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ABSTRACT: Autoregressive fractional integrated moving average modeling strategy was used to model 
the daily average temperature (DAT) series of Sokoto metropolis for the period of 01/01/2003 to 
03/04/2007. The time plot suggests that there is persistence dependence in the series. The order of 
fractional integration was found to be 0.6238841. The correct model for the daily average temperature 
data (DAT) of Sokoto metropolis was built. Two models were found to be more adequate for describing, 
explaining and forecasting the temperature, ARFIMA (3, 0.6238841, 1) and ARFIMA (1, 0.6238841, 3). 
But by checking the forecastability, ARFIMA (3, 0.6238841, 1) model was found to be the best optimal 
model that will best forecast Sokoto metropolis temperature. The fitted model should be used for future 
forecast of temperature of Sokoto metropolis. Forecasting temperature is important to Agriculturist, 
Geographers and Hydrologist. Air temperature determines the rate of evapotranspiration.   
Keywords: Fractional Integration, ARFIMA, Temperature and Sokoto.  
 
INTRODUCTION 
Sokoto is a city located in the extreme northwest 
of Nigeria. The location of Sokoto in Nigeria is at 
Latitude 130 02 N and Longitude 050 15 E. Sokoto 
State is in the dry Sahel, surrounded by sandy 
Savannah and isolated hills. Sokoto as a whole is 
very hot area. The warmest months are February 
to April when daytime temperature is rising. The 
raining season is from June to October during 
which showers are a daily occurrence. From late 
October to February, during the cold season, the 
climate is dominated by the Hamattan wind 
blowing Sahara dust over the land. The dust dims 
the sunlight there by lowering temperatures 
significantly and also leading to the inconvenience 
of dust everywhere in houses.  
 
Research on long memory and fractionally 
integrated processes has continued at an 
accelerating rate since the initial publication of the 
work of Granger (1980); Granger and Joyeux 
(1980) and Hosking (1981) which parameterized 
the processes of Hurst (1951) on the time series 
with hyperbolically decaying autocorrelations 
(Baillie, 2007). The long memory or long term 
dependence property describes the high-order 
correlation structure of a series. If a series exhibits 
long memory, there is persistent temporal 
dependence even between distant observations. 
“Such series are characterized by distinct but non-

periodic cyclical patterns”. Fractionally integrated 
processes can give rise to long memory (Beran, 
1994). 
 
The ARFIMA (p,d,q) model was introduced by 
Granger and Joyeux (1980) . Since then there has 
been great strides in the estimation of long 
memory modelling, Granger and Joyeux (1980); 
Hoskin (1981); Geweke and Portter-Hudack 
(1983); Sowel (1992) and Mayoral (2007).  
 
Fractional Integration is part of the larger 
classification of time series, commonly referred to 
as ‘long memory’ models. However, recent 
empirical evidence suggests that temperature 
series may be well described in terms of 
fractionally integrated processes (Gil-Alana, 
2009). 
 
Fractionally integrated I(d) processes have 
attracted growing attention among empirical 
researchers. In fact this is because I(d) processes 
provide an extension to the classical dichotomy of 
I(0) and I(1) time series and equip us with more 
general alternatives in long range dependence 
(Shimotsu, 2002). Empirical research continues to 
find evidence that I(d) processes can provide a 
suitable description of certain long range 
characteristics (Henry and Zaffaroni, 2002). The 
class of fractionally integrated processes is an 
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extension of the class of ARIMA processes 
stemming from Box and Jenkins methodology. 
One of their originalities is the explicit modeling 
of the long term correlation structure (Diebolt and 
Guiraud, 2000). Autoregressive fractionally 
integrated moving average models grant social 
scientist greater freedom and flexibility in 
modeling long memory processes, for example, 
modeling data as fractionally integrated allows the 
researchers to model slower rates of decay than 
with other common techniques such as ARMA or 
ARIMA models (Baillie, 1996).  
 
