving severe 

underestimations at high concentrations. 

Transmission FTIR measurements however, 

require sample preparation in order to record 

a good quality spectrum; samples are studied 
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in the form of self-supporting thin and porous 

discs. The samples have to be diluted in KBr 

pellet due to the high absorptivities 

associated with mineral (Karakassides et al., 

1997). The pressing of KBr pellet with clay is 

often associated with alteration in spectrum 

through absorption or exchange of the K into 

the clay structure (Ray and Ursula, 1998).  

The DRIFTS method is applicable to powder 

and over comes the need to prepare the KBr 

pellet therefore, provide the advantage of 

rapid analyses time without having to go 

through rigorous sample preparations 

(Madejová and Komadel, 2001). Although, the 

samples still need to be mixed with KBr to 

minimise interference effect created by 

particle size and the incident IR wavelengths 

(towards the low frequency region, normally 

below 1000cm
-1

) known as the Restrahlen 

effects  

ATR technique combats the most challenging 

aspects of sample preparation and spectral 

reproducibility encountered in Transmission 

and DRIFT analyses. An attenuated total 

reflection accessory operates by measuring 

the changes that occur in a totally internally 

reflected infrared beam when the beam 

comes into contact with a sample. Unlike 

DRIFTS measurements, ATR sampling does not 

produce totally absorbing spectral bands 

because the effective path-length is 

controlled by the crystal properties thereby 

minimizing sample preparation time. A much 

smaller area of contact is required; as a result 

spectra can be obtained from a wide variety 

of solid materials including minerals. Other 

key advantages of the ATR include: improve 

sample-to-sample reproducibility; minimal 

user-to-user spectral variation and most 

importantly, the improved spectral acquisition 

and reproducibility associated with this 

technique leads to better quality database 

building for more precise material verification 

and identification.  

(Clegg, 1998) highlights the principles and 

advantages involved in the technique while 

focussing on the distinction between bulk and 

surface mineralogy of sandstone-type rocks. 

Herein the feasibility of applying multivariate 

statistical models based on Classical Least 

Squares (CLS) to mid-infrared spectra 

obtained via Attenuated Total Reflectance 

Fourier Transform Spectroscopy is 

investigated. 

CLS is a multivariate statistical technique 

(Geladi and Kowalski, 1986); (Beebe and 

Kowalski, 1987) that can be used to quantify 

analyte in infrared spectra that are expressed 

using the Beer-Lambert law for absorbance or 

the Kubelka Munk equivalent for spectra 

obtained using DRIFTS. This technique is 

particularly appropriate when analysing 

complex multiple spectra, which contain 

broad and overlapping bands. In essence the 

CLS algorithm examines regions of the spectra 

to determine which areas vary as a function of 

component concentration (Martens and Naes, 

1989.). (Hughes and Jones, 1992; Hughes et 

al., 1991) initially applied several multivariate 

calibration techniques to infrared spectra of 

drilled cuttings/solids, to quantify the 

mineralogical content. They demonstrated 

how FTIR spectroscopy can be combined with 

PLS spectral fitting to quantify the mineralogy 

of a complex mixture. They were able to 

estimate the types and amounts of clays, 

carbonates and the silicates. However, the 

technique gives poor estimation when 

extrapolated in order to distinguish between 

mineral species where only slight difference in 

structure or chemistry exists.  (Hughes et al., 

1995) applied Partial Least Squares (PLS) 

algorithms to DRIFT spectra to Portland 

cement and were able to describe up to 14 

components with adequate accuracy. In 

another study, (Janik and Skjemstand, 1995) 

combined PLS and DRIFTS for the successful 

analysis of tubular halloysite in kaoline 

samples, whilst (Peussa et al., 2000) were able 

to determine, with sufficient accuracy, the 

hydroxyl group content in calcined silica thus 

removing that dependence on time 

consuming thermo-gravimetric analysis. 

In CLS computation, the complex relationship 

between a very large number of X 

independent variables and dependent Y 

variables is compressed into a small number 

of linear combinations of the original X 

variables, and only those components are 

used in the calibration (Naes et al., 2004). In 

addition, the dependent Y variables are used 

explicitly in how each factor (component) is 
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computed from spectra (Bjorsvik and Martens, 

2000). Possibly the most important advantage 

of CLS regression in comparison to more 

simple regression methods is that many 

collinear, independent X variables can be 

handled which is essential in FTIR analysis 

because of the large number of spectral data 

points which correlate with each other 

(Martens and Naes, 1989.). 

