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ABSTRACT: Most of the studies on reliability characteristics of redundant systems deal with cold standby systems 
only. Little attention is paid on 2-out-of-3 warm standby system involving three types of failures. In this study models 
for mean time to system failure and availability have been developed to study the effect of failure rate on some 
measures of system effectiveness. Using Chapman Kolmogorov’s forward equations methods, explicit expressions 
for measures of system effectiveness like mean time to system failure (MTSF) and availability have been obtained. 
Graphs were plotted to see the behavior of MTSF and availability of system. Also a special case like linear 
consecutive 2-out-of-3 system is considered to see the effect of failure rate on system design. Results show that 
three units warm standby is more effective that linear consecutive 2-out-of-3 system. 
Keywords: MTSF, availability, 2-out-of-3 system, warm standby, Chapman Kolmogorov’s   equations methods 

 
INTRODUCTION 
Redundancy is a technique used to improve system 
reliability and availability. Reliability is vital for proper 
utilization and maintenance of any system. It involves 
technique for increasing system effectiveness through 
reducing failure frequency and maintenance cost 
minimization. One of the forms of redundancy is the k-
out-of-n system which finds wide application in 
industrial system.  There are systems of three/four units 
in which two/three units are sufficient to perform the 
entire function of the system. Examples of such 
systems are 2-out-of-3, 2-out-of-4, or 3-out-of-4 
redundant systems. These systems have wide 
application in the real world especially in industries. 
Furthermore, a communication system with three 
transmitters can be sited as a good example of 2-out-
of-3 redundant system. Many researchers have 
reported on reliability of 2-out-of-3 redundant systems. 
For example, Chander and Bhardwaj (2007), analyzed 
reliability models for 2-out-of-3 redundant system 
subject to conditional arrival time of the server. Chander 
and Bhardwaj (2009) present reliability and economic 
analysis of 2-out-of-3 redundant system with priority to 
repair. Bhardwaj and Malik(2010) studied MTSF and 
cost effectiveness of 2-out-of-3 cold standby system 
with probability of repair and inspection. Yusuf and 
Hussaini (2012) studied the reliability characteristics of 
2-out-of-3 cold standby system with perfect repair 
options. Yusuf (2012) deal with the analysis of 3-out-of-
4 cold standby system in the presence of preventive 
maintenance. Mokaddis et al (2009) investigated the 

probabilistic of a two unit warm standby system with 
constant failure time and two types of repairmen and 
patience time using regenerative point technique.  
 
In this paper, we construct a redundant 2-out-of-3 
system and derived its corresponding mathematical 
models. Furthermore, we studied reliability 
characteristics of the system model involving three 
types of failures using Chapman-Kolmogorov’s 
differential equation.  
 
The objectives of this paper are: 
1. To obtain explicit expression for (a) MTSF when 

the system viewed as (i) random 2-out-of-3 warm 
standby (ii) linear consecutive 2-out-of-3 warm 
standby system, (b) system availability.  

2. To capture the effect of both failure and repair 
rates on the measures of system effectiveness 
like MTSF and availability based on assumed 
numerical values given to the system 
parameters.  

3. To compare the two configurations for the MTSF. 
 
METHODOLOGY 
Notations 

i =  Constant type i  failure rate,    S = Unit in Standby 

i  = Constant type i  repair rate,  O = Unit in operation 

RiF  = Failed unit under type i  repair     

WiF  = Failed unit waiting for type i  repair 1, 2,3i   
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Assumptions 
(a) The system consist of 3 components/units 
(b) Initially two units are in operable condition of full  
         capacity 
(c) The system is failed when the number of working    

          component goes down below 2 
(d) Failure and repair time follow exponential  
         distribution 
(e) Repair is as good as new(Perfect repair)  
(f) The system is attended by one repairman 

 

 

 

 
 
 

 

 
System is working  
 
 
 
 
system failure 

Figure 1:  States of the System 
 

0 1 2( , , )SS O O O , 1 1 2 3( , , )RS F O O , 2 1 2 3( , , )RS O F O , 23 1 3( , , )SR WS F O F , 4 1 2 3( , , )RS O O F , 