The daily maximum and minimum temperatures 
in Melbourne, Australia, for the period 1981–1990 
were examined by means of fractional integration 
techniques. Using a parametric testing procedure 
(Robinson 1994), the results show that the time 
series for both datasets can be specified in terms 
of fractionally integrated statistical models: the 
maximum temperatures with orders of integration 
slightly smaller than 0.5 and the minimum 
temperatures with values slightly higher. Thus, the 
temperatures seem to be stationary in the case of 
the maximum values and non-stationary for the 
minimum ones, but mean reverting in both cases. 
Moreover, no significant trends in the model were 
found, implying that there is no evidence of 
climatic change in the data (Gil-Alana, 2004). 
However, in Africa and more especially in Nigeria 
little or not much has been done in this area. 
The objectives of this  study is, therefore,   to use 
a battery of statistical techniques to study the daily 
average temperature of Sokoto metropolis  and 
use autoregressive fractionally integrated moving 
average (AFRIMA) processes to build a model for 
the Sokoto daily average temperature.  
 
MATERIALS AND METHODS 
Arfima (p, d, q) Model: The general Fractionally 
Integrated Autoregressive Moving Average 
[ARFIMA (p, d, q)] model is: 

( )(1 ) ( ) ( ) ( )dB B X t B tεΦ − = Θ  
Where B is the lag operators ( )BΦ and ( )BΘ  are 
polynomials of orders p and q respectively with 

0Φ = -1 and 0Θ = 1. 
 
Box and Jenkins (1976) cited that the model 
should be parsimonious. Therefore, they 
recommended the need to use as few model 

parameters as possible so that the model fulfils all 
the diagnostic checks. Akaike (1974) suggests a 
mathematical formulation of the parsimony 
criterion of model building as AIC (Akaike 
Information Criterion) for the purpose of selecting 
an optimal model fits to a given data. 
Mathematical formulation of AIC is defined as: 

AIC (M) = 2ln 2
t

Mεσ +)  
 
Where M is the number of AR and MA 
parameters to estimate. The model that gives the 
minimum AIC is selected as a parsimonious 
model (Yurekli, 2007). 
 
Fractionally Integrated Processes 
The class of fractional integrated processes is an 
extension of the class of ARIMA processes, 
stemming from Box and Jenkins methodology. 
One of their originalities is the explicit modeling 
of the long term correlation structure. According 
to the values of parameters, these processes will 
possess the long range dependence property or 
long memory introduced by Hurst (1951) and 
Mandelbrot and Van Ness. (1968). 
Let   tX , t= 1,2,…….. n be a  time series and be 
ρ(k) its autocorrelation function: 

( ) ( , )t t kk E X Xρ −=  
The stationary property is verified if: 

( )2

0k
kρ

∞

=

< ∞∑  

In this case, it is said that tX  has the long 
memory property if: 

( )
0
/ /

k
kρ

∞

=

< ∞∑  

A way of representing such correlation structures 
is the use of fractional integrated processes. These 
models are defined from the fractional 
differentiation operator[1 ]dβ− . The fractional 
operator is broken down using a binomial series: 

1( )[1 ] 1 ... ( )
( 1) ( )

d k kk dd
k d

β β β β +Γ −
− = − − − + Ο

Γ + Γ −
 
This operator makes it possible to define 
fractional integrated processes. It is assumed that 
process tx  t =1 ...n (assumed to be centered for 
the purpose of simplicity, E[x] = 0), follows an 



Nigerian Journal of Basic and Applied Science (2011), 19(1): 21- 30 

 23

Auto Regressive Fractional Integrated Moving 
Average (ARFIMA) process if: 

[1 ]d
t t

Xβ µ− =  (1) 

Where tµ  is a usual ARMA (p, q) process, 

( ) ( )q tp t
β βφ µ θ ε= , (2) 

tε  is a white noise with zero mean and variance 
2
εσ  .We assume that tµ verifies the stationarity 

and invertibility conditions. This assumption is 
necessary to establish the following properties. 
One can demonstrate that: 

• The process tX  is stationary if d < 1
2 , 

  • The process tX  is invertible if d > - 1
2  . 

Odaki (1993) spread this interval to d > -1  by 
using a weak invertibility concept. 
               • The stationary process tX  will have 
long memory if 0 < d < 1

2 . 
The degree of persistence of the series can be 
measured through a fractional differencing 
parameter (Gil-Alana, 2009). 
 
