Risk factors for surgical site infections following clean orthopaedic operations

UOE Ikeanyi, CN Chukwuka, TOG Chukwuanukwu

Departments of Orthopaedic Surgery, Federal Medical Centre, Umuahia, Nnamdi Azikiwe University Teaching Hospital, Plastic Surgery, Nnamdi Azikiwe University/Teaching Hospital, Nnewi, Nigeria

Abstract

Background: Surgical site infections can follow clean orthopaedic operations and can cause serious morbidity, mortality and increased resource utilization. Despite this, there are few studies on risk factors for surgical site infections in the Nigerian orthopaedic literature. We conducted a prospective study to determine the host and environmental risk factors for surgical site infections following clean orthopaedic operations.

Materials and Methods: Consecutive patients who satisfied the inclusion criteria and were to undergo clean orthopaedic operations performed at the National Orthopaedic Hospital, Igbobi, Lagos from January 2007 to July 2008 were included. Patient’s biodata, duration of preoperative hospitalization and other risk factors were analyzed. The risk factors for surgical site infection were determined with Chi square test.

Results: The overall rate of surgical site infection during the 18 months of the study was 9.9% (12 of 121). Independent risk factors for this were: Prolonged duration of preoperative hospital stay greater than 13 days (21% infection rate), increasing age greater than 60 years (31% infection rate), and use of implants and drains (only one un-drained wound was infected).

Conclusion and Recommendations: Patient’s age, duration of preoperative hospitalization, type of surgery (implant or non-implant), and use of drains were the most significant risk factors affecting surgical site infection. It is recommended that preoperative hospital stay should be as short as possible and extra care/precautions taken when working on the elderly, using implants or requiring drainage.

Key words: Clean orthopaedic operations, risk factors, surgical site infection

Introduction

Surgical site infection (SSI) may occur after orthopedic surgery.[1] SSI is when pus is present in the wound or there is a non-purulent discharge that yielded growth of pathogenic microorganisms on culture. In implant surgery when device is not exposed, infection is taken as superficial but when the implant is exposed, it is deep infection. The ASEPSIS scoring method has been shown to be very satisfactory for assessing SSIs.[2,3] SSI is among the commonest post-operative complications, usually accounting for 8-23% of post-operative complications. SSI consumes time, medical resources, and adversely affects post-operative morbidity, mortality, and cost.[4-11] In fact, according to Whitehouse et al.,[12] SSIs following orthopedic surgery prolonged the total hospital stay by a median of 2 weeks, doubled re-hospitalization rates, increased healthcare costs by 300%, and decreased overall physical and social functioning. There is paucity of data on SSI in Nigeria,[10,11] therefore studies on SSI need to be done in our region. The risk factors for SSI include the host factors such as age, sex, co-morbidities, and the environmental factors.[13-19] Host factors that increase susceptibility to infection provide enabling environment for
the pathogen to multiply. The environment includes the wards, theater air, personnel and the various instruments, and drugs like antibiotics. Several factors influence the rate of SSI, the bacterial load present in the wound at the time of operative procedure is probably the most important factor in the development of wound infection.20,21 This means that intra-operative contamination is a major consideration in SSI. In other words, a study of environmental and host-related factors should help reduce SSI. Clean surgical cases, by definition, have very low bacterial contamination. Inferentially therefore, they should have very low or no cases of SSI.8 Hence, factors that influence rate of SSI in clean cases are relevant and important factors that should be considered. Any study that unravels these factors could be exploited to positively influence the rate of SSI. This report describes the risk factors for SSI following clean operations performed by orthopedic surgeons over an 18 month period at a tertiary hospital.

Materials and Methods

This prospective cohort study was carried out at the National Orthopaedic Hospital Igbobi, a 500-bed specialist hospital in Lagos, Nigeria. The hospital ethical committee approved the study. The operating theater complex comprised three suites of identical design and conventional ventilation system.22 All patients undergoing clean surgical procedures with absence of co-morbidities such as diabetes mellitus, anemia, chronic renal failure, sickle cell disease, and any focus of infection were included if they consented. Relevant information obtained included patient’s age, gender, duration of pre-operative hospitalization, antibiotics, duration of surgery, implant used, cadre of surgeon, use of wound drains, number of blood units transfused, and number of people present in the theater suite during the surgery. All surgeons wore double hand gloves for all cases. All cases had skin preparation with 4% chlorhexidine solution and 70% methylated spirit. Each patient received an intravenous antibiotic pre-operatively and for others it was either a cephalosporin or a

Inferentially therefore, they should have very low or no cases of SSI.8 Hence, factors that influence rate of SSI in clean cases are relevant and important factors that should be considered. Any study that unravels these factors could be exploited to positively influence the rate of SSI. This report describes the risk factors for SSI following clean operations performed by orthopedic surgeons over an 18 month period at a tertiary hospital.