CLS regression model is established between 

matrix X, containing absorbance at m wave -

numbers for n samples; a Y matrix containing 

the concentration-path length product of p 

components in the n samples and a K which is 

a p by m matrix. Each row of K corresponds to 

the spectrum of one of the p analytes at unit 

concentration and unit path length. Each row 

of X is the spectrum of one of the n samples, 

containing the absorbance values at different 

wave numbers. The matrix formulation of 

Beers Law is: 

 

� =  ��   (1)          

Where:  

X is the n by m matrix of absorbance of the 

samples  

Y is the n by p matrix containing the 

concentration-pathlength product of the p 

components in the n samples 

K is a p by m matrix.  

Any sample’s spectrum is assumed to be the 

sum of the spectra of p components in the 

sample. Prior to modelling, the mixtures are 

divided into calibration and validation sets. 

The composition of new samples (i.e., 

unknowns) can be determined immediately 

from their spectra and K. Designating the 

spectrum of a single new sample as Xnew, 

equation (1) can be rearranged to give a vector 

of estimated concentrations for this sample: 

 
  ���� =   ���� 	 =  �����
 (��)�

 (2) 

 

Where β is a matrix containing p column 

vectors, one for each component.  

The individual regression vectors are thus the 

columns of the pseudo-inverse of K, 

symbolized by K
†
: 

 

  	 = �� (��
)�  =  �†   
(3) 

 

The aim of this study was to develop a CLS 

calibration model based on the Attenuated 

spectra of mixtures of mineral standards 

(ATR-CLS MODEL) for prediction of the 

mineralogy for shale gas reservoir.  

MATERIALS AND METHODS 

A suit of clastic and carbonates mineral 

mixtures were prepared from five mineral 

standards based on mineral combinations 

commonly found in shale reservoir rocks. The 

five minerals chosen to make up the mineral 

mixtures are: quartz, Illite-smectite (70:30), 

kaolinite, calcite and dolomite and were 

obtained from the British Mineralogical group 

standards with all standards having a 

percentage purity of 99.7%. All the minerals 

were used as received without further 

treatment. Each mineral in the mixture set was 

distributed within concentration ranges typical 

of sedimentary rock. A total of 23 mixtures 

were used to develop and validate the ATR-

CLS model. Fourteen of the twenty-three 

mixtures were used to develop the model, and 

the remaining nine were used in the validation 

process. The weight percent ranges 

(concentrations) of the pure mineral 

components used in developing the model are 

given in Table 1. Furthermore, the mineral 

content of seven reservoir shale core samples 

from the Nile Delta and the Western Canada 

Sedimentary Basin were analysed using 

QXRD and the ATR-CLS model. This was 

done in order to assess the prediction 

capability of the model. 

Table 1. The relative compositions of mineral standards used to develop the calibration model 

Mineral  Typical structural formula Weight % ranges  

Illite 

Smectite(Montmorillonite) 

(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] 

(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O 

 10-60 

  10-60 

Kaolinite Al4Si4O10(OH)8   0-60 

Quartz SiO2   0-60 

Calcite CaCO3   0-80 

Dolomites CaCO3.MgCO3   0-10 
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Sample Preparation: The pure standard 

minerals and the reservoir shale samples were 

pulverised to less than 10 µm using Tema mill. 

100mg of each mixture were prepared by 

weighing the material to within ±0.1 mg of the 

preordained amounts. The mixture was then 

mixed with a pestle and mortar to a consistent 

homogeneity of less than 2 µm. The 

powdered mixtures were then oven dried at 

110 C̊ for 24 hours and kept in a dessicator for 

the FTIR analysis.  

Absorption FTIR spectra were collected with a 

Varian 700 Scimitar series spectrometer 

equipped with an ambient DTGS detector. The 

samples were analysed over the 4000 cm
-1

 to 

600 cm
-1

 wave-number range collecting 32 

scans at a resolution of 4 cm
-1

 and background 

scan was performed for every sample. FTIR 

spectra were also obtained in transmission 

mode in the mid-infrared range (400 to 4000 

cm
-1

) using KBr pellets (1-2 mg mineral in ~200 

mg KBr) with a resolution of 4 cm
-1

 and 100 

scans on an AVATAR 360 FTIR ESP 

spectrometer with OMNIC software. 

The CLS model was developed on Pirouette 

software platform. The optimum number for 

factors to be used in the model development 

was determined from the predicted error sum 

of squeares (PRESS). Validation correlation 

coefficients are used to indicate the ability of 

the model to predict the concentration of the 

components; an excellent value is 0.990 and 

values less than 0.975 are considered to be 

poor (Naes et al., 2004).  Because the weight 

percent of the mixtures in the external 

validation set and data for the unknown 

reservoir samples were, in fact known, the 

calibration model could be tested for accuracy 

by statistically comparing the ATR-CLS 

predicted values for the known mixtures and 

in the shale samples against their known 

values. This provides an indication of the likely 

performance of the calibration model in 

predicting the mineral composition of 

unknown samples in the future. 

