Evaluation of Candida Albicans Biofilm Formation on Various Dental Restorative Material Surfaces

N Beldüz, A Kamburoğlu¹, Y Yılmaz¹, İ Tosun¹, M Beldüz¹, C Kara²

Department of Paediatric Dentistry, Faculty of Dentistry, Ordu University, Ordu, ¹Department of Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, ²Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, ³Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey

Aims: Candida adhesion to any oral substrata is the first and essential stage in forming a pathogenic fungal biofilm. In general, yeast cells have remarkable potential to adhere to host surfaces, such as teeth or mucosa, and to artificial, nonbiological surfaces, such as restorative dental materials. This study compared the susceptibility of six dental restorative materials to Candida albicans adhesion.

Materials and methods: Cylindrical samples of each material were made according to the manufacturers’ instructions. The antifungal effect of the samples on C. albicans was determined with the disc-diffusion method. The samples were seeded with C. albicans. After the incubation period, the inhibition zone around each sample was evaluated. To evaluate the biofilm formation, the XTT technique and scanning electron microscopy (SEM) were used.

Results: No inhibition zone was observed around the samples. According to the XTT assays, the amalgam samples revealed the lowest quantity of biofilm formation (P > 0.001). The highest median XTT values, significantly higher than the other materials (P < 0.001), were found for the composite and the compomer samples. Within the SEM examination, the amount of candidal growth was significantly lower on the resin-modified glass ionomer and glass-ionomer cement samples. The compomer and the composite samples showed more candidal adhesion.

Conclusion: This finding emphasizes the use of glass ionomer restorative cements and amalgam to reduce C. albicans adhesion to dental restorative materials especially in people with weakened immune systems, neutropenia, and cancer.

Keywords: Adherence, biofilm, biofilm vitality, Candida albicans

Access this article online
Quick Response Code:
Website: www.njcponline.com
DOI:10.4103/1119-3077.198388

Address for correspondence: Dr. Nihal Beldüz, Department of Paediatric Dentistry, Faculty of Dentistry, Ordu University, Ordu, Turkey.
E-mail: nihalpedo@yahoo.com

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

several diseases by *C. albicans* is widely acknowledged. Several studies have suggested that the initial stage of various microbial diseases involves microorganisms adhering to the target tissue.[6,7] Thus, interest in using dental materials that might inhibit plaque formation and adhesion of oral microorganisms to restorative materials is increasing. Generally, it is important to obtain information on how biofilm may be influenced by various dental restorative materials, because microorganisms adhering to restorative materials can colonize other oral surfaces and eventually cause oral infections in predisposed individuals. Various kinds of supporting materials release diverse substances,[8] which exert an antibacterial action against oral microorganisms *in vitro*.[9] Thus, studies concerning the adhesion of *C. albicans* to biomaterials have focused on the denture base and denture relining materials;[10-12] however, fungi effectively adhere to all kinds of resin, glass, and even metal surfaces.[13] Although dental restorative materials are known to be a potential source of fungal infections, fewer investigations have been carried out on these materials.[12,14,15] In general, to ensure the clinical relevance of microbiological adhesion studies, materials should be used that are appropriate to clinical dentistry.[11]

Against this background, we compared the susceptibility of six dental restorative materials (two compomers, two composites, two glass ionomer cements, three resin modified glass ionomer cements, one giomer, one amalgam, and one self-etching bonding agent) to *C. albicans* adhesion.

Materials and Methods

Preparation of the Samples

In the present setup, six commercially available dental restorative materials (compomer, light curing glass ionomer cement, nanohybrid composite, amalgam, giomer, glass ionomer cement) were assessed. All materials, manufacturers, and material information are presented in Table 1. All materials were handled in strict compliance with their manufacturers’ instructions. For each test material, 10 samples were prepared. Cylindrical samples (7 mm in diameter, 2 mm in height) were made, using a custom Teflon mold with calibrated circular holes. The materials were inserted into the mold, and their surfaces were covered with a transparent strip and pressed with two glass slides from the top and bottom. Light-activated materials were activated for 40 s of overlapping surface exposure using a polymerization light T-LED (Anthos, Italy, 1900 mW/cm²; 2 cm distance from the tip). The samples were then removed from the molds, mechanically polished sequentially with coarse, medium, fine, and superfine aluminum oxide abrasive discs (Sof-Lex, 3M, St Paul, MN, USA), and stored in distilled water before further processing.

