ORAL GLUCOSE TOLERANCE TEST REVISITED

D. S. Mshelia, A. A. Gadzama

Department of Chemical Pathology, University of Maiduguri Teaching Hospital, P.M.B. 1414 Maiduguri.

ABSTRACT

Objective: The present review was undertaken to create the required utilization of oral glucose tolerance test in a developing country with a high prevalence of diabetes mellitus and its complications.

Sources of data: This review is primarily based on available literature on local and international studies on oral glucose tolerance test

Results: Pregnant and non-pregnant patient preparation; indications, contra indications and the diagnostic criteria for diabetes mellitus using oral glucose tolerance test was elucidated. Determinant for the usefulness or otherwise of oral glucose tolerance test for the diagnosis of diabetes mellitus was also discussed

Conclusion: Proper understanding of oral glucose tolerance test and teamwork of pathologist, physician, obstetrician, surgeon and pediatrician to face the challenges of diabetes mellitus and its unwanted complications is recommended.

INTRODUCTION

Oral glucose tolerance test [OGTT] is a specialised metabolic investigation that involves serial timed measurements of plasma [blood] glucose, preceding and post oral glucose load. It is an investigation for the detection of early derangement of carbohydrate metabolism in which glucose is underutilised due either to absolute or relative deficiency of insulin resulting in hyperglycaemia. Such disorders produce medical, social, and economic problems particularly in developing countries where the prevalence of diabetes mellitus and its complications are higher than in developed countries. An early diagnosis is essential to achieve an excellent glycaemic control that delays or even prevents diabetic complications. This is required in developing countries where there is low literacy level, scarce health education, inadequate health care facilities, insufficient qualified medical personnel, poverty and poor economic management, that are known to increase the prevalence of diabetes mellitus and its complications. Notwithstanding, it is obviously not enough just to order specific investigations at specific times in a poor resource setting like Nigeria. Neither is it enough to justify investigations simply because they are routine. Considerations of cost in human, material and technological terms must impose a moratorium on test request. However, in the Nigerian environment, even trained, qualified medical personnel including those in tertiary health institutions do not apply OGTT test appropriately. It was recently observed among others, that oral glucose tolerance test was requested for the management of already diagnosed diabetic patient with fasting hyperglycaemia of 17.1 mmol/l; a diabetic female with unequivocal fasting hyperglycaemia before and during the current pregnancy; and also in patients not known to be at risk of developing diabetes mellitus. Adequate awareness of the indications for OGTT and compliance with its principles are likely to prevent these abuses, and yield correct investigation appropriate for patient management. Therefore, there is a need for an urgent revisit of oral glucose tolerance test in our environment.

INDICATIONS FOR ORAL GLUCOSE TOLERANCE TEST

A standard method for discriminating healthy individuals from those with metabolic disorders of glucose utilisation by an investigation that is believed to be more sensitive than fasting plasma glucose determination requires the following indications:

- Abnormal previous glucose result of either impaired fasting plasma glucose ≥ 6.1 mmol/l but < 7.0 mmol/l or impaired glucose tolerance [two-hour post prandial of between 7.8 and 11.1 mmol/l. An OGTT sample result of ≥ 11.1 mmol/l] before the two hour post-prandial is also relevant. About 40% of subjects in these categories develop frank diabetes in 5-10 years at an annual rate of 5% of patients.
- Potential diabetics – Subjects who are first-degree relatives of type II diabetic and are 25 years or older are candidates for this category. Type II diabetes mellitus is more common in individuals with a family history of the disease with the prevalence rate increasing with age.
- A second twin of a type II diabetic patient as the concordance rate for developing type II diabetes mellitus in an identical twin approaches 100% but less so in dizygotic twins.
- Diagnosis of gestational diabetes mellitus [GDM] and current diagnosis of patients previously diagnosed