It should be noted that, occasionally, when 

composition of unknown samples are 

predicted using the calibration model, 

negative mineral predictions may be obtained 

when the concentrations are low. This is a 

problem encountered in all multivariate 

models, and can either be ignored or assigned 

as containing none of the specified 

components (Beebe and Kowalski, 1987).  

Independent bulk quantitative mineralogical 

analysis of the reservoir rocks was performed 

using the well documented quantitative X-ray 

powder diffraction technique in accordance 

with procedures of (Hillier, 2003).  The bulk 

samples were dried at 105 C̊, wet ground in a 

McCrone mill and spray dried to produce a 

random powder. X-ray powder diffraction 

(XRPD) patterns were recorded from 2 to75 ̊2̊θ 

using Cobalt Ka radiation range. Samples were 

analysed in θ-2θ coupled mode with 0.01 ̊ ̊step 

size and 2s/step sampling time. Quantitative 

analysis was done by a normalised full pattern 

reference intensity ratio (RIR) method. Clay 

fractions of <2µm were obtained by timed 

sedimentation, prepared as oriented mounts 

using the filter peel transfer technique and 

scanned from 2 to 45 ̊2θ in the air-dried state, 

after glycolation, and after heating to 300 C̊ 

for one hour. Clay minerals identified were 

quantified using a mineral intensity factor 

approach based on the calculated XRPD 

patterns 

Theory of data processing: The analytical 

procedures followed in this study ensure that 

absorbance bands are in the linear region of 

Beer’s law. Standard full spectrum processing 

program, normalisation to optimum of 1.0 

absorption, linear baseline corrections and 

spectra smoothening using the  SavGoley 

polynomial functions with 2 points was run to 

solve for the mineralogy of the mixtures. 

Therefore, each mixture spectrum is a linear 

combination of the mineral standard spectra 

multiplied by the concentration of each 

mineral standard in the mixture. This reduced 

variance between FTIR spectra of the same 

mixture. The concentrations are determined 

from minimising the difference between the 

measured FTIR spectrum and the product of 

the spectra and the concentrations of mineral 

standards over the mid-infra red region. 

 

RESULTS AND DISCUSSION 

Mineral Standard Spectra: The absorbance 

FTIR spectra of the mineral standards are 

shown in Fig 1. The mineral standards in this 

set of mixtures can be divided into three major 
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groups: the tectosilicates (framework silicates, 

e.g., quartz), phyllosilicates (layer silicates, 

e.g., clays), and the carbonates. The mineral 

groups have FTIR absorbance band features 

that make them clearly different from one 

another. However, within the carbonate group 

the spectra are similar. Both the calcite and 

dolomite are characterised by the strong 

absorption bands due to the asymmetric

Fig.1.The FTIR spectra of the five standard minerals used to develop the calibration

differences and similarities in their infrared 

 

The ability of the model to successfully 

predict the concentration of each mineral 

standard in the validation set and rock 

samples is represented in Fig 2. The figure 

shows the model output obtained from 

Pirouette software showing the correlation 

coefficients (rCal) and includes the 

number of factors used (at the right end of 
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phyllosilicates (layer silicates, 

e.g., clays), and the carbonates. The mineral 

groups have FTIR absorbance band features 

that make them clearly different from one 

another. However, within the carbonate group 

the spectra are similar. Both the calcite and 

olomite are characterised by the strong 

absorption bands due to the asymmetric 

stretching vibrations of the 

between 1540 and 1400 cm

et al., 1995). The silicates spectra are 

characterised by Si-O stretching and bending 

vibrations between 1200 and 800 cm

phyllosilicates can be separated from the 

tectosilicates based on the occurrence of the 

O-H stretch vibrations at 3750 to 3400cm

(Peussa et al., 2000; Hughes et al., 1995)

Fig.1.The FTIR spectra of the five standard minerals used to develop the calibration

their infrared absorption characteristics. 