35 1 2( , , )SR WS F F O , 16 2 3( , , )S R WS O F F , 7 1 2 3( , , )R W RS F F F  
 
Model Formulation 
Mean time to system failure analysis for a random 2-out-of-3 warm standby system: 
From Figure 1 above, the up state of the system are: 0 1 2( , , )SS O O O , 1 1 2 3( , , )RS F O O , 2 1 2 3( , , )RS O F O , 

4 1 2 3( , , )RS O O F  and down states are 23 1 3( , , )SR WS F O F , 35 1 2( , , )SR WS F F O , 16 2 3( , , )S R WS O F F , 

7 1 2 3( , , )R W RS F F F . 
Define ( )iP t to be the probability that the system at time  , 0t t   is in state iS . Let ( )P t  be the probability row 
vector at time t , the initial condition for this paper are 

               0 1 2 3 4 5 6 7(0) [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]P P P P P P P P P  = 1,0,0,0,0,0,0,0  
We obtain the following differential equations: 
 

0
1 2 3 0 1 1 2 2 3 4

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

1
1 2 3 1 1 0 3 3 2 5

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

2
2 1 3 2 2 0 1 5 3 6

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

4S

0S
 

2S

1S  

5S

6S 7S

3S

2  
2  2  

3 3

1  

1

3
3

 
3 3

2  

2  

33

1  

1

2  2  
1  

1

1  

1

2  
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3
1 3 2 3 3 1 1 4 2 7

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

4
3 1 2 4 3 0 1 3 2 6

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

5
1 2 3 5 2 1 1 2 3 7

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

6
2 3 1 6 3 2 2 4 1 7

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
             

7
1 2 3 7 2 3 3 5 1 6

( )
( ) ( ) ( ) ( ) ( )

dP t
P t P t P t P t

dt
                                                                                  (1) 

The differential equations (1) above can be written in matrix form as         

P AP


                                                                                                                                                                       (2)          
               
 Where 

0

1

2

3

4

5

6

7

( )

( )

( )

( )

( )

( )

( )

( )

dP t
dt

dP t
dt

dP t
dt

dP t
dtP

dP t
dt

dP t
dt

dP t
dt

dP t
dt



 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
    

11 1 2 3

1 22 3 2

2 33 1 3

3 44 1 2

3 1 55 2

2 1 66 3

3 2 77 1

2 3 1 88

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a
a

a
a

A a
a

a
a

  
  
  

  
  

  
  

  

 
  
 
  
  
 

 
 
 

 
 
 

 

0

1

2

3

4

5

6

7

( )
( )
( )
( )
( )
( )
( )
( )

P t
P t
P t
P t

P
P t
P t
P t
P t

 
 
 
 
 
   
 
 
 
 
  

 

 
11 1 2 3 22 1 2 3 33 2 1 3

44 1 3 2 55 3 1 2 66 1 2 3

77 2 3 1 88 1 2 3

( ), ( ), ( ),
( ), ( ), ( ),
( ), ( )

a a a
a a a
a a

        
        
     

        

        

     

 

 It is difficult to evaluate the transient solutions hence we delete the rows and columns of absorbing state of matrix 
A and take the transpose to produce a new matrix, say 1Q  (El said, 2008; Haggag, 2009).  

The expected time to reach an absorbing state is obtained from the following: 
 

1
(0) ( )

0
(0) Q

P P absorbing
tE T P e dt


                                                                                                                        (3) 

and 
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1 1
1

0

Qt Qe dt


 , since 1
1 0Q                                                                                                                              (4)  

explicit expression for the 1MTSF  is given by  

1 1
(0) ( ) 1 1

1

1
1

(0)( )
1
1

P P absorbing
N

E T MTSF P Q
D




 
 
         
 
 

                                                                                  (5) 

1 2 3 1 2 3

1 1 2 3

1 2 2 1 3

3 3 1 2

( )
( ) 0 0

0 ( ) 0
0 0 ( )

Q

     
   
   
   

   
    
    
    
  

 

 

MTSF  1

1

N
D

  

Where 
 

1 1 2 3 2 1 3 3 1 2 1 2 1 3 3 1 2 3 1 2 3

2 1 3 2 1 2 3 3 1 2

( )( )( ) ( )( ) ( )
( ) ( )( )
                   