Results

During the period of data collection (January 2007 to July 2008), a total of 577 orthopedic patients had surgical operations at National Orthopaedic Hospital, Lagos. Of these, 238 patients (41%) satisfied the inclusion criteria. However, only 121 patients (21%) adhered to the study protocol and were followed up satisfactorily. Out of the 121 clean cases, 72 (59.5%) were implant cases, whereas 49 (40.5%) were non-implant cases. The male:female population ratios for implant and non-implant cases were, respectively, 31:41 and 20:29 (the respective ratios 1:1.3 and 1:1.5). The age range of the study population was 1-90 years with a mean age of 33 ± 21 years. There were 51 (42.1%) males and 70 (57.9%) females with a male:female ratio of 1:1.4. A total of twelve patients had wound infection giving an incidence of 9.9%.

Type of surgery

All infected patients were implant cases. Therefore, the incidence of infection for implant surgery was 16.7%.

Age

The incidence of wound infection was noted to be increased with increasing age from this study. The age group below 41 years showed an infection rate of 5.9%. In the 41-60 years group, there were 23 patients and 3 (13%) had infection. There were 13 patients above 60 years, 4 (31%) of them were infected. \(P = 0.04\). This is shown in Figure 1.

Sex

Out of 70 female patients, eight developed infection, whereas four out of 41 male patients were infected. This is shown in Table 1.

Duration of pre-operative hospitalization

Of the 13-day cases, none had post-operative wound infection. Sixty-eight patients stayed for up to 7 days and

![Figure 1: Relationship between age group and infection rate](image-url)
4 (6%) were infected. Twenty-one patients stayed for 8 to
13 days; 4 (19%) were infected. Nineteen patients stayed
for more than 13 days; 4 (21%) were infected. This is shown
in Figure 2. Therefore, out of 81 patients that stayed for
7 days or less before surgery, four were infected; out of 40
that stayed beyond 1 week, eight were infected. \(P = 0.012 \)
and odd ratio = 4.81. The figure also shows no infection in
day cases.

Number of people during surgery

An infection rate of 7.1% was recorded when there were less
than six people in the theater with a rate of 10.05% when
more than 10 people were in theater [Figure 3]. \(P = 0.93 \).

Transfusion

Figure 4 shows an infection rate of 3.7% (three out of
82 patients) when no blood was transfused, 12.7% (one of
eight patients) when autologous blood was transfused, and
25.8% (eight out of 31 patients) when homologous blood
transfusion was done.

Duration of surgery

Surgical operations (21) lasting less than 45 min had no
infection; those (54) exceeding one and half hours had
infection rate of 16.7% [Figure 5]. \(P = 0.08 \).

Use of drain

Only one non-drained wound was infected. The remaining
infections were in drained wounds [Table 2]. It is worthy to
note that all implant cases had wound drain.

Antibiotic used

Each patient received one of the three antibiotics
pre-operatively as shown in Table 3. Penicillin was used
only for non-implant cases. Infection rates associated with
antibiotics used were: Cephalosporins (cefuroxime [9.6%]
and ceftriaxone [8.8%]), quinolone (ciprofloxacin [16%]),
and penicillin (amoxicillin + clavulanate [0] and
ampicillin + cloxacillin [0]).

| Table 1: Sex distribution of infected patients |
|-----------------|----------------|-----------|
| Sex | Total cases | Infected cases | % |
| Female | 70 | 8 | 11.4 |
| Male | 51 | 4 | 7.8 |
| \(P=0.51 \) | | | |

| Table 2: Drains and wound infection |
|-------------------------------|---------|-----------|
| Use of drain | Infected| No infection | % |
| Drain | 11 | 58 | 15.9 |
| No drain | 1 | 51 | 1.9 |
| \(P=0.01 \) | | | |

| Table 3: Antibiotics and infection rate |
|---|---------|----------|--------|
| Pre-operative antibiotic | Infected| Not infected | Infection (%) |
| Cephalosporin | 8 | 78 | 9.3 |
| Quinolone | 4 | 21 | 16 |
| Penicillin | 0 | 10 | 0 |