The ability of the model to successfully 

predict the concentration of each mineral 

standard in the validation set and rock 

samples is represented in Fig 2. The figure 

shows the model output obtained from 

Pirouette software showing the correlation 

nts (rCal) and includes the 

number of factors used (at the right end of 

the measured Y). For example, four factors 

were used to obtain a correlation 

coefficient of 0.994. In general, the least 

successful predictions were for calcite and 

dolomite as reflected in the scatter of data 

and the relatively low correlation 

coefficients of 0.955 and 0.946, 

respectively. 

stretching vibrations of the CO3  which occur 

between 1540 and 1400 cm
-1 

(Fig. 1) (Hughes 

. The silicates spectra are 

O stretching and bending 

vibrations between 1200 and 800 cm
-1

. The 

phyllosilicates can be separated from the 

tectosilicates based on the occurrence of the 

H stretch vibrations at 3750 to 3400cm
-1

 

(Peussa et al., 2000; Hughes et al., 1995).  

 

Fig.1.The FTIR spectra of the five standard minerals used to develop the calibration model showing 

the measured Y). For example, four factors 

were used to obtain a correlation 

coefficient of 0.994. In general, the least 

successful predictions were for calcite and 

ed in the scatter of data 

and the relatively low correlation 

coefficients of 0.955 and 0.946, 
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Fig.2. Plots of measured minerals concentration against the CLS-predicted concentration for the 

calibration sets showing calibration correlation coefficients and optimum number of factors used at 

the far left of Measured Y axis. Four factors were used to give the correlation coefficients. 

 

The FTIR-CLS calibration results for each 

mineral in the internal validation set are 

plotted in Fig 3 as plots of actual against 

predicted concentrations. The average 

absolute difference (including zeros) between 

measured and predicted concentrations is 

calculated for each mineral. There is a very 

good agreement between the FTIR-derived 

and the known concentrations of the 

illite/smectite, kaolinite and quartz with an 

average absolute difference of 2.7wt%, 2.4wt% 

and 1.7wt% respectively. However, the 

average absolute difference and the 

correlation coefficient for the calcites and 

dolomites suggest that it might be difficult to 

differentiate these minerals from one another 

as shown by significant scatter in the plots (Fig 

3).  A plot of the combined calcite and 

dolomite concentrations is presented because 

the method produced relatively poor 

predictions for the two minerals. This was 

anticipated as the attenuated spectra of 

Illite/smectite 0.993 kaolinite 0.993 

Quartz 0.994 

Calcite 0.955 0.946 Dolomite 
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calcite and dolomite are very similar (Fig.1), 

which might be because of their similar intra-

atomic bonds in the carbonate radicals (CO3
2-

), 

structure and properties (A.C. et al., 1995). 

These results are consist with the findings of 

(Abigail and Michael, 1993) and comparable 

to the study of (Hughes and Jones, 1992). This 

demonstrates that the ATR spectra exhibit 

similar quantitative characteristics as spectra 

obtained from Transmission and DRIFT 

techniques.   

Ideally, the spectral information in each 

mineral spectrum should be unique. 

Consequently, if the spectra of two or 

more components are similar then 

correlations between spectra and 

concentration information will be difficult 

to distinguish and quantitative results will 

be inaccurate. Despite these limitations for 

the carbonates minerals, ATR-CLS model 

produced robust determination coefficients 

of more than 0.90 for illite/smectite, 

kaolinite, quartz and combined calcite and 

dolomite with measured QXRD values. 

 

 

 
 
Fig.3. Regression plots showng comparison of known concentrations of mineral mixtures (validation 

set) and FTIR-CLS model predicted mineral concentrations.  
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Fig. 4 shows scatter plots of mineral 

concentrations measured by XRD versus 

ATR-CLS predicted concentrations for all 

the shale. The averages absolute difference 

(including zeros) between measured (XRD) 

and predicted (ATR-CLS) concentrations 

for each mineral are shown in Table 2. The 

two measurements match each other 

closely (Fig 4).  The correlation between 

the two measurements for the carbonates is 

poor however; and agrees with the model 

predicted values for mixtures used in the 

internal validation set. The concentrations 

of the mixed layer clays (Illite-Smectite) 

calcite predicted by the ATR-CLS model 

were generally higher than those obtained 

by the QXRD. This may be because the 

shale rocks contain small amounts of other 

clays (chlorite possibly) and carbonates 

(possibly siderite and/or, magnesite). 

These clay minerals exhibit infrared bands 

in similar spectral regions to those of the 

mixed layer in the OH stretching region as 

well as the Si-O bands. Similarly, siderite 

and magnesite exhibit infrared bands in 

similar spectral regions to those of 

dolomite and even though they were not 

included in the model, they might have 

contributed to the results (Clegg, 1998). 

However, for each carbonate in the shale 

samples, the agreement between measured 

and derived values is better when the sum 

of the group is compared rather than when 

the minerals are considered individually. 

