# Prevalence of three-rooted mandibular permanent first molars among the Turkish population

H Çolak, E Özcan<sup>2</sup>, MM Hamidi<sup>1</sup>

Departments of Restorative Dentistry, <sup>1</sup>Endodontics, <sup>2</sup>Kırıkkale University School of Dentistry, Kırıkkale, Turkey

## Abstract

**Background:** This retrospective study was undertaken to determine the prevalence of three-rooted permanent mandibular first molars in digital periapical radiographic images obtained from a Turkish patient.

**Materials and Methods**: Periapical radiographs of 640 subjects, which had been obtained in the Department of Oral Diagnosis Radiology, Kırıkkale University Dental Faculty, Kırıkkale, Turkey from June 2010 to March 2011, were screened and examined retrospectively. All radiographs were evaluated under optimal conditions using double magnifying glasses. Each radiograph was separately evaluated by two authors (H.Ç. and M.M.H.). Comparison of the incidence and the correlations between males and females and left- and right-side occurrences were analyzed by using the Pearson chi-square test with SPSS (15.0; SPSS Inc., Chicago, IL, USA).

**Results**: The periapical radiographs of 9 patients, 4 females and 5 males, had three-rooted mandibular first molars. Of these three-rooted mandibular first molars, 7 were found on the right side and 5 on the left side. The overall incidence of patients with three-rooted mandibular first molars was 1.41%. The incidence was 1.63% for men and 1.2% for women. **Conclusion**: The prevalence of three-rooted mandibular first molars from all teeth examined was 1% (12 of 1205), 1.17% (7 of 596) for the right side, and 0.82% (5 of 528) for the left side occurrences.

Key words: Anatomy, radix entomolaris, turkish population

Date of Acceptance: 02-Jun-2012

#### Introduction

Knowledge of both basic root and root canal morphology as well as possible variation in anatomy of the root canal system is important in achieving successful nonsurgical root canal treatment (NSRCT). This is followed by negotiation, cleaning and shaping, and obturation of the entire canal system in three dimensions.<sup>[1-3]</sup> Knowledge of root and root canal anatomy is extremely important for locating and negotiating canals for thorough canal debridement and to prevent misdiagnosis as well as errors during instrumentation, all of which influence the success rate of endodontic treatment.<sup>[4]</sup> Failure to recognize variations in root or root canal anatomy can result in unsuccessful endodontic treatment. Therefore, it is imperative that the aberrant anatomy is identified before and during the root canal treatment of three-rooted mandibular first molars.

Address for correspondence: Dr. H Çolak, Department of Restorative Dentistry, Kırıkkale University Dental Faculty, Kırıkkale, Turkey. E-mail: hakancolak@kku.edu.tr The number of roots in mandibular first permanent molars in various races differs significantly.<sup>[5]</sup> These variations appear to be genetically determined,<sup>[6]</sup> and so are important in identifying racial origins of populations. The third root usually appears as a thin strand in the disto-lingual position, which was first mentioned in the literature by Carabelli,<sup>[7]</sup> and termed radix entomolaris (RE).<sup>[8]</sup> This extra root is typically smaller than the distobuccal root and is usually curved, requiring special attention when root canal treatment is being considered for such a tooth.<sup>[9-11]</sup>

In European populations it has been reported that a separate RE is present in the mandibular first molar with a maximum frequency of 3.4-4.2% [Table 1].<sup>[15,16,34,35]</sup>



In African populations a maximum of 3% is found.<sup>[23,36-38]</sup> In Eurasian and Indian populations the frequency is less than 5%.<sup>[12]</sup> In populations with Mongoloid traits, such as Chinese, Eskimo, and American Indians, the RE occurs with a frequency of 5% to more than 40% [Table 1].<sup>[12,14,15,17,18,19,21,22,26,39]</sup> Because of its high frequency in mongoloid populations, the RE is considered to be a normal

. . .

- 11 - 0

morphologic variant or eumorphic root morphology<sup>[40]</sup> and can be seen as the Asiatic trait. <sup>[27]</sup> Among Caucasians, RE is not very common<sup>[26,35]</sup> and is considered to be an unusual or dysmorphic root morphology.