![Figure 2](image2.png)
Figure 2: Relationship between infection rate and duration of pre-operative admission

![Figure 3](image3.png)
Figure 3: Population of theater personnel and infection rate

![Figure 4](image4.png)
Figure 4: Blood transfusion and infection rate
Discussion

This study revealed that four factors were significantly associated with increased post-operative infection rate. These factors, in increasing significance, were increasing age of patient, prolonged length of pre-operative hospital stay, use of implant, and wound drain. Patient's sex, ward admission, operating room, use of tourniquet, homologous blood transfusion, theater population, surgeon, and duration of surgery did not have significant influence on infection rate.

Age was found to be a significant influence on the rate of infection in this study. This is in keeping with several previous studies. It is possible that the increased infection rate observed with increasing age in this study was due to the occurrence of other risk factors observed with aging, like reduction in immunity, which were not entertained in this study. The longer the duration of pre-operative hospital stay, the higher the rate of infection in this study. This influence was statistically significant. In fact, patients who stayed for less than 1 week pre-operative hospital stay were almost 5 times more likely to develop infection than those that stayed for less. Previous studies had shown the same trend. The reason for this observation is probably because increased pre-operative stay causes skin colonization by bacteria that are resistant to antimicrobials used for pre-operative prophylaxis. In this study, only implant cases were associated with infection; no infection occurred in non-implant cases. All implant cases were associated with the use of drains. The use of foreign bodies (implants and wound drains used together) had the most significant influence on wound infection. However, the influence of wound drain and the influence of implant on wound infection were not separated in this study because of study design. Therefore, another study, like a controlled study on the use of drains versus no drains in implant surgery, could further explain the influence of wound drain on infection in implant surgery. Many other studies, both experimental and clinical showed that the presence of foreign implants greatly increased the incidence of infection. Apart from disturbing tissue perfusion, foreign bodies increase the possibility of infection by reducing the ability of leukocytes to kill bacteria. This is because bacteria can form biofilms on their surface. The increase in the number of personnel in theater during surgery was associated with increase in infection rate but this was statistically significant. Olsen, et al. found that infection rate was increased when two or more residents were involved in the operative procedures. This may also reflect the fact that the procedure itself is complex and therefore possesses other infective risk factors. However, it had been shown that the greater the number of people in theater, the greater the number of bacteria cultured from the theater air. High-operating room traffic is known to increase the rate of infections. In fact, Babkin, et al. found that the rate of SSIs associated with left knee replacements was 6.7 times higher than that associated with right knee replacement performed during the same period and in the same operating rooms. Homologous blood transfusion, in this study, was associated with increased infection rate when compared with autologous transfusion. This had been shown in other studies, and the explanation usually given was that homologous blood transfusion tended to reduce immunity. This study revealed increased infection rate as the duration of surgery increased. This was the same as the finding of other studies. Studies from other centers in Nigeria showed that 2 h is the critical time. Prolongation of operation time means prolonged tissue desiccation, surgical trauma, blood loss (with possible blood transfusion), and exposure time to bacteria. Some workers have shown that surgeons with most surgical experience and responsibility had the lowest infection rate. Consultants are generally more experienced, they are faster (shorter duration of surgery), and are better tissue handlers.

The overall incidence of 9.9% for SSI found in this study is similar to the findings of other studies in Nigeria.

Conclusion

The incidence of post-operative wound infection in clean cases in our series was 9.9%. For the implant cases alone, the incidence was 16.7%. The most significant factors affecting rate of infection were patients age, duration of pre-operative hospitalization, type of surgery (implant or non-implant), duration of surgery >90 min, and use of drains.

Recommendation

We recommend that the duration of pre-operative hospitalization should be as short as possible. To this end, pre-operative investigations and patient work up, if possible, should be done on outpatient basis before admission. Surgical operations should proceed as fast as possible and the use of drains restricted to only when absolutely necessary.
Ikeanyi, et al.: Surgical site infection

References

Source of Support: Nil, Conflict of Interest: None declared.