Review Article

Success Rate of Immediately Loaded Implants in the Posterior Zone

MH Mugri¹, ME Saved², S Bhandi³, HAA Alaai⁴, NHB Alsubeaie⁵, SH Alsubaie⁵, S Varadarajan⁶, AT Raj⁶, PK Yadalam⁷, Z Khurshid⁸, TM Balaji⁹, S Patil³

¹Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, ²Department of Prosthetic Dental Sciences, College of Dentistry, Jazan, University, Jazan, ⁴Private Practice, Jazan, Kingdom of Saudi Arabia, ⁵Private Practice, Rivadh, Kingdom of Saudi Arabia, ⁸Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia, ⁶Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, Tamil Nadu, ⁷Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 9Department of Periodontology, Tagore Dental College and Hospital, Chennai, India, ³College of Dental Medicine, Roseman University of Health Science, South Jordan, UTAH-84095, USA

Received:

12-Dec-2022; **Revision:** 15-May-2023; Accepted: 26-Jun-2023; **Published:** 21-Sep-2023

Keywords: Immediate loading, posterior zone, single implant

INTRODUCTION

ental implants are the ideal treatment of choice for missing single tooth owing to their superior

Acce	ess this article online
Quick Response Code:	Website: www.njcponline.com
	DOI: 10.4103/njcp.njcp_884_22

Address for correspondence: Dr. S Patil, College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UTAH-84095, USA. E-mail: dr.ravipatil@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Mugri MH, Sayed ME, Bhandi S, Alaqi HA, Alsubeaie NH, Alsubaie SH, et al. Success rate of immediately loaded implants in the posterior zone. Niger J Clin Pract 2023;26:1215-25.

(1215

Dental implants are considered an ideal treatment for a missing single tooth. BSTRACT Immediate loading of implants can hasten the procedure, providing comfort to the patients. Recently, immediate loading of implants has gained much importance as it helps hasten the procedure and provides more comfort to patients. A previous systematic review published 5 years ago compared the success rates between immediate and conventional loading. There are several factors that influence the success rate of implants that were not discussed in detail in the previous review. Hence, the present systematic review is done to report differences in the outcomes from single implant restorations of missing teeth in the posterior region in patients who were subjected to immediate loading and conventional loading. A follow up for 1 year was done. Electronic databases of Medline, Scopus, and Web of Science were searched for publications in the English Language during May 2021. The search results yielded 306 articles, out of which 225 were excluded based on title and abstract screening. Screening of the remaining 81 full text articles yielded 14 original research articles that satisfied the predefined inclusion criteria. Meta analysis was not possible due to the heterogeneity of the data. The overall success rate of the immediate loading of a single implant is 94.31%. Implants in the maxillary region had a higher survival rate than those in the mandibular region. The age range between 18 and 80 years showed good prognosis and outcomes in older individuals. Good oral hygiene was emphasized for all patients to prevent any secondary conditions or delays in healing.

© 2023 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer - Medknow

success rate.^[1,2] The major function of the dental implant is to transmit occlusal load to the adjacent organic tissues, dispersing and distributing biomechanical force. Immediate loading is characterized as embedding the apparatus, projection, and provisional functionality restoration in a single surgical procedure. It is a non-submerged surgical procedure that provides the patient with a provisional restoration.^[3] The restoration and abutment within the initial 2 days are placed into "limited" function, and during the subsequent months, they are allowed to Osseo integrate.^[4] Following the implant placement, osseous remodeling starts on the implant-bone interface, accelerated by the force that instigates the bone cells.^[5] Furthermore, the patient's diet plays a significant role during bone osteointegration and remodeling after the immediate loading technique. A soft diet should be taken in smaller portions throughout the initial timeframe of 3-4 months of the recuperating cycle and deposition of bone.[6]

Some advantages of immediate loading include improved clinical efficiency, decreased treatment time, improved comfort for patients, a comparatively lesser traumatic experience for patients, and the instant development of an emergence profile around the transmucosal component. Due to a single surgery, there are fewer chances to be exposed to infections and increased chances to maintain gingival contours. Overall, this provides psychological, physical, and monetary benefits to patients. For its success, good implant stability and support of the bone are required. The absence of good bon support would be a major disadvantage. It requires more strict compliance from the patient, and the crown should have centric occlusion without eccentric contact. It is because more pressure on the prosthesis will cause more force on the bone-implant interface and lead to bone strain and possible failure.