This retrospective study was undertaken to determine the prevalence of three-rooted permanent mandibular first

-----

| Authors                                         | Year | Area of origin         | No. of teeth/person |              |       | Periapical radiographs 3% RM1 |       |      |           |       |  |
|-------------------------------------------------|------|------------------------|---------------------|--------------|-------|-------------------------------|-------|------|-----------|-------|--|
|                                                 |      |                        |                     |              |       |                               |       |      |           |       |  |
|                                                 |      |                        | Sample              | Gender (M/F) | 3%RM1 | Gender (M/F)                  | Right | Left | Bilateral | Tota  |  |
| Tratman <sup>[12]</sup>                         | 1938 | Chinese                | 1615                |              | 5.80  |                               |       |      |           |       |  |
|                                                 |      | Malay                  | 475                 |              | 8.60  |                               |       |      |           |       |  |
|                                                 |      | Javanese               | 110                 |              | 10.9  |                               |       |      |           |       |  |
|                                                 |      | Indians*               | 453                 |              | 0.20  |                               |       |      |           |       |  |
|                                                 |      | Eurasians              | 262                 |              | 4.20  |                               |       |      |           |       |  |
|                                                 |      | Japanese               | 168                 |              | 1.20  |                               |       |      |           |       |  |
| Laband <sup>[13]</sup>                          | 1941 | Malaysian              | 134                 |              | 8.20  |                               |       |      |           |       |  |
| Somogyl-Csizmazia<br>and Simons <sup>[14]</sup> | 1971 | Canadian<br>Indians†   | 250                 |              | 15.6  |                               |       |      |           |       |  |
| de Souza-Freitas<br>et al. <sup>[15]</sup>      | 1971 | European<br>descent    | 422                 |              | 3.20  |                               |       |      |           |       |  |
| Skidmore and<br>Bjorndahl <sup>[16]</sup>       | 1971 | White                  | 45                  |              | 2.2   |                               |       |      |           |       |  |
|                                                 |      | Japanese<br>descent    | 233                 | 135/98       | 17.8  | 1.65/1                        |       | 9.87 | 12.88     | 22.75 |  |
| Turner <sup>[17]</sup>                          | 1971 | Aleutian Eskimo        | 263                 |              | 32.0  |                               |       |      |           |       |  |
|                                                 |      | American<br>Indians†   | 1983                |              | 5.80  |                               |       |      |           |       |  |
| Curzon and Curzon <sup>[18]</sup>               | 1971 | Keewatin<br>Eskimo     | 98                  |              | 27.0  |                               |       |      |           |       |  |
| Curzon <sup>[9]</sup>                           | 1973 | Baffin Eskimo          | 69                  |              | 21.7  |                               |       |      |           |       |  |
| Hochstetter <sup>[19]</sup>                     | 1975 | Guam                   | 400                 |              | 14.3  | 2/1                           |       |      |           |       |  |
| Jones <sup>[20]</sup>                           | 1980 | Chinese                | 52                  |              | 13.4  |                               |       |      |           |       |  |
|                                                 |      | Malaysian              | 149                 |              | 16.0  |                               |       |      |           |       |  |
| Reichart and Metah <sup>[21]</sup>              | 1981 | Thai                   | 364                 |              | 19.2  |                               |       |      |           |       |  |
| Walker and<br>Quackenbush <sup>[22]</sup>       | 1985 | Hong Kong<br>Chinese   | 213                 |              | 14.6  |                               |       |      |           |       |  |
| Steelman <sup>[23]</sup>                        | 1986 | Hispanic<br>children   | 156                 | 73/83        |       | 1.50/1                        | 2.60  | 0.60 | 3.20      | 6.40  |  |
| Walker <sup>[6]</sup>                           | 1988 | Hong Kong<br>Chinese   | 100                 |              | 15.0  |                               |       |      |           |       |  |
| Harada et al. <sup>[24]</sup>                   | 1989 | Japanese               | 2331                |              | 18.8  |                               |       |      |           |       |  |
| Loh <sup>[25]</sup>                             | 1990 | Singaporean<br>Chinese | 304                 |              | 7.9   |                               |       |      |           |       |  |
| Ferraz and Pécora <sup>[26]</sup>               | 1992 | Japanese<br>descent    | 105                 |              |       | 1/1                           |       |      |           | 11.4  |  |
|                                                 |      | Negro                  | 106                 |              |       |                               |       |      |           | 2.80  |  |
|                                                 |      | White                  | 117                 |              |       |                               |       |      |           | 4.20  |  |
| Yew and Chan <sup>[27]</sup>                    | 1993 | Chinese                | 179                 |              |       |                               |       |      |           | 21.5  |  |
| Gulabivala <sup>[28]</sup>                      | 2001 | Burmese                | 139                 |              | 10.1  |                               |       |      |           |       |  |
| Gulabivala <sup>[29]</sup>                      | 2002 | Thai                   | 118                 |              | 13.0  |                               |       |      |           |       |  |
| Huang et al. <sup>[30]</sup>                    | 2007 | Taiwanese              | 332                 |              | 21.7  |                               |       |      |           | 26.9  |  |
| Tu et al. <sup>[31]</sup>                       | 2007 | Taiwanese              | 332                 | 79/87        | 17.77 | 0.75                          | 4.22  | 2.41 | 14.46     | 21.09 |  |
| Schafer <i>et al.</i> <sup>[32]</sup>           | 2009 | Germans                | 524                 | 264/260      | 0.68  | 1.33                          | 0.57  | 0.76 |           | 1.34  |  |
| Garg et al. <sup>[33]</sup>                     | 2010 | Indians                | 586                 | 266/320      | 5.97  | 1/1.2                         | 1.23  | 0.85 | 2.47      | 4.55  |  |