Analyses of variance (ANOVA) between 

the CLS predicted and XRD measured 

mineralogy conducted for the shale 

minerals at 95% confidence results in large 

p - values (Table 2). The p-values for all 

the mineralogy is greater than (0.05), 

which supports the conclusion that the 

means weights of the CLS predicted values 

do not differ significantly from the 

measured values. 

Table 2: Errors of ATR-CLS model in prediction of mineral composition of reservoir shale samples 

(figures in parentheses denote the range of difference) 

Mineral  Average Difference 

 (Wt %) 

 ANOVA  

p-values 

   

Illite-Smectite  -6.58 (+2.54/-15.97)                         0.55 

Kaolinite -0.87 (+1.24/-4.92) 0.897 

Quartz   3.08 (+8.88/-3.04)  0.739 

Calcite     5.70 (+17.3/-7.46)  0.917 

Dolomite  -4.55 (-2.59/18.24)  0.08 

Calcite + Dolomite  -2.69 (+1.71/-5.99)  0.879 

 

 

Breen et al. (2008) developed a PLS model 

from the DRIFTS spectra of mixtures of 

seven mineral standards encountered in 

sandstone-type rocks; quartz, dolomite, 

montmorillonite, illite, kaolinite, chlorite 

and albite. The PLS–DRIFTS model was 

able to quantify the mineral components of 

independent mixtures with an absolute 

error of 1 wt. % for all the minerals 

(concentration range 0–30 wt. %) with the 

exception of quartz which exhibited an 

absolute error of 3 wt. % (concentration 

range 50–90 wt. %). Similarly, the results 

obtained when they applied the PLS–

DRIFTS model to several sandstone-type 

quarry rocks and a suite of oilfield 

reservoir rocks did not describe all the 

mineral components present in the samples. 

These findings compared well to results 

obtained in this study using the ATR-CLS 

model. The model was not able to 

differentiate between montmorillonite and 

illite probably due to the similarity of the 

DRIFTS spectra of these minerals, but it 

was able to quantify the combined 

(montmorillonite + illite) concentrations to 
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within 1 wt. %. They report over-

prediction in the concentration of albite in 

the quarry rocks due to the presence of K-

feldspar, which has a similar DRIFTS 

spectrum and was not included in their 

model. However, the model accurately 

predicted the total (albite and K-feldspar) 

concentration to within 4 wt. %.  When 

they applied a separate PLS–DRIFTS 

model constructed using the DRIFTS 

spectra of the oilfield reservoir rocks for 

the prediction, the carbonate components, 

calcite and dolomite could be 

differentiated and quantified to within 5.0 

and 3.6 wt. %, respectively. This shows 

that more sophisticated models, which 

incorporates and describes a higher 

percentage of the variance in unknowns, 

would further improve the predictions. 

Such a model could be constructed from 

data set containing naturally varying 

minerals. 

 

 

Fig.4. Comparison of ATR-CLS predicted mineralogy in shale rocks with those measured by QXRD. 

 

Conclusions: This feasibility study 

confirmed the strong potential of 

combining ATR spectra with a 

multivariate statistical approach for 

quantitative mineralogical analyses. A set 

of mineral mixtures was prepared to 

develop prediction model using FTIR 

spectroscopy-multivariate statistical 

method. The mineral mixtures were 

designed to reflect the major mineral 

components found in clastic and 

carbonates formations. Application of a 

CLS statistical tool on attenuated spectra 

of standard mineral mixtures generated 

predictive models with an average 

absolute error of less than 3 for 

illite/smectite, kaolinite and quartz and an 

average absolute difference of 3.8 for the 

combined carbonates (calcite and 

dolomite) in pure mineral mixtures. The 

degrees of similarity between the mineral 

group spectra indicate that it might be 
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difficult to determine individual mineral. 

The agreement between measured and 

known carbonates, calcite and dolomite is 

poor and leads to the conclusion that it is 

difficult to differentiate between them. On 

the other hand, the FTIR-derived 

concentrations between illite/smectite, 

kaolinite and quartz are in fairly good 

agreement with the known mineral 

concentrations. However, the agreement 

between the derived and known 

mineralogy is better when the sum of the 

carbonates are compared rather than when 

the individual carbonates are evaluated. 

The ATR-CLS model was able to 

quantify the minerals in natural reservoir 

rocks with an absolute average difference 

of 6wt%; which shows the evidence that 

applying multivariate non-linear 

regression analysis on attenuated spectra 

of shale rocks has high potential for 

quantifying its mineral components. ATR 

spectra predicted results compare 

reasonably well with predictions obtained 

using other techniques such as 

Transmission and DRIFT. The speed of 

spectral acquisition and data processing 

together with small sample size 

requirement makes the ATR technique 

more desirable than the other techniques. 
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