To lessen this microstrain, it is important to enhance the interface surface.^[7] It can be enhanced by implant surface treatment, number of threads, implant size, implant number, bone mechanical properties, and direction of occlusal load. The embedded body configuration ought to be more explicit for immediate loading because the bone has not had the opportunity to develop recesses. The support for the surface area can be increased by 20% for each increase of 3 mm in length.^[8] However, at the trans-osteal region, there is a very small effect of decreasing this strain by increasing length, as the crestal bone has the majority of the load at the bone-implant interface.^[9] The quantity of threads additionally influences the measure of the region accessible to oppose the immediate loading force. With the minute separation between the threads,

1216

the thread number and related surface area will be more prominent.^[10] It is also important to monitor factors such as parafunctional movements, teeth clenching, or bruxism, as they can also cause strain on the implant and have a higher chance of leading to subsequent failure.[11] Additionally, these can also lead to the fracture of temporary restorations or abutments.^[6] For a successful implant treatment, various factors have an impact on its restoration and prevention of bone loss. Although Moraschini et al.[12] conducted a systematic review comparing the success rates of immediate and conventional loading, the review was published five years ago, and the factors influencing the success rate of implants were not discussed in detail. Therefore, this systematic review study aims to determine the differences in the outcomes of single implants for the restoration of missing tooth in the posterior region. Patients were subjected to immediate loading and conventional loading with a minimum of 1 year follow-up and a brief note on the factors affecting the success of immediate loading of single implants in the posterior zone was added.

MATERIALS AND METHODS

This systematic review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines.

Focus question

The focus question is based on the PICOS criteria:

Population (P): patients who require replacement of a single missing tooth or teeth in the posterior region with single implants; Intervention (I): Immediate loading of implants; Comparison (C): Comparison with patients who received conventional or delayed loading of implants; Outcome (O): implant survival and marginal bone loss; Study design (S): Randomized Control trial

"Does immediate loading of single implants in the posterior region show better outcomes than delayed or conventional loading?"

Eligibility Criteria:

Inclusion criteria:

- Randomized controlled trials with >10 patients in each group
- Studies with the procedure of single immediately loaded implants with single crowns only
- A minimum follow-up of 1 year
- The diameter of endosseous implants is between 3 and 6 mm

Exclusion criteria:

Animal or in-vitro studies

- Placement of implants leads to immediate and severe complications
- Data retrieved from questionnaires and chart reviews
- Studies with improper information about the implant placement and loading protocols
- Studies with insufficient information related to implant success and survival rates
- · Case studies, editorials, and blogs

Search strategy

The electronic databases of Medline, Scopus, and Web of Science were searched for publications in the English Language using specific keyword combinations: "Immediate loading of single implants" and "posterior." A manual search of the references to the included studies was done to identify additional papers.

Study selection

Two authors independently removed duplicates from the search results. The titles and abstracts of the remaining articles were examined, and they were assessed for eligibility based on predefined inclusion and exclusion criteria. Any disagreement was resolved through discussion with a third author until a consensus was reached.

Data extraction

Two authors independently conducted data extraction on a customized template. An additional expert evaluator was consulted in case of any disagreement. Data on study design, functional loading, implant characteristics, implant stability assessments, final prosthesis, success criteria, implant survival rate, time of failure, and prosthesis success rate were extracted from the included studies.

Risk of bias

The Cochrane Collaboration Risk of Bias (RoB) tool was used to determine the RoB of the selected studies.^[13] To determine the quality of the Randomised control trials (RCTs) the SIGN 50 scoring criteria were applied.^[14]

RESULTS

Study selection and screening

The database search yielded 306 articles (PubMed = 98; Scopus: 97; Web of Science 106; cross-reference 5). 225 articles that were duplicated and determined to be ineligible based on titles and abstracts were removed. The full text of the remaining 81 articles was screened to select articles based on predefined inclusion and exclusion criteria. A total of 14 articles^[15-28] were selected for inclusion in this review. The PRISMA flow diagram is depicted in Figure 1 and the data extraction results are shown in Table 1.

Risk of bias

Thirteen studies had a moderate-to-high RoB due to a lack of clear information on randomization and concealment.^[15-28] Only one study had a low RoB as it fulfilled the criteria of randomization, blinding, and free of selective reporting.^[22] A summary of the RoB is shown in Table 2.

The quality of the randomized control trials based on SIGN 50 was low to moderate in the included studies and most of the studies did not provide information on randomization, allocation concealment, and blinding. The summary of the SIGN50 is presented in Table 3.

