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Abstract
Background: The etiopathogenesis of prostate cancer (PC) is still not clear, but hormonal, genetic, and environmental 
factors are thought to play a role in the tumor pathogenesis. Astrocyte elevated gene-1(AEG-1) as a novel transmembrane 
protein is predominantly located in the perinuclear region and endoplasmic reticulum. It has been found that AEG-1 
upregulation increases the invasive ability of glioma and prostate cancer. Basic fibroblast growth factor (bFGF), matrix 
metalloproteinase-9 (MMP-9), cyclooxygenases-2 (COX-2), and adenomatous polyposis coli (APC) are very important 
in tumor progression as well. Materials and Methods: This study included 97 radical prostatectomy specimens. IHC 
stains for bFGF, MMP-9, COX-2, APC, and AEG-1 were performed on the tissue microarray using standard procedures. 
For each patient, the age, Gleason score, tumor volume, lymphovascular invasion, lymph node metastasis, surgical 
margin, and the invasion of vesiculoseminalis areas were assessed. Analyses were performed using the statistical 
PASW (ver. 18). Results: Statistically significant positive relationships were found MMP-9 and COX-2 (r = 0.242 and 
P = 0.017), between MMP-9 and APC (r = 0.207 and P = 0.043), and between bFGF and AEG-1 (r = 0.295 and P = 
0.004). However, the relationships between age and staining results and tumor volume and staining results were not 
found to be significant. Although a positive correlation was found between the Gleason score and tumor volume and the 
Gleason score and age (r = 0.415 and P = 0.0001; r = 0.246 and P = 0.015, respectively), we did not find a statistically 
significant relationship between other stains and other prognostic parameters (lymphovascular invasion, lymph node 
metastasis, surgical margin, or vesiculoseminalis invasion). Conclusion:The relationships we found between MMP-9 
and COX-2, between MMP-9, and APC and between bFGF and AEG-1 as independent prognostic parameters could 
be helpful in the development of new therapeutic procedures.
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Introduction

Prostate cancer (PC) is the second most frequent cause of 
cancer deaths in men in the United States. The role of many 

of the changes in PC initiation and progression remains 
unclear. The biology of human PC is complex, although 



419Nigerian Journal of Clinical Practice • Oct-Dec 2013 • Vol 16 • Issue 3

Erdem, et al.: Expression of basic FGF, MTDH/AEG-1, APC, matrix metalloproteinase 9, and COX-2 markers in prostate carcinomas

many genetic and epigenetic alterations have been detected 
in human PC.[1]

Basic fibroblast growth factor  (bFGF), also known as 
FGF2 is a member of the FGF family, a group of more 
than 20 structurally related proteins that control a 
multitude of cellular processes in different contexts, 
including proliferation, differentiation, survival, and 
motility.[2‑9] bFGF is expressed in human prostate cancer, 
as well as in many other malignant neoplasms including 
melanomas, astrocytomas, and carcinomas of the breast, 
lung, bladder, pancreas, and head and neck.[2‑8] It also 
plays a critical role in cancer development due to its role 
in angiogenesis.[9]

Cancer cells invade during metastasis and migrate 
through the normal molecular constraints, such as 
the extracellular matrix  (ECM).[10] Cancer cells are 
capable of degrading the ECM barrier by using enzymes, 
resulting in dissolution of the basement membrane (BM). 
Most prominent among these enzymes are the matrix 
metalloproteinases (MMPs).[11] MMPs have long 
been known to be associated with pathological and 
physiological processes such as wound healing, tissue 
remodeling, angiogenesis, and cancer progression.[11‑14] 
Matrix metalloproteinase‑9  (MMP‑9) has long been 
recognized as a key enzyme for the proteolytic degradation 
of ECM during tumor invasion and metastasis.[15] These 
varied functions of MMP‑9 have made it an extremely 
promising target for preventing metastasis in cancer 
patients.[16] Its expanding roles include regulating cancer 
progression, activating angiogenesis, and recruiting 
macrophages or other bone marrow‑derived myeloid cells 
to the preexisting metastatic niche.[17]