Test and estimation of order of Integration: 
There exist several procedures for estimating the 
fractional differencing parameter in semi 
parametric contexts. Of these, the log-
periodogram regression estimate proposed by 
Geweke and Porter-Hudak (1983) has been the 
most widely used (Shimotsu et al., 2002). 
Given a fractional integrated process {Yt}, its 
spectral density is given by 

2( ) [2sin( / 2)] ( )df fω ω ω−=  

Where ω  is the Fourier frequency, ( )uf ω  is the 
spectral density corresponding to tu  and tu  is a 
stationary short memory disturbance with zero 
mean.  
The fractional differencing parameter d can be 
estimated by the regression equations constructed 

from 
2 22 2 2

1

( ) 1 2 (1 4 ) X j

j
p X X j eω

∞
−

=

≤ = + −∑  (3) 

GPH showed that using a periodogram estimate of 
( )jf ω , if the number of frequencies m used is a 

function g(n) (a positive integer) of the sample 
size n where m= ( )g n nα=  with 0 < α  < 1 , it 
can be demonstrated that the least squares 

estimate d
)

 using the above regression is 
asymptotically normally distributed in large 
samples. 

2

( )
2

1

~ ,
6 ( )

g n

j
j

d N d
U U

π

=

 
 
 
 

− 
 

∑

)        (4) 

Where 2ln[4sin ( / 2)]j jU ω=  and U  is the 

sample of jU , j = 1 … … g(n). 
 
Stationarity/Unit Root Test: The pattern and 
general behaviour of the series is examined from 
the time plot. The series was examined for 
stationarity, linearity and gaussianity. The tests for 
unit roots/stationarity are: Augmented Dickey –
Fuller test or the Phillips-Perron test and KPSS 
test proposed by Kwiatkowski et al., (1992) to test 
for the stationarity of a series.  
The ADF test has the following model 
representation: 

1 1 1 2 2 ....t t t t t p t py y x y y yα δ β β β− − − −∆ = + + ∆ + ∆ + + ∆
 
Where, 

ty∆   is the differenced series. 

1ty −  is the immediate previous observation. 

tx  is the optional exogenous regressor which may 
be constant, or a constant and      trend. 
α  and δ  are parameters to be estimated. 

1,...., pβ β  is the coefficients of the lagged 
difference term up to lag p. 
 
Test statistic:  / ( )t seα α α= ) )  
The hypothesis testing: 

0 : 0H α =   (The series contains unit roots) 

1 : 0H α <   (The series is stationary) 
 
Model Checking: After estimation of the model, 
the Box–Jenkins model building strategy entails a 
diagnosis of the adequacy of the model. More 
specifically, it is necessary to ascertain in what 
way the model is adequate and in what way it is 
inadequate. This stage of the modeling strategy 
involves several steps Kendall and Ord (1990). 
A good way to check model adequacy of an 
overall Box-Jenkins model is to analyze the 
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residual obtained from the model. Two statistic(s) 
have suggested determining whether the first K 
sample autocorrelation indicate adequacy of the 
model, that are, the Box-Pierce statistic and 
Ljung-Box statistic (portmanteau test). In spite of 
this, we can also check the model adequacy by 
examining the sample autocorrelation function of 
the residual (ACF) and sample partial 
autocorrelation function of the residual (PACF). 
We can conclude that the model is adequate if 
there are no spikes in the ACF and PACF (Azami, 
2009). We can also use the Jarque-Bera test to test 
for normality of residual. 
Softwares for the Analysis: The R, MINITAB 
and Gretl softwares ware used for the analysis.  
 
Data and Data Analysis: The daily average 
temperature (DAT) series of Sokoto metropolis 
for the period 01/01/2003 to 03/04/2007 was used 
(Table 1). The data sets are obtained from Energy 
Research Center, Usmanu Danfodiyo University, 
Sokoto.  
 
Table 1: Results of Summary Statistics for DAT 

in 0C  
Parameter Value 
Mean  
Median 
Minimum 
Maximum 
Std. Dev. 
CV 
Skewness 
Ex. Kurtosis 

28.8306 
28.5000 
12.2500 
40.5000 
4.22908 
0.146687 
-0.0366816 
-0.000971508 

 
The DAT and its graphical properties 
Visual inspection of the plot of daily average 
temperature series in Figure1 reveals that short 
term random fluctuations, but long fluctuations of 
unequal duration are readily apparent. Long term 
or persistent dependence observed. The series is 
assumed to be non stationary. 
 
Autocorrelation Function (ACF): A time series 
exhibits long memory when there is significant 
dependence between observations that are 
separated by a long period of time. Characteristic 
of a long memory time series is an autocorrelation 
function that decays hyperbolically to zero.  
 