Figure 1: Represents the PRISMA flowchart

🖌 1217

		Table 1: (Overall results o	f the included studies		
Study	Study design	Study group and sample size	Vo. of implants in each oroun	Implant type/description	Mean age	Systemic conditions/other confounding factors
Weerapong et al.	Randomized	<i>n</i> =46	23	PW + Dental Implant system	Case: 50.5 years	Nil
/2019/Thailand	control trial	Case Short implants		Case : 6 mm short implant	Control 51.5 years	
		Control : Conventional implants $(n=23 \text{ in each group})$		Control 10 mm conventional implant		
Atieh et al./2013/	Randomized	n=24	12	8- or 9-mm wide diameter	Case : 51.5 years	Nil
New Zealand	control trial	Control group: immediate loading of implants in healed sockets		implant (MAX Southern Implants Length 7 to 9 mm	Control : 53.6 years	
		Case: immediate loading of implants following immediate placement				
Akoğlan <i>et al</i> .	Prospective	<i>n</i> =39	13	(Implantium; Dentium, Seoul, Korea	total mean age	Nil
(2017)/Turkey	clinical study	Group 1:immediate loading Group 2 early loading			41.3 years	
		Group 3: delayed loading				
Gunncu	Randomized	<i>n</i> =12	12	4 x 11.5 mm Branemark System,	41.09 8.46 years	Nil
et al./2007/	control	Case side: immediate loaded		TiUnite, Mk III Nobel Biocare,		
lurkey	study with Split mouth Design	Control side: d=conventional loading		Goteborg, Sweden). Easy Abutmentt (Nobel BiocareAB		
Schincaglia	Randomized	<i>n</i> =30	15	Nobel Biocare Mk III WP Ti Unite	Case: 35–	Nil
<i>et al.</i> /2009/Italy	control study	Case group: immediate loading		implant	68 (49.2) years	
		Control: Delayed loading		5 8.5, 10, 11.5	Control: 31– 75 (51.8) years	
Kokovic <i>et al.</i> /2014/Serbia	Randomized control trial	n=12 Split mouth design	36	SLA Straumann® TE; Straumann AG, Basel. Switzerland 4.1 mm and length	49 years	Nil
		Case group. IIIIIIculate Ioauing Control group: early loading		8,10 mm		
Ayna <i>et al.</i> /	Prospective	<i>n</i> =63	Case 48	short implant (6 mm)	54.68 ± 8.63	Nil
Germany/2018	Randomized	Case : immediate loading 48	Control 15			
	control trial	Control group: conventional loadig 15				
Baek et al. 2019/	Randomized	<i>n</i> =52	Case: 27 and	Control: CMI IS-III active® long	Case:	Not clear
Korea	control trial	Case: Short implant	control each 19	implant 5.0×10 mm	52.06±11.05 years	
		Control: Long implant		Case: CMI IS-III active® short implant5.5×6.6, 7.3, 8.5 mm	Control: 55.42±11.75	
Wang et al./2020/	Randomized	<i>n</i> =52	Case $n=27$	NobelParallel Conical Connection,	46.8±10.7 yeas	In some patients controlled
USA	control trial	Case: Immediate loading group	Control $n=25$ s	Nobel Biocare AB 93.75 mm, 4.3 mm, 5 mm)		systemic diseases in some
		Control: Delayed loading		(

Contd...

1218

Nigerian Journal of Clinical Practice | Volume 26 | Issue 9 | September 2023

				Table 1: C	Contd				
Study	Study	Study group	and sample size No). of implants in	Implant tyl	pe/description		Mean age	Systemic conditions/other
	design			each group					confounding factors
Prosper et al./2010/Italy	Randomized control trial	Patients=71 Case immedi immediate pla Control: Dela immediate pla	I ate loading after acement iyed lading after acement	20 implants (60 in each group)	Wider diam commercial Covering, V a self-thread (Magnum In a length of 9 diameter of	ly pure titanium Ninsix) in the foi ding cylindrical i mplants, Winsix 9, 11, or 13 mm. '6.5 or 7.5 mm.	ndblasted (Bioactive m of screw), with and a	58.3 years	Nil
Meloni/2012/Italy	Randomized split moth control trial	20 patients Case: immedi Control : Con	iate loading 1ventional loading	20 implants for each group	Nobel Repl Biocare, Gc mm and len	ace Tapered Gro oteborg, Sweden gths of 10 or 8 r	ovy; Nobel , 4.3 or 5.0 nm.	46 years	Uncontrolled conditions were excluded, controlled systemic conditions were included
Barewal <i>et al.</i> /2012/ Oregon/USA	Randomized control trial	<i>n</i> =40 Group: Group II early delayed (15)	Immediate (8) y (17), Group III	Group I=8 Group II 17 Group III 15	4 mm diame Tech	eter, Osseo Spee	d Astra	Between 20 and 82 years	Uncontrolled conditions were excluded, controlled systemic conditions were included
Kim/2013/ Phildelphia USA	Randomized Control Trial	n=46 split mc	outh design	Case 22 Control 24	46 SLActiv 4.8 x10 or 1	e Straumann imj 12 mm	plants 4.ot	18 to 80 years	Only significant conditions that affect bone healing were excluded
Zarrabi <i>et al.</i> /2018/Iran	Single-blind randomized clinical trial	39 implants in Control 19 in Case: 20 impl	n 32 patients nplants delayed loading lants immediate loading	Case: 20 Control 19	Dio Implan	ts)		18-80 years	Only significant conditions that affect bone healing were excluded
Study	Immediate placement after extraction	Site	Restoration Details	Follow N up ir (years) faild	lo of the mplants ed in each group	Implant survival in each group (%)	Marginal bone Mean±s.	e level change, .d. (mm)	Statistical significance between the groups
Weerapong <i>et al.</i> /2019/Thailand	No	Mandibular first and second molar	Provisional computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic crowns Centric occlusion	1 year C	Case: 2 ontrol: 1	Case : 91.7% Control:: 95.8%	Case group: 0 Control: 0.26±0.	.33±0.47 mm : group: .27 mm	P=0.554
Atieh <i>et al.</i> /2013/ New Zealand	Yes	Mandibular first or second molar	Acrylic provisional restoration Full ceramic permanent restoration	I year C	Case: 4 ontrol: 2	Case : 66.7% Control: 83.3%	Case group: Control gro	0.41 (0.57) oup (0.04)	0.14 Implant stability quotient higher in delayed placement group after 1 year (significant) Prosthetic outcome better in delayed placement group)
Akoğlan <i>et al.</i> (2017)/Turkey	No	Maxillary premolar and molar	permanent screw-retained Centric occlusion	l year	0	100%	Immediate: 7 Early: 83.] Delayed 62.08 (1.74 6 18.71 11 6 11.33 loading: 615.44	0.009
									Contd