Fungal growth conditions

The *C. albicans* clinical strain SC5314 was used. Cells were grown for 24 h at 37°C in the yeast nitrogen base (YNB; Sigma, St Louis, MO, USA) supplemented with 50 mM dextrose. After the incubation period, the cells were harvested, washed with phosphate-buffered saline (PBS; Cellgro, Media-tech, Herndon, VA, USA), and standardized to 1×10^7 cells/ml spectrophotometrically at 492 nm for the biofilm formation experiments.

Table 1: Details of the dental materials

<table>
<thead>
<tr>
<th>Restorative Materials</th>
<th>Type</th>
<th>Composition</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dyract Extra</td>
<td>Polyacid modified resin composite (compomer)</td>
<td>UDMA, TCB resin, TEGDMA, trimethacrylate resin, camphorquione, ethyl-4-dimethylaminobenzoate, BHT, str-aluminosodium-fluoro-phosphosilicate glass, strontium fluoride, iron oxide and titanium dioxide pigments</td>
<td>Dentsply Detrey GmbH, Konstanz, Germany</td>
</tr>
<tr>
<td>2 Ionolux AC Capsule</td>
<td>Resin modified glass ionomer cement</td>
<td>Polyacrylic acid solution, 2-hydroxyethyl methacrylate, glycerin dimethacrylate, urethane dimethacrylate, tartaric acid, initiators</td>
<td>Voco GmbH, Cuxhaven, Germany</td>
</tr>
<tr>
<td>3 Grandio SO</td>
<td>Universal nanohybrid composite</td>
<td>BisGMA, BisEMA, TEGDMA, camphorquione, butylated hydroxytoluene (BHT)</td>
<td>Voco GmbH, Cuxhaven, Germany</td>
</tr>
<tr>
<td>4 ANA 2000 Capsule Amalgam</td>
<td></td>
<td>Ag 43.1%, Sn 30.8%, Cu 26.1% Multifunctional glass filler and S-PRG filler based on fluoroborosilicate glass, BisGMA, TEGDMA resin</td>
<td>Nordiska Dental, Angelholm, Sweden</td>
</tr>
<tr>
<td>5 Beautifil II Giomer</td>
<td></td>
<td></td>
<td>Shofu Inc., Kyoto, Japan</td>
</tr>
<tr>
<td>6 Ionofil Molar Capsule</td>
<td>Glass ionomer cement</td>
<td>Polycrylic acid, tartaric acid, aluminofluorosilicate glass</td>
<td>Voco GmbH, Cuxhaven, Germany</td>
</tr>
</tbody>
</table>
Quantitative measurement of C. albicans biofilms

Metabolic activity of C. albicans biofilms was assessed using a colorimetric assay (XTT). To evaluate biofilm formation by Candida isolates, the samples were washed with PBS, placed in 24 well-culture plates with 2-ml standardized cell suspension (1×10^7 cells/ml), and incubated for 72 h at 37°C on a rocker. Biofilms were quantified using a tetrazolium XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay as described previously.[16]

Scanning electron microscopy

Three samples of each material were used for scanning electron microscopy (SEM) investigation. The samples with the adhering fungi were rinsed in PBS, fixed with ethanol, and air-dried. The test samples were then mounted on aluminum stubs and sputter-coated with gold. Samples were examined with a scanning electron microscope (magnification ×3000 and ×5000; EVO LS 10, Carl Zeiss Microscopy, LLC, NY / United States).

In vitro antifungal study

The antifungal effect of the restorative materials on C. albicans was determined with the disc diffusion method. Cylindrical samples of each material were put in plates with sterile Mueller Hinton agar (with 2% glucose) and Sabouraud dextrose agar previously seeded with C. albicans. The agar plates were incubated at 37°C for 24 h and then the inhibition zone was evaluated around each sample. The entire operation was carried out under aseptic conditions in duplicate.

Statistical analysis

A multiple significance test with the Duncan correction was used to compare the XTT and biofilm vitality values of C. albicans biofilm formation various restorative materials. Data are presented as the mean ± standard deviation (SD), and the level of statistical significance was set at 5% for all analyses. The statistical analyses were performed using a computerized statistical software program SPSS 11.5 for Windows, (SPSS Inc., Chicago, IL, USA).