AEG‑1, a novel gene, is known to be a potent mediator 
in the development of malignancies. It is a component of 
oncogenic signaling pathways and has been demonstrated to 
play a role in several significant stages of tumor progression 
and initiation of apoptosis, including angiogenesis, invasion 
metastasis, transformation, and chemoresistance. Following 
its initial identification, AEG‑1 was thought to be a potential 
focus for targeted therapy, based on its multi‑faceted role in 
regulating cancer progression.[18]

Cyclooxygenases‑2  (COX‑2) may play a key role in the 
tumorigenesis of a variety of human malignancies by 
stimulating cell proliferation and angiogenesis, tumor 
metastasis, inhibiting apoptosis, mediating immune 
suppression and inhibiting epithelial differentiation, 
enhancing cell invasiveness, and increasing the production 
of mutagens. The COXs are a family of enzymes that catalyze 
the rate‑limiting step of prostaglandin biosynthesis.[19‑21] 
The expression of COX‑2 in PC tissues has been the 
subject of many recent studies.[22‑24] Several of these have 
examined the expression of COX‑2 in postatrophic 

hyperplasia, proliferative inflammatory atrophy, and 
prostate intraepithelial neoplasia, but the results are still 
controversial.[24‑28]

Several studies have also evaluated the potential role of 
adenomatous polyposis coli  (APC) protein in colorectal 
and other cancers, including prostate cancer. Alterations in 
APC have been identified in both primary and metastatic 
prostate cancers, including both somatic alterations.[29,30]

In this study, we evaluated AEG‑1, bFGF, COX‑2, MMP‑9, 
APC, and the other prognostic parameters such as tumor 
grade, stage, tumor volume, metastasis, and age of the 
patient in 97 radical prostate specimens.

Materials and Methods

This retrospective study used formalin‑fixed tumor samples 
taken from patients who were diagnosed between 2005 and 
2011 with prostatic adenonarcinomas in the Department of 
Pathology, Medical Faculty. The study protocol was reviewed 
and approved by the Ethics Committee.

The samples were comprised 97 radical prostatectomy 
specimens and did not include tru‑cut biopsy. All of the 
hematoxylin and eosin sections of the cases were examined 
retrospectively. PC cases were graded histopathologically 
using the Gleason system, and were grouped using other 
prognostic parameters. Sections were examined by light 
microscopy (Olympus BX50).

Immunohistochemistry
Immunohistochemical staining was performed on the 
3‑μm sections of formalin‑fixed, paraffin‑embedded 
material. The sections were deparaffinized with xylene 
and rehydrated with ethanol. Nonenzymatic antigen 
retrieval was performed on each slide and they were 
washed with 10 mM phosphate‑buffered saline (PBS), 
pH  7.5. Immunohistochemical staining was performed 
manually using the standard avidin–biotin peroxidase 
complex technique (Neomarkers, Thermo Fisher 
Scientific, Fremont, CA, USA). Briefly, the slides were 
incubated at 37°C for 60 min with the following primary 
antibodies: AEG‑1 [Polyclonal] Conc. 0.1ml  (1:600), 
code: HPA010932, Atlas, bFGF (1‑24)) [Polyclonal] 
Conc. 0.1 ml (1:100). code: F3393, Sigma Aldrich, 
MMP‑9 [15W2] Conc. 1 ml (1:40‑80), code: MMP9‑439, 
Leica/Novocastra, APC [EMM43] Conc. 1 ml (1:20‑40), 
Leica/Novocastra.