Downloaded from http://journals.lww.com/njcp by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AW nYQp/IIQrHD3i3D0OdRyi7TvSFI4Cf3VC1y0abggQZXdtwnfKZBYtws= on 10/24/2023

1219 Nigerian Journal of Clinical Practice | Volume 26 | Issue 9 | September 2023

				Table	1: Contd			
Study	Immediate	Site	Restoration Details	Follow	No of the	Implant	Marginal bone level change,	Statistical significance
	placement			dn	implants	survival	Mean±s.d. (mm)	between the groups
	after			(years)	failed in each	in each		
	extraction				group	group (%)		
Gunncu	No	Mandibular	Provisional restoration	I year	Case group : 1	Case 91.67%	Case group 0.45±0.39	No significant difference
<i>et al.</i> /2007/ Turkey		molar	Permanent Metal ceramic crown		Control group: 0	Control 100%	Control group 0.68±0.3	
			Centric occlusion					
Schincaglia <i>et al.</i> /2009/Italy	No	Mandibular molar	Provisional restoration porecelain fused to meral or cemented or screw retained permanent restorations. Centric occlusion	1 year	Case group: 1 Control group: 0	Case 93.5% control 100%	Case group 0.77±0.38 mmControl group 1.2±0.55 mm	P=0.02
Kokovic <i>et al.</i> /2014/Serbia	No	Mandibular molar	Provisional Restoration Permanent restoration type not mentioend	5 years	0 in both groups	100% both groups	Case group: 0.4 (0.24) Control group 0.8 (0.19)	<i>P</i> =0.118 (significant at 1 year) self-tapping implants can provide better stability
Ayna <i>et al./</i> Germany/2018	No	Maxillary posterior	provisional superstructures of bis-methacrylatecomposite	5 years	Case group : 3 Control: nil	Case: 93.7% Control 100%	Exact measurements were not reported but in both groups	Statistically significant decreased bone loss in the
			resin were (Luxatemp DMG Chemisch-Pahrmazeutische Fabrik GmbH, Hamburg— Germany) Centric occlusion				was well within the limits	control group than case group P<005
Baek et al. 2019/	No	Mandibular	provisional and definitive	1 year	Nil	Case and	Control group: -0.07	P>0.05
Korca		molar	monolithic zirconia prostheses at 1 week and 12 weeks after implant surgery, adjusted occlusion to prevent eccentric contact.			Control 100%	12 weeks 0.06 mm 1 year Case: and 0.03 mm after 12 weeks 0.05 mm after 48 weeks.	No difference with the length of implants
Wang <i>et al.</i> /2020/ USA	No	Maxillary/ Mandibular/ premolar to molar region	Temporary restoration followed by monolithic zirconia screw-retained implant crown	1 year	Nil	Case and Control 100%	Case: mean bone level change 1.2 mm (SD 1.3 mm Control: 1.6 mm (SD 1.0 mm)	P>0,05
Prosper	Yes	Maxillary or	prefabricated provisional	5 years	Case 2 implant	96.67% in	At 5 years	P > 0.05
<i>et al.</i> /2010/Italy		mandibular molars	acrylic resin crowns followed by single porcelain metal crowns centric occlusion		Contr012 implants	each group	Case: −1.31±0.44 mm Control −1.01±0.59 mm	
Meloni/2012/ Italy	No	bilaterally missing first	Provisional restoration followed by zirconia-ceramic	1 year	Nil	100%	Case : 0.83±0.16 mm (95% CI 0.75 to 0.91)	P=0.530
		mandibular molars	or metal-ceramic crowns				Control: 0.86±0.16 mm (95% CI 0.78 to 0.94)	

Downloaded from http://journals.lww.com/njcp by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AW nYQp/IIQrHD3i3D0OdRyi7TvSFI4Cf3VC1y0abggQZXdtwnfKZBYtws= on 10/24/2023