         

              
      

N

B+S BW - W
Sample efficiency (%) = x100

0.077

+ 

2 2 2
1 2 1 3 3 2 3 3 1 2 1 1 2 3 2 3 1 2 3 1 2 3 2 3 1 3 2 1 2 32 2 2                                   D     

2 2 2 2 2
1 3 1 2 1 3 2 3 1 2 1 3 1 2 2 3 1 2 3 1 1 3 2 1 2 2 1 2 1 2 3

2 2 2 2 2 2 2 2 2 2
1 2 3 2 1 3 1 1 2 1 2 2 2 2 3 1 1 2 3 1 2 3 1 3 3 1 3 3 2 3

2 2 2 3 2 2 3
1 1 3 1 2 3 2 2 3 1 2 1 2 1

4 4

4

2

                              

                             

              

        

        

     2 2 3 3 2 2 3 3
3 1 3 1 2 2 3 2 3 1 3 2 32 2                

 
Mean time to system failure analysis for a linear consecutive 2-out-of-3 warm standby system: 
From Figure 1, the up states of the system are: 0 1 2( , , )SS O O O , 1 1 2 3( , , )RS F O O , 4 1 2 3( , , )RS O O F  and down 

states are 2 1 2 3( , , )RS O F O , 23 1 3( , , )SR WS F O F , 35 1 2( , , )SR WS F F O , 16 2 3( , , )S R WS O F F , 

7 1 2 3( , , )R W RS F F F . Define ( )iP t to be the probability that the system at time  , 0t t   is in state iS . Let ( )P t  
be the probability row vector at time t , the initial condition for this paper are 

               0 1 2 3 4 5 6 7(0) [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]P P P P P P P P P  = 1,0,0,0,0,0,0,0  
It is difficult to evaluate the transient solutions hence we delete the rows and columns of absorbing state of matrix  
A and take the transpose to produce a new matrix, say 2Q  (El said, 2008 and Haggag, 2009). 

 



Nigerian Journal of Basic and Applied Science (December, 2012), 20(4): 315-323 

 319 

1 2
(0) ( ) 2 2

2

1
(0)( ) 1

1
P P absorbing

N
E T MTSF P Q

D




 
         
  

                                                                               (6)  

Where  

1 2 3 1 3

1 1 2 3

2

3 3 1 2

( )
( ) 0

0 0 ( )
Q

    
   

   

   
    
 
    
  

 

 
2 1 2 3 3 1 2 1 3 1 2 3 1 2 3( )( ) ( ) ( )N                          

2 2
2 1 2 3 3 1 3 1 1 2 3 1 2 1 3 2 3 2 3 1 1 3 1 2 3 1 2 1 2

2 2 2 2 2 2 3
1 3 1 2 3 2 2 3 1 3 2 3 2

3 2

2

                           

            

         

      

D
 

 
Availability analysis for a random 2-out-of-3 warm standby system: 
For the analysis of availability case of Figure 1 using the same initial conditions for this problem as  

               0 1 2 3 4 5 6 7(0) [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]P P P P P P P P P  = 1,0,0,0,0,0,0,0                                                                  
 
The differential equations can be expressed as    

0

1

2

3

4

5

6

7

P

P

P

P

P

P

P

P

















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

=

11 1 2 3

1 22 3 2

2 33 1 3

3 44 1 2

3 1 55 2

2 1 66 3

3 2 77 1

2 3 1 88

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a
a

a
a

a
a

a
a

  
  
  

  
  

  
  

  

 
  
 
  
 
 

 
 
 

 
 
 

0

1

2

3

4

5

6

7

P
P
P
P
P
P
P
P

 
 
 
 
 
 
 
 
 
 
 
  

 

 
The states 0S , 1S , 2S , 3S  and 4S  in Figure 1 are the only working states of the system. The steady-state 
availability is sum of the probability of operational states. Thus, the steady-state availability is given by 

0 1 2 4( ) ( ) ( ) ( ) ( )A P P P P                                                                                                                    (7) 
In the steady state, the derivatives of the state probabilities become zero and therefore equation (2) become  

( ) 0AP                                                                                                                                                                   (8) 
which is in matrix form 
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11 1 2 3