Figure 2 shows the plot of the sample 
autocorrelation function (ACF) of the daily 
average temperature series (DAT). Non periodic 
cycles, persistence and slow decay of ACF are 
observed, with relatively high concentration of 
mass at high lags which naturally is suggesting 
long memory model. 
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Figure: 1 Daily average temperature of Sokoto 

metropolis from 01/01/2003-03/04/2007 
measured in 0C   
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Figure 2: ACF and PACF for daily average 

temperature of Sokoto metropolis 
 
Spectral Density Function: The frequency 
domain definition of long memory states that the 
spectral density function is unbounded at some 
frequency λ in the interval [0, π]. Persistence 
would be reflected in the spectral density function 
with a relatively high concentration of mass 
around zero frequency (Labato, 1997). Figure 3 
gives the spectral density plot of the daily average 
temperature series of Sokoto metropolis with 
relatively high concentration of mass around zero 
frequency. 
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Figure.3:Spectrum of the daily average 

temperature (0C) of Sokoto metropolis 
 

Stationarity and Unit Root Test: The KPSS test 
statistic tests the null hypothesis of stationarity 
against the alternative of unit root and the decision 
rule is to accept the null hypothesis when the 
value of the test statistic is less than the critical 
value. The ADF statistic test the null hypothesis 
of presence of unit root against the alternative of 
no unit root and the decision rule is to reject the 
null hypothesis when the value of test statistic is 
less than the critical value. The result is shown in 
Table 2. According to the ADF test and KPSS test 
for the daily average temperature series, the 
results have shown that the time series is neither I 
(1) nor I (0). Further tests should be done to 
assume the order of differentiation. 

 
Table 2: Results for ADF and KPSS Tests for DAT 
VARIABLE  CRITICAL LEVEL 

ADF 
CRITICAL LEVEL 

KPSS 
  2.5% 5% 10% 2.5% 5% 10% 
  -3.15 -2.89 -2.55 0.176 0.146 0.119 
 Lags 0 2 4 0 2 4 
DAT TEST 

STAT 
-9.4683 -5.6206 -4.76877 1.71616 0.646226 0.40852 

 
Test and estimation of order of Integration: 
There exist many approaches for estimating and 
testing the fractional differencing parameter. 
Some of them are parametric and some semi 
parametric (Gil-Alana, 2004). In this research we 
implement one of the semi parametric techniques 
proposed by Geweke et al., (1983). The 
application of this test on the series allows us to 
test the null hypothesis of a unit root (d = 1) 
against the alternative of fractional integration (d 
< 1). The fractional differencing parameter d is 
estimated by using the regression of equation (5). 
The value can be adjusted using the bandwidth 
parameter. Traditionally the number of bandwidth 
is chosen from the interval [T1/2, T4/5] (Robinson, 
1994). However, Hurvich and Deo (1998) showed 
that the optimal bandwidth is (T0.8).The bandwidth 
of 0.8 is chosen in this work and the result of the 
estimated fractional parameter d is given in Table 
3.  
 
 

Table 3: Results of GPH estimate for d parameter 
Variable d Sd.as Sd.reg 
    
DAT 0.6238841 0.03579196 0.03758034 

 
Here d is the fractional differencing parameter, 
sd.as is the standard deviation and sd.reg is the 
standard error. The value of the differencing 
parameter d is non integer and it is showing non 
stationary and mean reverting. 
 
The value of the estimated d parameter is used in 
equation (1) to fractionally difference the data. 
Similar tests were performed on the fractionally 
differenced series, and observed that the new 
series is stationary. The results of the tests are 
given in Table 4. The newly obtained set of data 
can be used to perform the long memory analysis, 
since all the fractionally integrated part has been 
removed. 
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Table 4: Results of ADF and KPSS tests for the fractionally difference series 
 CRITICAL LEVEL 

ADF 
CRITICAL LEVEL 

KPSS 
VARIABLES 10% 5% 2.5% 10% 5% 2.5% 

-2.57 -2.89 -3.15 0.347 0.463 0.574 
TEST STAT. -12.5803   0.1089   
 
ARFIMA Model Identification 
The value of the estimated fractional 
differencing parameter d is used to fractionally 
difference the data. The newly obtained set of 
data is now ( ) ( )q tp t

β βφ µ θ ε= , which is 

ARMA (p, q) series, and is taken and modeled 
as an ARMA (p, q) process since all the 
integrated part have been removed. The results 
of the models are in Table 5.  
 