1220

Contd...

	hange, Statistical significance	between the groups			22 mm Not significant with the three	groups		No significant difference	between both groups	No significant difference	6
	Marginal bone level cl	Mean±s.d. (mm)			Mean bone loss was 0.2			Not mentioned		Case: 1.17±0.58	Control: 1.09±0.4
	Implant	survival	in each	group (%)	Group I and II	100%	Group III 93%	Case 86.4%	Control 100%	Case 100%	Control 95%
: 1: Contd	No of the	implants	failed in each	group	Group I and	Group II nil	Group III=1	Case 3	Control nil	Case: Nil	Control 1
Table	Follow	dn	(years)		3 years			1 year		1 year	
	Restoration Details				Provisional, Permanent	cement retailer all-ceramic	crown (Titanium or zirconia abutment)	Provisional followed by PFM		Provisional acrylic crown.	Permanent prosthesis not mentioned Centric
	Site				Maxillary or	mandibular	posterior region	Maxillary	posterior	Maxillary	posterior
	Immediate	placement	after	extraction	No			No		No	
	Study				Barewal	et al./2012/	Oregon/USA	Kim/2013/	Phildelphia USA	Zarrabi	<i>et al.</i> /2018/Iran

Ť.

Ĩ.

Data synthesis

Due to the heterogeneity of the studies, a meta-analysis could not be conducted. Therefore, the best evidence synthesis was done. All the included studies were randomized control trials.

Follow-up varied in the included studies, with 10 articles having a 1-year follow-up.^[15,16,18,19,21,23-27] One study had a 3-year follow-up,^[22] and three studies had a 5-year follow-up.^[17,20,28]

The patient's age range was between 18 and 80 years. The sample size of each study varied considerably, from the highest being 120 implants to the lowest examining only 17 implants.

The implants showed a good survival rate of 94.31%, with only sixteen implants failing in seven of the included studies. Six implants failed in the delayed loading group in five of the included studies, accounting for a mean survival rate of 97.37%.

No significant difference was reported in the marginal bone level change in eleven studies^[15-22,24-26] on delayed loading. Three studies reported a change in marginal bone level on immediate loading [Table 1].

Seven studies used the mandibular posterior region for the placement of implants. Four studies used the maxillary posteriors as the site of placement. Three studies used the maxillary or mandibular posterior region. In the maxillary posterior site, immediate implants had a mean success rate of 95.025%, which declined to 91.93% in the mandibular region. Delayed implants showed greater success, with 98.75% in the maxillary posterior site and 97.61% in the mandibular region. The success rate was 98.9%. Studies where both maxillary and mandibular sites were higher than the delayed loading group. Of the 14 included studies, only had placed implants immediately after extraction.^[16,20] The success rate was greater for immediate loading in a healed socket (83.3%) compared to immediate loading following extraction (66.7%).^[16] Prosper et al.^[20] reported 96.67% for both immediate and delayed loading of freshly extracted sockets.

The implant material varied across the studies, leading to heterogeneous data. MAX Southern Implants titanium implants showed the lowest survival rate following immediate placement after extraction.

Considering restoration-related factors, temporary CAD/ CAM was used in one study with a 91.7% survival rate.^[15] All others had permanent restorations, ranging from porcelain fused to metal crowns to all-ceramic zirconia monolithic crowns. A few studies did not mention the type of permanent restoration. The survival

X1221

	Tab	ole 2: Cochra	ne Risk of Bi	as of the incl	luded studies			
First author name/	Random	Allocation	Blinding of	Blinding	Incomplete	Free of	Free	Overall
year of publication/	sequence	concealment	participants	of outcome	outcome data	selective	from	Risk of
country of origin	generation		& personnel	assessment	addressed	reporting	other bias	Bias
Weerapong <i>et al</i> . /2019/Thailand	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Akoğlan <i>et al.</i> /2017/ Turkey	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	High
Atieh <i>et al.</i> /2013/ New Zealand	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	High
Gunncu <i>et al.</i> /2007/ Turkey	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Schincaglia et al./2009/Italy	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Kokovic <i>et al.</i> /2014/ Serbia	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Ayna <i>et al./</i> Germany/2018	Unclear as to the method of randomization not mentioned	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	High
Baek <i>et al</i> . 2019/ Korea	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Wang <i>et al.</i> /2020/ USA	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Prosper <i>et al.</i> /2010/ Italy	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Meloni/2012/Itay	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Barewal <i>et al.</i> /2012/ Oregon/USA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Low
Kim/2013/ Philadelphia USA	Yes	Unclear/not mentioned	Unclear/not mentioned	Unclear/not mentioned	Yes	Yes	Yes	Moderate
Zarrabi <i>et al.</i> /2018/ Iran	Unclear/technique not mentioned	Unclear	Yes	Unclear/not mentioned	Yes	Yes	Yes	Moderate

rate of the ceramic implant varied widely, from $66.7\%^{[16]}$ in one study to $100\%^{[22,21]}$

Most studies opted for full-centric occlusion and a non-functional immediate loading protocol. Almost all the patients included had good oral hygiene, no reports of parafunctional habits, and a healthy physique. Six studies excluded conditions that interfere with osseointegration, whereas controlled systemic conditions that did not affect implant placement were included.