Table 2: C. albicans biofilm XTT (OD492) and vitality values (%) on different restorative materials

<table>
<thead>
<tr>
<th>Restorative Materials (n)</th>
<th>Type</th>
<th>OD value (mean ± SD)</th>
<th>Vitality (%) (mean ± SD)</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyract Extra (10)</td>
<td>Compomer</td>
<td>0.1790 ± 0.020a</td>
<td>55.0 ± 6.07a</td>
<td></td>
</tr>
<tr>
<td>Ionolux AC (10)</td>
<td>Resin modified Glass ionomer cement</td>
<td>0.1559 ± 0.016b</td>
<td>48.4 ± 4.59b</td>
<td></td>
</tr>
<tr>
<td>Grandio SO (10)</td>
<td>Composite</td>
<td>0.1764 ± 0.010a</td>
<td>54.1 ± 2.98a</td>
<td></td>
</tr>
<tr>
<td>ANA 2000 Capsule (10)</td>
<td>Amalgam</td>
<td>0.1205 ± 0.010c</td>
<td>37.2 ± 3.07c</td>
<td></td>
</tr>
<tr>
<td>Beautifil II (10)</td>
<td>Giomer</td>
<td>0.1399 ± 0.019d</td>
<td>43.1 ± 5.83d</td>
<td></td>
</tr>
<tr>
<td>Ionofil Molar (10)</td>
<td>Glass ionomer cement</td>
<td>0.1408 ± 0.019d</td>
<td>43.3 ± 5.85d</td>
<td></td>
</tr>
</tbody>
</table>

F: Duncan test frequency; Means followed by the same letter are not significantly different at P = 0.05.

RESULTS

In general, the C. albicans biofilms adhered firmly to the restorative materials. No inhibition zone was observed around any sample; thus, none of the tested restorative materials reduced the amount of fungal growth. In addition, no differences were observed in the gross morphology and adhesion of biofilms formed by this pathogen on various types of restorative material [Figure 1].

During the scanning electron micrograph examination, a fine biofilm layer of C. albicans species was found on the surfaces of all examined materials. However, the quantity of adhering microorganisms varied among the materials. The amount of candidal growth was significantly lower on the surfaces of the resin-modified glass ionomer cement (Ionolux AC) and glass ionomer cement (Ionofil...
molar) samples [Figure 2]. The compomer (Dyrract Extra), the composite (Grandio SO), the amalgam (ANA 2000), and the gimer (Beatifill II) samples showed more candidal adhesion and on these restorative materials, dense oval colonies and round blastospore colonies dominated the fungal biofilm [Figure 2]. The biofilm formation appeared to be thicker on the surfaces of these restorative materials than on the glass ionomer cement samples.

When the adhering fungi were investigated, the amalgam (ANA 2000) samples revealed the lowest quantity of biofilms formed (median XTT value, 0.1205) of all the materials with statistically lower XTT values than the other materials (P < 0.001). The glass ionomer cement (Ionofil molar) and the gimer (Beatifill II) had low XTT values with similar values. The highest median XTT values were found for the composite (Grandio SO) and compomer (Dyrract Extra) samples [Table 2]. Metabolic activity assays revealed that the Candida isolate tested formed significantly more vital biofilms on Dyrract Extra than on the Grandio SO, Ionofil molar, Beatifill II, and ANA 2000 materials [Table 2]. Taken together, these results demonstrate that Candida can form biofilms on restorative materials and that this ability is influenced by the type of material.

DISCUSSION

This study compared the susceptibility of six dental restorative materials to *C. albicans* adhesion. The human mouth presents various surfaces to which microorganisms of the oral microbiota can adhere. Therefore, evaluating dental biofilms grown on typical dental restorative materials such as amalgam, resin composite, compomer, and glass-ionomer cement plays an important role in achieving long-term success of oral healing and protection from oral diseases. Although other species of the genus *Candida* are known to be involved, *C. albicans* is the major microbiological factor in oral candidosis. Different fungal species have different adhesion potential for dental material surfaces. However, since we preferred to provide as simple a test model as possible, we used only one type of culture strain of *C. albicans*.