We selected three models with low AIC which is 
a common procedure in ARFIMA modeling 

(Laurini et al, 2003) and find the best among 
them. The models selected are ARFIMA (3, 
0.6238841, 1), ARFIMA (1, 0.6238841, 3) and 
ARFIMA (1, 0.6238841, 2) 
 
Estimation of the Models: We estimate the 
parameters of ARFIMA (p, d, q) as the optimal 
model. Parameters are estimated by exact 
maximum likelihood method and the order of 
ARFIMA parameters are selected from Akaike 
information criteria and are given in Table 6.

 
 
 
Table 5: Results of Model identification for DAT 
Model                                                        AIC                           HQC                                BIC 
ARFIMA(0, 0.6238841, 0)                    7225.518                    7229.496                         7236.214 
ARFIMA(1, 0.6238841, 0)                    7227.498                    7233.465                         7243.542 
ARFIMA(1, 0.6238841, 1)                    7229.414                    7237.370                          7250.806 
ARFIMA(1, 0.6238841, 2)                    7224.266                    7234.211                         7251.006 
ARFIMA(2, 0.6238841, 1)                    7224.606                    7234.551                         7251.346 
ARFIMA(1, 0.6238841, 3)                    7223.517                     7235.450                        7255.604 
ARFIMA(3, 0.6238841, 1)                    7223.967                     7235.900                        7256.055 
ARFIMA(3, 0.6238841, 2)                    7224.533                     7238.455                        7261.968 

 
 
 
 
Table 6: Results of Estimated parameters of ARFIMA (p, d, q) models 
PARAMETERS ARFIMA (1, d, 2) ARFIMA (1, d, 3) ARFIMA (3, d, 1) 

1φ
)

 0.700770 0.405175 0.363368 

2φ
)

 - - 0.0335849 

3φ
)

 - - 0.0546663 

1θ
)

 -0.710091 -0.413688 -0.370779 

2θ
)

 0.0562692 0.0354475 - 

3θ
)

 - 0.0559381 - 

µ)  0.000798 0.000649 0.000724 
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Model Checking: Before the interpretation and 
use of the model, we are to look at some tests to 
check whether the model is specified correctly. 
The following tests are applied to the residuals:  
(i) Test for autocorrelation and partial 

autocorrelation. 
(ii) Portmanteau test for residual autocorrelation.  
(iii) Jarque Bera test for non normality. 
 
Autocorrelation and Partial Autocorrelation of 
Residuals: In testing the autocorrelation and 
partial autocorrelation, if the residual is 
uncorrelated, then the result is adequate. Figures 
4-6 shows that there is no serial correlation 
observed in the residuals of the variables, since all 
the series are within the 95% confidence intervals 
except in ARFIMA (1, 0.6238841, 2). 
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Figure 4: ARFIMA (3, 0.6238841, 1) Residual 

ACF and PACF 
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Figure 5: ARFIMA (1, 0.6238841, 2) Residual 

ACF and PACF 
 

Lag

Pa
rt

ia
l A

ut
oc

or
re

la
ti

on

80706050403020101

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

   

Lag

A
ut

oc
or

re
la

ti
on

80706050403020101

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

       
Figure 6: ARFIMA(1, 0.6238841, 3) Residual ACF 

and PACF 
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We formally confirm the presence and absence of 
autocorrelation in the variables by portmanteau 
test. The results for the test are presented in 
Tables 7-8.  
 
The null hypothesis of no autocorrelation can be 
accepted in Tables 7 -8. We conclude that there is 
no correlation in ARFIMA (1, 0.6238841, 3) and 
ARFIMA (3, 0.6238841, 1) models residual. 
 
Test for Normality of Residual: The normality 
test of the residuals was performed to check if the 
residuals are normally distributed. The most 
popular method of checking normality is the 
Jarque-Bera test. The test statistic measures the 
difference of the skewness and kurtosis of the 
series with those from the normal distribution. 
 
Under the null, the Jarque-Bera statistic is 
distributed as 2χ (2) (Luthkepohl and Kratzig, 
2004). 
 