*Correspondence: Dr. A. A. Gadzama
gestational diabetics. The prevalence may range from 1-14%
depending on the studied population.5,10,20 Gestational
diabetes are at an increased risk of developing diabetes in
the next pregnancy with incidence rates ranging from 6-
62%13,14,15. The detection and appropriate treatment of GDM
provides the opportunity to prevent adverse outcome for
both mother and child
- Poor obstetric history—complications of pregnancy such as
stillbirth, frequent spontaneous abortion, intrauterine
foetal death, polyhydramnious, malformed baby,
macroscopic baby and excessive weight gain in a diabetic
during pregnancy are indications for gestational OGTT.
- Obesity usually defined as body mass index equal or
greater than 30 kg/m² or a weight gain over 20% of the
desired weight for the individual 21,22 is a common
phenomenon in type II diabetics and may cause insulin
resistance 13,23,24 in some of these diabetics.
- Diseases of endocrine origin like hypercortisolism, g
lucagonoma, phaeochromocytoma, aldosteronism,
aeomegaly / gigantism produce hormones that oppose
insulin action. Evaluation of therapy in diagnosed cases of
these endocrine diseases is useful 14,19,24. However, such
conditions are rare in this environment.
- Evaluation of patients with unexplained diseases known
to be complication of diabetes like; nephropathy,
nepropathy, retinopathy, with a random plasma glucose
level equal or greater than 7.8 mmol/L 1,12,26. Abnormal results
in these patients do not necessarily denote cause and
affect relationship. Therefore, the need to meticulously
consider and rule out causative diseases in these instances
must be born in mind.
- Subjects with genetic diseases like Down’s syndrome,
Klinefelter’s syndrome, and Turner’s syndrome 16,25 which
are extremely rare 11. Chronic pancreatitis,
hemochromatosis, and fibrocystic pancreatitis 1,27
are diseases that require evaluation by OGTT.
- Population studies for epidemiological data are known
indications for oral glucose tolerance test. However, it is
not recommended for a poor resource setting like Nigeria.

Contra-Indications of Oral Glucose Tolerance Test

Oral glucose tolerance test has numerous contra-
indications. These contraindications, when properly
observed, will improve the quality of test and usefulness of OGTT,
and curtail unnecessary OGTT requests as some of the indications
are rare in this environment. These contra-indications include:
- Already diagnosed diabetes mellitus,
- The unconscious patient,
- Patients who lack the ability to fast and
- Hospitalised ill patients 7,16.
- Patients with neurological diseases involving the brain,
- Patients on essential medications that influence OGTT
results like corticosteroids replacement therapy and
- Less than 8 hours or longer than 14 hours fast pre-glucose
load 7,17.

Table 1: Factors other than diabetes that may influence oral
glucose tolerance test

<table>
<thead>
<tr>
<th>Patient’s preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of fast</td>
</tr>
<tr>
<td>Prior carbohydrate intake</td>
</tr>
<tr>
<td>Medications</td>
</tr>
<tr>
<td>Trauma</td>
</tr>
<tr>
<td>Intercurrent illness</td>
</tr>
<tr>
<td>Age – glucose load depends on age</td>
</tr>
<tr>
<td>Activity</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

Administration of glucose
- Form of glucose (anhydrous or monohydrated)
- Quantity and concentration of glucose ingested
- Rate of ingestion

During the test
- Posture
- Anxiety
- Caffeine
- Smoking
- Activity
- Time of day

Table 2: Criteria for the diagnoses of diabetes mellitus

| a. Symptoms of diabetes plus casual plasma glucose concentration > 11.1mmol/L. Casual means any time of the day without regard to last meal. |
| b. Fasting plasma glucose ≥7.0mmol/L. Fasting is defined as no caloric intake for at least 8hr. |
| c. Two-hour plasma glucose ≥11.1mmol/L during an OGTT. |
| d. Fasting whole venous or capillary blood > 6.1 (mmol/L) |
| e. Random whole venous blood >10mmol/l or whole capillary blood > 11.1 mmol/l |

Table 3: Fasting Plasma Glucose cutoffs equivalent to the WHO 2-hr plasma glucose criteria of 11.1mmol/L

<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>Fasting plasma glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pima Indians</td>
<td>ROC curves</td>
<td>6.9mmol/L</td>
</tr>
<tr>
<td>Pima Indians</td>
<td>Equal prevalence</td>
<td>6.7mmol/L</td>
</tr>
<tr>
<td>Several pacific populations</td>
<td>Equal prevalence</td>
<td>7.0mmol/L</td>
</tr>
<tr>
<td>NHANES* 111</td>
<td>Equal prevalence</td>
<td>7.2mmol/L</td>
</tr>
<tr>
<td>Egyptians</td>
<td>Bimodal frequency distribution</td>
<td>7.2mmol/L</td>
</tr>
</tbody>
</table>