DISCUSSION

Dental implants are the most popular treatment choice for replacing missing teeth. The last systematic review examining survival rates of immediately loaded implants was published half a decade ago and focused solely on the mandibular region. Considering several recent randomized control trials, there is a need to analyze new evidence on the success rates of both immediate loading and conventional loading of implants in the posterior region. The present systematic review assessed differences in the outcomes of single implants for restoration of missing teeth in the posterior region in patients who were subjected to immediate loading and conventional loading with a minimum follow-up of 1 year.

Fourteen studies included in the review compared the survival rate of immediate loading of single implants in the posterior zone with a delayed loading protocol. All studies provided follow-up for 1 or more years. The overall success rate of immediate loading was 94.31%. Although the success rate of immediate loading implants was high, it was less than the 99–100% success rate in previous studies.^[27,29] This higher failure rate could be due to the lower sample size or the implant used. Atieh *et al.*^[16] used a wide diameter MAX Southern Implants titanium implants were placed immediately after extraction. They reported no statistically significant differences in the success rates of immediate placement and delayed placement. However, a study with a larger sample size by Prosper *et al.*^[20] reported a success rate

		Table 3	3: Quality of	the Random	ized Control	Frials by the S	IGN 50 scorir	ng criteria			
First Author name/	Clear	Randomization	Allocation	Blinding of	Homogeneity	The difference	Outcome	Dropouts	Intention	The	Score
year of publication/	focus	performed	concealment	patients and	of cases and	between the	measures	assessed	treat analysis	similarity	
country of origin	question	adequately		personnel	controls	groups is only the treatment	standardized	if present	(all subjects	of data, if the study is	
						in concern			group where	multicentric	
									they belong to)		
Weerapong	Yes	Yes	Unclear	Unclear	Yes	Yes	Yes	Yes	Yes	Not	Low
et al./2019/Thailand										applicable	
Akoğlan <i>et al</i> .	Yes	Unclear/Not	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Moderate
(2017)/Turkey		mentioned	mentioned	mentioned						applicable	
Atieh et al./2013/	Yes	Unclear/Not	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Moderate
New Zealand		mentioned	mentioned	mentioned						applicable	
Gunncu et al./2007/	Yes	Yes	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Low
Turkey			mentioned	mentioned						applicable	
Schincaglia	Yes	Yes	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Low
<i>et al.</i> /2009/Italy			mentioned	mentioned						applicable	
Kokovic et al./2014/	Yes	Yes	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Low
Serbia			mentioned	mentioned						applicable	
Ayna <i>et al.</i> /	Yes	Unclear/Not	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Moderate
Germany/2018		mentioned	mentioned	mentioned						applicable	
Baek et al. 2019/	Yes	Yes	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Low
Korea			mentioned	mentioned						applicable	
Wang et al./2020/	Yes	Yes	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Low
USA			mentioned	mentioned						applicable	
Prosper et al./2010/	Yes	Unclear/Not	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Moderate
Italy		mentioned	mentioned	mentioned						applicable	
Meloni/2012/Itay	Yes	Yes	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Low
			mentioned	mentioned						applicable	
Barewal et al./2012/	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Not	Low
Oregon/USA										applicable	
Kim/2013/	Yes	Unclear/Not	Unclear/Not	Unclear/Not	Yes	Yes	Yes	Yes	Yes	Not	Moderate
Philadelphia USA		mentioned	mentioned	mentioned						applicable	
Zarrabi et al./2018/	Yes	Unclear/not	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Not	Low
Iran		explained								annlicable	

of 96.7% following immediate placement. Thus, it can be inferred that immediate placement of the implant following extraction in the posterior region could be a possible reason for implant failure. The duration of edentulism before extraction may be a major factor influencing the success rate of immediately loaded single implants.^[16]

The included studies revealed no statistical difference in implant survival with immediate and conventional loading, which is consistent with the previous systematic review.^[12] Few studies reported statistically significant changes in the marginal bone levels, which may be due to factors such as the site of placement, systemic conditions, type of implant, bone levels before the study, and the periodontal and oral hygiene status of the study participants.