1 22 3 2

2 33 1 3

3 44 1 2

3 1 55 2

2 1 66 3

3 2 77 1

2 3 1 88

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a
a

a
a

a
a

a
a

  
  
  

  
  

  
  

  

 
  
 
  
 
 

 
 
 

 
 
 

0

1

2

3

4

5

6

7

P
P
P
P
P
P
P
P

 
 
 
 
 
 
 
 
 
 
 
  

=

0
0
0
0
0
0
0
0

 
 
 
 
 
 
 
 
 
 
 
  

 

 
Using the following normalizing condition 

           0 1 2 3 4 5 6 7( ) ( ) 1P P P P P P P P                                                             (9)               
We substitute (9) in the last row of (8)   to give  the following system of linear equations in matrix form: 
 

11 1 2 3

1 22 3 2

2 33 1 3

3 44 1 2

3 1 55 2

2 1 66 3

3 2 77 1

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1 1 1 1 1

a
a

a
a

a
a

a

  
  
  

  
  

  
  

 
  
 
  
 
 

 
 
 
 
 
 

0

1

2

3

4

5

6

7

( )
( )
( )
( )
( )
( )
( )
( )

P
P
P
P
P
P
P
P

 
 

 
 
 

 
  
 
  
  

=

0
0
0
0
0
0
0
1

 
 
 
 
 
 
 
 
 
 
 
  

 

and solve for 0 1 2 3 4( ), ( ), ( ), ( ), ( )P P P P P       
 
RESULTS AND DISCUSSIONS 
In this section, we numerically compared the results for MTSF and availability for the developed models. For each 
model the following set of parameter values are fixed throughout the simulations in Figures 2-8 for consistency: 
If we put 1 2 3 1 2 30.7, 0.7, 0.9, 0.1 1, 0.5, 0.4            and vary 1  we obtain the 
following: 
Fig.2: Shows relation between 1  and MTSF, for 10 1   
Fig.3: Shows relation between 1  and Availability, for 10 1   
Fig. 4: Shows relation between 1  and MTSF, for 11 1.2   
Fig. 5: Shows relation between 1  and MTSF, for 11.2 1.4   
Fig. 6: Shows relation between 1  and MTSF for the two cases, for 10 1   
Fig. 7: Shows relation between 1  and MTSF for the two cases, for 11 1.2   
Fig. 8: Shows relation between 1  and MTSF for the two cases, for 11.2 1.4   
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Figure 2: Plot of MTSF against 1  

 
Figure 3: Plot of Availability against 1  

 
Figure 4: Plot of MTSF against 1  
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Figure 5: Plot of MTSF against 1  

 
Figure 6: Plot of MTSF against 1   

 
Figure 7: Plot of MTSF against 1  
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Figure 8: Plot of MTSF against 1  

 
Numerical results of MTSF and availability are depicted 
in Figures 2 – 8. Figures 2 and 3 show that the MTSF 
and availability decreased as type I failure rate 1  
increases. We varied the value of 1  in Figures 4 and 
5, MTSF in this case decreased with increase in the 
value of 1 .  However, the value of MTSF is better in 
Figure 4 than Figures 3 and 5. Thus, the optimal value 
of MTSF is in Figures 4. For different values of 1 , we 
plotted the graphs in Figures 6 – 8 to compare the 
MTSF when the system is viewed as random 2-out-of-3 
warm standby with linear consecutive 2-out-of-3 warm 
standby system. It is clear that MTSF in each case 
decreased with increase in the value of 1  which 
reflected the effect of failure rate on life span of the 
system. However, MTSF for linear consecutive 2-out-of-
3 warm standby 2MTSF decreased more than the 
MTSF for a random 2-out-of-3 warm standby system

1MTSF . Thus, 2 1MTSF MTSF . 
 
CONCLUSION 
In this study we developed explicit expressions for 
MTSF and availability of three redundant warm standby 
system. The MTSF and availability decreases with 
failure rate, thus, as the failure rates increased, both 
MTSF and availability decreased as can be seen in 
Figures 2 and 3. A random 2-out-of-3 warm standby 
system is more effective than a linear consecutive 2-
out-of-3 warm standby system based on MTSF. 
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