molars in digital periapical radiographic images obtained from a Turkish patient.

### Materials and Methods

Periapical radiographs of 640 subjects, which had been obtained in the Department of Oral Diagnosis Radiology, Kırıkkale University Dental Faculty, Kırıkkale, Turkey from June 2010 to March 2011, were screened and examined retrospectively. The bilateral eccentric periapical radiographs (30° mesial angulation with protractor) of patients who visited the Department of Restorative Dentistry Endodontics for treatment of either pain or caries in the mandibular molars were obtained. Each of these patients had at least one mandibular first molar and was of Turkish origin. Demographic details including age, sex, and race of all these patients were recorded. To reduce radiographic misinterpretation, blurred images of teeth were excluded.<sup>[43]</sup>

All radiographs were evaluated under optimal conditions using double magnifying glasses. Each radiograph was separately evaluated by two authors (H.Ç. and M.M.H.). If disagreement existed, a joint evaluation of all authors was made until a consensus was reached. The criteria for the indication of an extra root were adopted from recent studies<sup>[6,19,31,32,35]</sup> and the presence of an extra root was indicated by the crossing of the translucent lines defining the pulp space and periodontal ligaments. The incidence of three-rooted mandibular first molars and the prevalence of the bilateral appearance of such teeth was assessed. The ratio of such teeth and the comparison of the occurrence between genders and the occurrence on the right or left sides were also estimated.

Comparison of the incidence and the correlations between males and females and left- and right-side occurrences were analyzed by using the Pearson chi-square test with SPSS (15.0; SPSS Inc., Chicago, IL, USA).

#### Results

Periapical radiographs of 640 patients, 334 females and 306 males, with age range of 15–72 years and average age of 30.3  $\pm$  12.5 years, were studied. The periapical radiographs of 9 patients, 4 females, and 5 males, had three-

rooted mandibular first molars. A total of 1205 periapical radiographs of mandibular first molars comprising 596 right and 609 left molars were evaluated [Table 2]. Of these three-rooted mandibular first molars, 7 were found on the right side and 5 on the left side. The overall incidence of patients with three-rooted mandibular first molars was 1.41% [Table 2]. The incidence was 1.63% for men and 1.2% for women [Table 2]. The prevalence of three-rooted mandibular first molars from all teeth examined was 1% (12 of 1205), 1.17% (7 of 596) for the right side and 0.82% (5 of 528) for the left side occurrences [Table 2]. There was no statistical significant difference in the incidence of threerooted mandibular first molars between female and male patients ( $\chi^2 = 0.21$ , P > 0.05) and between the right- and left-side occurrences ( $\chi^2 = 0.38$ , P > 0.05). The bilateral incidence of symmetrical distribution was 33.3% (3 of 9). The Figures 1 and 2 shows examples of radix entomolaris on formed periapical radiograph

#### Discussion

Morpho-anatomic changes in teeth may be divided according to the site of their occurrence; i.e., tooth crown, roots, and root canals. Third root anomalies with close similarity inherited by different etiology.<sup>[41]</sup> The mechanism of formation of RE is still unclear. In dysmorphic, supernumerary roots, its formation could be related to external factors during odontogenesis, or to penetrance of an atavistic gene or polygenic system (atavism is the reappearance of a trait after several generations of absence). In eumorphic roots, racial genetic factors influence the more profound expression of a particular gene that results in the more pronounced phenotypic manifestation.<sup>[21,42]</sup> Curzon et al. suggested that the "three-rooted molar" trait has a high degree of genetic penetrance as its dominance was reflected in the fact that the prevalence of the trait was similar in both pure Eskimos and Eskimos/Caucasian mixes.<sup>[18]</sup>