Tables 9 - 10 indicate that the residuals of the 
models are normally distributed because all the p-
values are greater than the critical value of 0.05 
 
Table 7: Results of ARFIMA (1, 0.6238841, 2) 

portmanteau test for autocorrelation of 
residual 

Lags Chi-square DF P-value 
12 11.9 8 0.035 
24 18.8 20 0.537 
36 31.0 32 0.519 
48 42.3 44 0.544 

 

Table 8:  Results of ARFIMA (1,0.6238841,3) 
portmanteau test for autocorrelation of 
residual 

Lags Chi-square DF p-value 
12 2.6 7 0.916 
24 10.2 19 0.948 
36 22.2 31 0.875 
48 34.0 43 0.837 

 
Table 9: Result for ARFIMA (3, 0.6238841, 1) 

model Jarque-Bera test for normality of 
residual 

Variables Test statistic DF P-value 
    
DAT 0.3747 2 0.8292 

 
Table 10: Result for ARFIMA(1,0.6238841,3) 

model Jarque-Bera test for normality of 
residual 

Variables Test statistic DF P-value 

DAT 0.3746 2 0.8292 
 
Forecast: After good ARFIMA (p, d, q) model 
have been gotten, the next is to see its ability to 
forecast. The ability to do so will further testify 
the validity of the model. What we intend to do is 
to compare the forecast and the actual values and 
choose among, the one with the minimum error as 
our optimal model. The smaller the values of the 
error, the better the forecasting performance of the 
model (Olanrewaju and Olaoluwa, 2009). Tables 
11 - 12 are the ten days interval forecast for the 
models. 
 

 
Table 11: Forecast for ARFIMA (1, 0.6238841, 3) 

Period Forecast Lower Upper Std.error Actual 
1544 0.04266 -4.80029 4.88561 2.4670 -2.89703 
1545 -0.01411 -4.85706 4.82884 2.4726 -3.44864 
1546 0.01403 -4.82892 4.85698 2.5193 -1.95303 
1547 -0.01026 -4.85332 4.83281 2.5270 -1.24712 
1548 0.00980 -4.83335 4.83231 2.5283 2.84972 
1549 -0.00676 -4.84996 4.83644 2.5285 1.79135 
1550 0.00691 -4.83633 4.85015 2.5285 -3.36299 
1551 -0.00438 -4.84764 4.83889 2.5285 -1.10714 
1552 0.00494 -4.84605 4.84823 2.5285 -3.50397 
1553 -0.00275 -4.84605 4.84054 2.5285 1.68969 
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Table 12: Forecast for ARFIMA (3, 0.6238841, 1) 

 
From the results in Tables 11-12, ARFIMA (3, 
0.6238841, 1) is selected as the optimal model 
because by comparing the forecast and the actual 
values, it was observed that the model ARFIMA 
(3, 0.6238841, 1) has minimum error. 
 
CONCLUSION 
In this research, the stochastic structure of the 
daily average temperature data of Sokoto (DAT) 
has been analyzed by using fractionally integrated 
processes. In doing so, a much richer dynamic 
behavior of the series has been captured, not 
achieved by the classical I(1)/I(0) representations 
but by fractional integration. We implement the 
method proposed by Geweke and Porter-Hudak 
(1983), to test and estimate d under few prior 
assumptions concerning the spectral density of a 
time series. A number of heuristic methods to 
estimate self similarity parameter H have been 
presented and applied to the data and observed the 
estimated H. We are able to show that the 
temperature series of Sokoto metropolis is 
fractionally integrated and has persistence 
dependence, therefore exhibits long memory. 
Finally, the fractionally differenced DAT is taken 
and modeled using the Box-Jenkins approach. The 
correct model for the daily average temperature 
data (DAT) of Sokoto metropolis was built. Two 
models were found to be more adequate for 
describing, explaining and forecasting the 
temperature ARFIMA (3, 0.6238841, 1) and 
ARFIMA (1, 0.6238841, 3). But by checking the 
forecastability, ARFIMA (3, 0.6238841, 1) model 
is the best optimal model that will best forecast 
Sokoto metropolis temperature. 
 

The fitted model should be used for future 
forecast of temperature of Sokoto metropolis. 
Forecasting temperature is important to 
Agriculturist, Geographers and Hydrologist. Air 
temperature determines the rate of 
evaportranspiration.  
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