Immediately loaded implants in the maxillary posterior region had a better success rate (95.025%) compared to the mandibular region (91.93%). The increased masticatory forces in the posterior mandibular region could affect the survival rate of the implant.^[12]

In most of the studies, the inclusion criteria were adequate bone height. This could be another factor that led to the successful outcome, as an optimum level of abundant bone is needed for hosting an implant.^[30] Occlusal contact is another factor that affects the success of implants. Most of the studies opted for full centric. The studies provided little information on the implant surface characteristics, which can influence the success rate of implants. Rough surfaces have five times higher survival rates than smooth surfaces.^[31]

The age of the patients varied between 18 and 80 years of age, which suggests that dental implants are a compatible treatment and can be successful even in a geriatric population.^[32] All studies excluded patients with systemic conditions that affect osseointegration. This patient-related factor could be the reason for the higher success rates reported.^[33] In the studies included in this review, the success rate was high because most of the patient-related factors were controlled. In most of the studies, smokers were excluded, which is concurrent with the findings of Tawse-Smith *et al.*^[34] who found smoking to be a significant factor in implant failure.

The RoB was moderate to high in most studies due to a lack of information on randomization, allocation concealment, and blinding. The quality of the randomized control trials based on SIGN 50 was low to moderate in the included studies, and most of the studies did not provide information on randomization, allocation concealment, or blinding. The follow-up periods and sample sizes were low for most studies. Also, 13 out of 14 studies had a moderate-to-high RoB. The results of this review must be interpreted with caution, as many studies did not report the effects of pain and psychosomatic factors that can affect implant success. Future studies with larger sample sizes and longer follow-ups examining the pain and psychosomatic factors and their correlation with the success rates should be carried out, and measures to reduce bias must be taken. This will help to expand the knowledge base regarding factors that influence the long-term success rate of immediate loaded single implants in the posterior region.

CONCLUSIONS

Based on the limited evidence available, no significant differences were observed between conventional loading and immediate loading. The overall success rate of the immediate loading of a single implant in the posterior region was found to be 94.31%. The age of the participants ranged between 18 and 80 years, demonstrating a good prognosis and outcome in geriatrics. The maxillary region had a higher survival rate in comparison with the mandibular region. Most of the studies reported permanent restorations and full centric occlusal contact. This centric contact minimizes the pressure on the bone-implant interface, making the success rate high. Good oral hygiene was emphasized for all patients to prevent any secondary conditions or delays in healing. Further research with increased sample sizes and increased follow-up periods is recommended.

Acknowledgements

The author is very thankful to all the associated personnel in any reference that contributed to this research.

Data availability statement

Not applicable.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

References

- Tallarico M, Xhanari E, Pisano M, De Riu G, Tullio A, Meloni SM. Single post-extractive ultra-wide 7 mm-diameter implants versus implants placed in molar healed sites after socket preservation for molar replacement: 6-month post-loading results from a randomised controlled trial. Eur J Oral Implantol 2016;9:263–75.
- Canullo L, Caneva M, Tallarico M. Ten-year hard and soft tissue results of a pilot double-blinded randomized controlled trial on immediately loaded post-extractive implants using platform-switching concept. Clin Oral Implants Res

2017;28:1195-203.

- Munjal S, Munjal S. Immediate implant loading : Current concepts: A case report. J Orofac Res 2011;1:34–8.
- PJ Henry, GJ Liddelow. Immediate loading of dental implants. Aust Dent J 2008;53 (1 Suppl):S69–81.
- Kenney R, Richards MW. Photoelastic stress patterns produced by implant-retained overdentures. J Prosthet Dent 1998;80:559–64.
- Misch CE, Wang HL, Misch CM, Sharawy M, Lemons J, Judy KWM. Rationale for the application of immediate load in implant dentistry: Part I. Implant Dent 2004;13:207–17.
- Yuan K, Lee TM, Huang JS. Review: Temporomandibular Joint Reconstruction: From alloplastic prosthesis to bioengineering tissue. J Med Biol Eng 2010;30:65-72
- Misch CE, Resnik RR. Available bone and dental implant treatmentplans. In: Misch's Contemporary Implant Dentistry. 4th ed. Elsevier 2020. p. 415.
- Ryu HS, Namgung C, Lee JH, Lim YJ. The influence of thread geometry on implant osseointegration under immediate loading: A literature review. J Adv Prosthodont 2014;6:547–54.
- Grunder U. Immediate functional loading of immediate implants in edentulous arches: Two-year results. Int J Periodontics Restorative Dent 2001;21:545–51.
- Balshi TJ, Wolfinger GJ. Immediate loading of Brånemark implants in edentulous mandibles: A preliminary report. Implant Dent 1997;6:83–8.
- Moraschini V, Porto Barboza E. Immediate versus conventional loaded single implants in the posterior mandible: A meta-analysis of randomized controlled trials. Int J Oral Maxillofac Surg 2016;45:85–92.
- Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, *et al.* The Cochrane collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.
- SIGN 50 A Guideline Developer's Handbook. [Online] Edinburgh EH7 5EA: Scottish Intercollegiate Guidelines Network; 2008. Available from: https://www.sign.ac.uk/our-guidelines/sign-50-aguideline-developers-handbook/. [Last accessed on 2023 Jan 10].
- Weerapong K, Sirimongkolwattana S, Sastraruji T, Khongkhunthian P. Comparative study of immediate loading on short dental implants and conventional dental implants in the posterior mandible: A randomized clinical trial. Int J Oral Maxillofac Implants 2019;34:141–9.
- Atieh MA, Alsabeeha NHM, Duncan WJ, de Silva RK, Cullinan MP, Schwass D, *et al.* Immediate single implant restorations in mandibular molar extraction sockets: A controlled clinical trial. Clin Oral Implants Res 2013;24:484–96.
- Ayna M, Wessing B, Gutwald R, Neff A, Ziebart T, Açil Y, *et al.* A 5-year prospective clinical trial on short implants (6 mm) for single tooth replacement in the posterior maxilla: Immediate versus delayed loading. Odontology 2019;107:244–53.
- Baek YW, Lim YJ, Lee J, Koo KT, Kim M, Kwon HB. One-Year results of a randomized controlled clinical trial of immediately loaded short implants placed in the lower posterior single molar using a complete digital workflow. Appl Sci 2019;9:1282.
- Wang J, Lerman G, Bittner N, Fan W, Lalla E, Papapanou PN. Immediate versus delayed temporization at posterior single implant sites: A randomized controlled trial. J Clin Periodontol 2020;47:1281–91.
- 20. Prosper L, Crespi R, Valenti E, Capparé P, Gherlone E.