The reported frequency of three-rooted mandibular first molars is high among the Mongoloids as opposed to the Caucasians and Negroids.<sup>[12,15]</sup> It is highest among Eskimos. <sup>[14,18]</sup> RE is not very common and, with a maximum frequency of 3.4-4.2%, is considered to be an unusual or dysmorphic root morphology.<sup>[10,22,38]</sup> Although many studies

| Table 2: Number and percentage of three-rooted mandibular first molars |                                             |       |      |      |      |           |      |       |      |  |  |
|------------------------------------------------------------------------|---------------------------------------------|-------|------|------|------|-----------|------|-------|------|--|--|
| No. of patients and teeth                                              | No. of three-rooted mandibular first molars |       |      |      |      |           |      |       |      |  |  |
|                                                                        |                                             | Right |      | Left |      | Bilateral |      | Total |      |  |  |
|                                                                        |                                             | No.   | %    | No.  | %    | No.       | %    | No.   | %    |  |  |
| Female                                                                 | 334                                         | 2     | 0.60 | 1    | 0.30 | 1         | 0.30 | 4     | 1.20 |  |  |
| Male                                                                   | 306                                         | 2     | 0.65 | 1    | 0.33 | 2         | 0.65 | 5     | 1.63 |  |  |
| Total patients                                                         | 640                                         | 4     | 0.63 | 2    | 0.31 | 3         | 0.47 | 9     | 1.41 |  |  |
| No. of all right first molars examined                                 | 596                                         | 4     | 0.67 | -    | -    | 3         | 0.50 | 7     | 1.17 |  |  |
| No. of all left first molars examined                                  | 609                                         | -     | -    | 2    | 0.33 | 3         | 0.49 | 5     | 0.82 |  |  |
| Total teeth                                                            | 1205                                        | 4     | 0.33 | 2    | 0.17 | 6         | 0.50 | 12    | 1.00 |  |  |

have been carried out to explore the prevalence of threerooted first in different population, there were no published studies in the Turkish population.

In our study, the prevalence of three-rooted permanent first molar in the Turkish population was found to be 1.4% and 0.75% of all teeth examined. This finding is in agreement with a previous report on Europeans and Whites [Table 1] but was considerably lower compared with data reported for non-European races. A detailed comparison of the results obtained in the present study with previous reports can be found in Table 1. In this study, there was no significant difference according to gender (P > 0.05), which is similar to the recent studies.<sup>[31-33]</sup>.

According to the present results, there was not a significant difference between left and right occurrence (left vs. right side, P = 0.537). This finding is similar to recent reports on a German and Chinese.<sup>[43]</sup> However, other studies reported that three-rooted mandibular first molars occurred more frequently on the right side than on the left side,<sup>[23,31,44]</sup> whereas there are also studies showing that these teeth occurred more frequently on the left side.<sup>[28,35]</sup> These contradictory findings may be explained by marked differences in the sample size and in the methods used.

We found that the incidence of bilateral permanent threerooted mandibular molars was 33.3% (3/9 individuals), which is lower than the percentages found (56.6-68.57%) in several research studies involving Asian subjects (those of Japanese and Chinese descent)<sup>[7,15,31]</sup> and which was more than the recent study<sup>[32]</sup> among the German population (0%).

Although many studies have been carried out to explore the prevalence of three-rooted first molars, they have differed in methodology.<sup>[6,12,14,15,18,31,32,35,43]</sup> In the present study, noninvasive and inexpensive periapical radiographs were used. These periapical radiographs were taken from at least two different horizontal angles (one of these taken in the orthoradial position and the other taken either 30° mesially or distally). This method ensured proper identification of three-rooted mandibular molars. Some previous studies have used extracted teeth<sup>[6,12,13,20,21]</sup> to identify permanent three-rooted mandibular first molars, which might have led to an under estimation of their frequency because teeth with slender roots can easily be fractured on extracted teeth. Moreover, but it is impossible to compare the results of these studies related to gender and bilateral occurrences. The recent introduction of cone-beam computed tomography (CBCT) potentially provides dentistry with a practical tool for noninvasive and three-dimensional (3D) reconstruction imaging for use in endodontic applications and morphologic analyses.<sup>[9,10,15,34]</sup> The application of CBCT can determine the exact position of the distolingual root of the permanent mandibular first molars.<sup>[32]</sup>