Studies concerning the adhesion properties of *C. albicans* have focused on the denture base and relining materials. To our knowledge, the current work is the first to compare differences in *C. albicans* adhesion to various dental restorative materials.

In the present study, we investigated the inhibition of fungal colonization around the restorative samples. However, *C. albicans* biofilms adhered firmly to the restorative materials, and no inhibition zone was observed around any sample. The tested materials did not reduce the amount of fungal growth, and none of the tested materials exhibited antifungal properties. In fact, this inhibition test revealed *C. albicans* adhered to the assessed material surfaces. In agreement with previous studies, our results [Figure 2] confirm that *C. albicans* can adhere directly to the surface of restorative materials.

Various material characteristics such as surface roughness, surface hydrophobicity, electrostatic forces, composition of the material, type of matrix, size of fillers, and configuration of fillers are relevant factors affecting attachment of organisms to the surface to form a biofilm. Surface roughness is well documented to have a crucial influence on microbial adhesion. This property affects the attachment of biofilm bacteria, because more or less “surface” is available for bacterial attachment and more or less protection is provided for colonizing bacteria. Higher numbers of *C. albicans* are found on rough surfaces than on polished, smooth surfaces. Theoretically, and as a consequence, dental materials should be polished *in situ*, so that a surface as plane as possible is provided. Therefore, in the present study, the tested materials were prepared and polished as close as possible for the minimal roughness surface. Moreover, the correlation between surface roughness and candidal adhesion was not evaluated in the present study. Therefore, the results cannot be related to specific surface characteristics.

The XTT values of the amalgam (ANA 2000) samples revealed the lowest quantity of biofilms formed of all materials. The glass ionomer cement (Ionofil molar) and the gimer (Beatifill II) showed low XTT values with similar values. The highest median XTT values were found for the composite (Grandio SO) and compomer.
(Dyract Extra) samples. These important findings confirm the hypothesis that different types of material and their specific chemistry and composition (matrix and fillers) interfere considerably with *C. albicans* adherence.[20,26,27] Heavy metals have antimicrobial properties on biofilm formation[28], and amalgam liberates ions that kill bacteria in the adhering biofilms.[28,29] Although the amalgam samples showed a very high percentage of surface coating within the scanning electron micrograph examination, low vitality values of the adhering *C. albicans* biofilm were found on the amalgam samples. This might be due to the metallic ions released from the surfaces. The low quantity of adhering *C. albicans* on glass ionomer cements in this investigation may be because glass ionomer cements are known to release significant quantities of fluoride, and fluoride components are associated with antimicrobial effects.[30,31] However, it was not within the scope of the present investigation to analyze these diverse chemical entities (i.e., different metallic cations, fluoride ions, and organic molecules), so such conclusions must be regarded as rather speculative.

Bürgers et al.[32] reported that the composites Compoglass F and Dyract eXtra and the ormocer Admira revealed lower amounts of adhering fungi than the conventional hybrid composites and a novel silorane-based restorative. This finding is not in agreement with our findings. In our study, the highest XTT values were found for the composite (Grandio SO) and compomer (Dyract Extra) samples.

To prevent *C. albicans* biofilms from accumulating and to reduce adherence, several promising inventions have been introduced.[33-35] As the etiology of *Candida*-associated stomatitis is multifactorial with numerous influencing parameters, a better understanding of the essentials of fungal adhesion *in vitro* methods to study these adhesion processes is needed. In general, conclusions from this *in vitro* investigation and other related studies may not be transferred to the clinical situation without restriction of any kind, and results have to be interpreted carefully because only a limited number of parameters can be simulated outside the oral cavity. Considering the limitations of this study, the amalgam and glass ionomer cements revealed lower amounts of adhering fungi than the composites and comomers.

These findings emphasize the use of glass ionomer restorative cements and amalgam regarding reducing *C. albicans* adhesion to dental restorative materials especially in people with weakened immune systems, neutropenia, and cancer.

Conclusion

These findings emphasize the use of glass ionomer restorative cements and amalgam regarding reducing *C. albicans* adhesion to dental restorative materials especially in people with weakened immune systems, neutropenia, and cancer.

Financial support and sponsorship

Nil

Conflict of interest

None

References