*National Health and Nutrition Examination Survey

Glucose Tolerance - Mshelia and Gdzcama
PATIENT PREPARATION

Scrupulous patient preparation is essential for a meaningful result of an OGTT investigation [see table 1]. Responsibilities of a laboratory physician in this regard include appropriate choice of the type of OGTT to recommend amongst gestational OGTT, adult non-pregnant OGTT, paediatric OGTT and intravenous glucose tolerance test. Requesting physician needs to properly inform the diagnostic laboratory of the request to allow proper patient preparation and prompt investigation. While this information allows the laboratory prepare adequately for the required dynamic investigation, the patient needs to be properly and prepped, thus:

- Withdrawal of all medications that are known to influence OGTT result.
- Consumption of a balanced diet with at least 150 g of carbohydrate daily for at least three consecutive days before the day of the test.
- Performing test between 8 and 10 am to allow for comparability of result.
- No exercise during the fast and test periods. Patients must rest for 30 minutes on arrival to the laboratory before the commencement of OGTT investigation.
- No smoking, no ingestion of coffee [caffeine], alcohol intake during preparation and test periods. Patient education on the procedure and duration of the investigation usually allays anxiety knowledge of malabsorption; scars of gastrointestinal tract operation, hypothyroidism and chronic liver disease will guide the interpretation and avoid misinterpretation of investigation results. Strict adherence to instructions and appointments by patients are essential.

The protocol below is followed for OGTT:

Non-pregnant adult subjects:
- Confirm compliance to the requirements for OGTT.
- Patient should be in sitting position, which facilitates gastric emptying.
- Dissolve 75 g of anhydrous or 82 g of monohydrate glucose in 250-300 ml of water. Lemon additive to the solution for patients that may not tolerate glucose solution or a calculated volume of appropriate preparations for example 371 ml of lucozade or orange squash may be used.
- Take fasting venous specimen and allow the patient to ingest the solution within 5 minutes.
- Canulate the patient and take venous specimen every 30 minutes after ingestion of the glucose solution for two hours. This may be extended to 5 hours in extended OGTT.

Paediatric subjects:
Dissolve 1.75 g/kg or 1.92 g/kg body weight of anhydrous or monohydrate glucose to a maximum of 75 g and 82 g respectively for paediatric subjects.

Gestational diabetes mellitus:
A glucose load is required both for screening and for diagnostic tests; fasting is not necessary for the screening phase that requires a glucose load of 50 g irrespective of the time of the day. The screening allows the choice for subjects that will require gestational OGTT. An extended OGTT of 3 hours after a loading dose of 100 g is required for pregnant women. Gestational diabetes is indicated when two or more of the following values are exceeded:

- One hour value >10.5 mmol/l
- Two-hour value >9.2 mmol/l
- Three-hour value >7.8 mmol/l

Collection of urine sample for analysis during OGTT is essential for determining renal glycosuria but not essential for routine OGTT as it is an unnecessary additional cost that deserves consideration in a resource poor environment like Nigeria. Unless a result obtained from OGTT investigation is initially grossly abnormal, two separate OGTT tests on separate occasions are required to confirm diabetes mellitus. Diabetic glucose tolerance curve peaks at about one hour while that of healthy subjects peaks at about half an hour. The diagnostic cutpoint of 11.1 mmol/l for the 2-hr PG was originally adopted as the prevalence of microvascular disease sharply increased above a 2-hr PC level of 11.1 mmol/l; a fact supported by an epidemiological data. However, when the need for OGTT arise, the conclusion reached from the laboratory results is likely to be correct when carried out appropriately. Though early detection, treatment, and planned preventive measures to curtail complications of diabetes mellitus are important, considerations of cost in human, material and technological terms must necessarily advise strict compliance with established guidelines if results are to be of any clinical usefulness.

REFERENCES

Glucose Tolerance - Mshelia and Gadzama