Figure 1: Radix entomolaris in mandibular first mola



Figure 2: Radix entomolaris in right mandibular first molar

### Conclusion

Knowledge of both normal and abnormal anatomy of the molars dictates the parameters for execution of root canal therapy and can directly affect the probability of success. Mandibular first molar is the earliest permanent posterior tooth to erupt. It seems to be the most frequently in need of endodontic treatment. It usually has two roots (mesial and distal), but occasionally three, with a supernumerary distolingual root. Radix entomolaris may present the clinician with a lot of difficulties during endodontic treatment. An accurate diagnosis of a Radix entomolaris before root canal treatment is important to facilitate the endodontic procedure, and to avoid missed canals. Preoperative periapical radiographs, exposed at two different horizontal angles (mesial/distal) are required to identify this additional root. Knowledge of the location of the additional root and its root canal orifice will result in a modified opening cavity with extension to the distolingual. The morphological variations of the RE in terms of root inclination and root canal curvature demand a careful and adapted clinical approach to avoid or overcome procedural errors during endodontic therapy. Therefore, practitioners must be familiar with all molar abnormalities, as well as their prevalence.

#### References

- Ingle JI. A standardized endodontic technique utilizing newly designed instruments and filling materials. Oral Surg Oral Med Oral Pathol 1961;14:83-91.
- Ingle JI, Beveridge E. Endodontics. 2<sup>nd</sup> ed. Philadelphia: Lea & Febiger; 1976. p. 34-57.
- Walton R, Torabinejad M. Principles and practice of endodontics. 2nd ed. Philadelphia:WB Saunders Co; 1996.
- Arisu HD, Alacam T. Diagnosis and treatment of three-rooted maxillary premolars. Eur J Dent 2009;3:62-6.
- Schumann C. Endodontic treatment of a mandibular first molar with radix entomolaris: A case report. ENDO (Long Engl) 2008;2:301-4.
- Walker RT. Root form and canal anatomy of mandibular first molars in a southern Chinese population. Endod Dent Traumatol 1988;4:19-22.
- Carabelli G. Systematisches Handbuch der Zahnheikunde. 2nd ed. Vienna: Braumuller and Seidel; 1844.
- Bolk L. Bemerkungen u ber Wurzelvariationen am menschlichen unteren Molaren. Z Morph Anthropol 1915;17:605-10.
- Carlsen O, Alexandersen V. Radix entomolaris: Identification and morphology. Scand J Dent Res 1990;98:363-73.
- De Moor RJ, Deroose CA, Calberson FL. The radix entomolaris in mandibular first molars: An endodontic challenge. Int Endod J 2004;37:789-99.
- Vertucci FJ, Haddix JE, Britto LR. Tooth morphology and access cavity preparation. In: Cohen S, Hargreaves KM, editors. Pathways of the pulp. 9th ed. St. Louis: CV Mosby; 2006. p. 149-232.
- Tratman EK.Three-rooted lower molars in man and their racial distribution. Br Dent J 1938;64:264-74.
- Laband F.Two years'dental school work in British North Borneo:relation of diet to dental caries among natives. J Am Dent Assoc 1941;28:992-8.
- Somogyi-Csizmazia W, Simons AJ. Three-rooted mandibular first permanent molars in Alberta Indian children. J Can Dent Assoc (Tor) 1971;37:105-6.
- de Souza-Freitas JA, Lopes ES, Casati-Alvares L.Anatomic variations of lower first permanent molar roots in two ethnic groups. Oral Surg Oral Med Oral Pathol 1971;31:274-8.
- Skidmore AE, Bjorndal AM. Root canal morphology of the human mandibular first molar. Oral Surg Oral Med Oral Pathol 1971;32:778-84.
- 17. Turner CG  $2^{nd}$ . Three-rooted mandibular first permanent molars and the question of American Indian origins. Am J Phys Anthropol 1971;34: 229-41.
- Curzon ME, Curzon JA. Three-rooted mandibular molars in the Keewatin Eskimo. J Can Dent Assoc (Tor) 1971;37:71-2.
- Hochstetter RL. Incidence of trifurcated mandibular first permanent molars in the population of Guam. J Dent Res 1975;54:1097.
- Jones AW. The incidence of the three-rooted lower first permanent molar in Malay people. Singapore Dent J 1980;5:15-7.
- 21. Reichart PA, Metah D.Three-rooted permanent mandibular first molars in the Thai. Community Dent Oral Epidemiol 1981;9:191-2.
- 22. Walker RT, Quackenbush LE. Three-rooted lower first permanent molars in

Hong Kong Chinese. Br Dent J 1985;159:298-9.