Five-year follow-up of wide-diameter implants placed in fresh molar extraction sockets in the mandible: Immediate versus delayed loading. Int J Oral Maxillofac Implants 2010;25:607–12.

- Meloni SM, De Riu G, Pisano M, De Riu N, Tullio A. Immediate versus delayed loading of single mandibular molars. One-year results from a randomised controlled trial. Eur J Oral Implantol 2012;5:345–53.
- Barewal RM, Stanford C, Weesner TC. A randomized controlled clinical trial comparing the effects of three loading protocols on dental implant stability. Int J Oral Maxillofac Implants 2012;27:945–56.
- 23. Kim SJ, Ribeiro ALVL, Atlas AM, Saleh N, Royal J, Radvar M, et al. Resonance frequency analysis as a predictor of early implant failure in the partially edentulous posterior maxilla following immediate nonfunctional loading or delayed loading with single unit restorations. Clin Oral Implants Res 2015;26:183–90.
- Zarrabi MJ, Radvar M, Shiezadeh F, Mokhtari MR, Nejat A. Immediate nonfunctional loading of a single implant in the posterior maxillary area: A randomized clinical trial. J Long Term Eff Med Implants 2018;28:145–53.
- 25. Akoğlan M, Tatli U, Kurtoğlu C, Salimov F, Kürkçü M. Effects of different loading protocols on the secondary stability and peri-implant bone density of the single implants in the posterior maxilla. Clin Implant Dent Relat Res 2017;19:624–31.
- Güncü MB, Aslan Y, Tümer C, Güncü GN, Uysal S. In-patient comparison of immediate and conventional loaded implants in mandibular molar sites within 12 months. Clin Oral Implants Res 2008;19:335–41.
- Schincaglia G. Pietro, Marzola R, Giovanni GF, Chiara CS, Scotti R. Replacement of mandibular molars with single-unit restorations supported by wide-body implants: Immediate versus delayed loading. A randomized controlled study. Int J Oral Maxillofac Implants 2008;23:474–80.
- Kokovic V, Jung R, Feloutzis A, Todorovic VS, Jurisic M, Hämmerle CHF. Immediate vs. early loading of SLA implants in the posterior mandible: 5-year results of randomized controlled clinical trial. Clin Oral Implants Res 2014;25:e114-9.
- Schnitman PA, Wöhrle PS, Rubenstein JE, DaSilva JD, Wang NH. Ten-year results for Brånemark implants immediately loaded with fixed prostheses at implant placement. Int J Oral Maxillofac Implants 1997;12:495–503.
- Elaskary A. Fundamentals of Esthetic Implant Dentistry. Wiley; 2008.
- Glauser R, Zembic A, Ruhstaller P, Windisch S. Five-year results of implants with an oxidized surface placed predominantly in soft quality bone and subjected to immediate occlusal loading. J Prosthet Dent 2007;97(6 Suppl):S59-68.
- 32. Schimmel M, Srinivasan M, McKenna G, Müller F. Effect of advanced age and/or systemic medical conditions on dental implant survival: A systematic review and meta-analysis. Clin Oral Implants Res 2018;29(Suppl 1):311–30.
- Donos N, Calciolari E. Dental implants in patients affected by systemic diseases. Br Dent J 2014;217:425–30.
- 34. Tawse-Smith A, Payne AGT, Kumara R, Thomson WM. Early loading of unsplinted implants supporting mandibular overdentures using a one-stage operative procedure with two different implant systems: A 2-year report. Clin Implant Dent Relat Res 2002;4:33–42.