- Steelman R. Incidence of an accessory distal root on mandibular first permanent molars in Hispanic children.ASDC J Dent Child 1986;53:122-3.
- Harada Y, Tomino S, Ogawa K, Wada T, Mori S, Kobayashi S, et al. [Frequency of three-rooted mandibular first molars. Survey by x-ray photographs]. Shika Kiso Igakkai Zasshi 1989;31:13-8.
- Loh HS. Incidence and features of three-rooted permanent mandibular molars. Aust Dent J 1990;35:434-7.
- Ferraz JA, Pecora JD. Three-rooted mandibular molars in patients of Mongolian, Caucasian and Negro origin. Braz Dent J 1993;3:113-7.
- Yew SC, Chan K.A retrospective study of endodontically treated mandibular first molars in a Chinese population. J Endod 1993;19:471-3.
- Gulabivala K, Aung TH, Alavi A, Ng YL. Root and canal morphology of Burmese mandibular molars. Int Endod J 2001;34:359-70.
- 29. Gulabivala K, Opasanon A, Ng YL, Alavi A. Root and canal morphology of Thai mandibular molars. Int Endod J 2002;35:56-62.
- Huang RY, Lin CD, Lee MS, Yeh CL, Shen EC, Chiang CY, et al. Mandibular disto-lingual root: A consideration in periodontal therapy. J Periodontol 2007;78:1485-90.
- Tu MG, Tsai CC, Jou MJ, Chen WL, Chang YF, Chen SY, et al. Prevalence of three-rooted mandibular first molars among Taiwanese individuals. J Endod 2007;33:1163-6.
- Schafer E, Breuer D, Janzen S. The prevalence of three-rooted mandibular permanent first molars in a German population. J Endod 2009;35:202-5.
- GargAK, Tewari RK, Kumar A, Hashmi SH, Agrawal N, Mishra SK. Prevalence of three-rooted mandibular permanent first molars among the Indian Population. J Endod 2010;36:1302-6.
- Taylor AE. Variations in the Human Tooth-form as met with in Isolated Teeth. J Anat Physiol 1899;33 (Pt 2):268-72.
- Curzon ME.Three-rooted mandibular permanent molars in English Caucasians. J Dent Res 1973;52:181.
- 36. Drennan MR.The dentition of the Bushmentribe.Ann SAfr Mus 1929;34:61-91.
- Shaw JCM. The teeth, the bony palate and the mandible in Bantu races of South Africa. London, UK: John Bale, Sons and Danielson; 1931.
- Sperber GH, Moreau JL. Study of the number of roots and canals in Senegalese first permanent mandibular molars. Int Endod J 1998;31:117-22.
- Pederson PO.The East Greenland Eskimo dentition. Numerical variations and anatomy. Copenhagen: Biance Lunos Nogtrykken, 1949.
- Calberson FL, De Moor RJ, Deroose CA. The radix entomolaris and paramolaris: Clinical approach in endodontics. J Endod 2007;33:58-63.
- Grover PS, Lorton L. Gemination and twinning in the permanent dentition. Oral Surg Oral Med Oral Pathol 1985;59:313-8.
- Rebeiro FC, Consolaro A. Importancia clinica y antropologica de la raiz distolingual en los molars inferiors permanents. Endodoncia 1997;15:72-8.
- Yang Y, Zhang LD, Ge JP, Zhu YQ. Prevalence of 3-rooted first permanent molars among a Shanghai Chinese population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e98-e101.
- Quackenbush LE. Mandibular molar with three distal root canals. Endod Dent Traumatol 1986;2:48-9.

**How to cite this article:** Çolak H, Özcan E, Hamidi MM. Prevalence of three-rooted mandibular permanent first molars among the Turkish population. Niger J Clin Pract 2012;15:306-10.

Source of Support: Nil, Conflict of Interest: None declared.