The slides were then washed twice for 5 min with 10 mM 
PBS and incubated with biotinylated rabbit antigoat 
immunoglobulin G  (1:200 dilution; Dako, Carpinteria, 
CA, USA) for 1  h at room temperature. After final 
washing, the color reaction was developed using 0.5% 
diaminobenzidine and 0.01% hydrogen peroxide. The 
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sections were counterstained with hematoxylin and eosin 
before being mounted.

Immunohistochemistry evaluation
Immunoreactivity for AEG‑1, bFGF, COX‑2, Ki‑67 
MMP‑9, and APC was scored using a semi‑quantitative 
scale for intensity of staining: 0  = negative, no staining; 
1+ = weak positive; 2+ = moderately positive; 3+ = strongly 
positive [Figures 1‑4].

Statistical analysis
Descriptive statistics were computed as mean ± SD and 
percent frequency. The Spearman’s correlation analysis 
or likelihood Chi‑square test analysis  (whichever was 
deemed appropriate in each case) was used to evaluate 
the relationship between prognostic factors and the 
degree of staining, and the relation of staining results to 
each other. The level of significance was determined to 
be 0.05. Statistical analyses were performed using the 
PASW (ver. 18).

Results

The age range of the cases was between 44 and 79 years 
(63.7 ± 7.2 years). Tumor volume ranged between 0.5 and 
90% (14.4  ± 14.1). In 32  cases  (33%), the tumors were 
Gleason score 6, in 53  cases  (54,6%) Gleason score 7, 
in 5 cases (5.2%) Gleason score 8, and in 7 cases (7.2%) 
the Gleason score was 9. There were 85  cases PT2 and 
12 cases PT3. Statistically significant positive relationships 
were found only between MMP‑9 and COX‑2 (r = 0.242 
and P = 0.017), between MMP‑9 and APC (r = 0.207 and 
P = 0.043) and between bFGF and AEG‑1 (r = 0.295 and 
P = 0.004). However, the relationships between age and 
staining results and tumor volume and staining results were 
not found to be significant, although positive correlations 
were found between the Gleason score and tumor volume 
and the Gleason score and age (r = 0.415 and P = 0.0001; 
r = 0.246 and P = 0.015, respectively). We did not find a 
statistically significant relationship between other stains 
and other prognostic parameters such as lymphovascular 

Figure 1: AEG‑1 expression was more intense in malignant glands 
than in benign glands (AEG‑1×100)

Figure 2: COX‑2 expression seen in malignant 
glands (COX‑2×100, grade 2, cytoplasmic)

Figure 4: bFGF expression was more intense in malignant glands 
than in benign glands (bFGF×100)

Figure 3: APC expression seen in malignant glands, but not in 
benign glands (APC×100)



421Nigerian Journal of Clinical Practice • Oct-Dec 2013 • Vol 16 • Issue 3

Erdem, et al.: Expression of basic FGF, MTDH/AEG-1, APC, matrix metalloproteinase 9, and COX-2 markers in prostate carcinomas

invasion, lymph node metastasis, surgical margin, or 
vesiculoseminalis invasion [Table 1].

Discussion

Studies have found that clinical examination alone 
cannot predict the pathological outcome, and therefore 
this is not the ideal method to decide the mode of 
treatment.[31] Overexpression of COX‑2 has been 
demonstrated to contribute to carcinogenesis by stimulating 
cell proliferation, inhibiting apoptosis, and enhancing 
angiogenesis; all of these effects are thought to be mediated 
via PGE2.[32‑34]

COX‑2 overexpression has been identified in many tumor 
tissues. In addition to COX‑2, overexpression is well 
established in PC.[33] Madaan et  al., found expression of 
COX‑2 in 74% of 82 cases of PC.[22] Kirschenbaum et al., 
reported expression of COX‑2 in 63% of 31  cases.[23] 
Yoshimura et  al., found increased expression in 28  cases 
of PC.[24] However, research on the expression of COX‑2 
in human PC is still controversial. Zha et  al., conducted 
a large study analyzing 144  samples of PC as large 
sections or tissue‑microarray cores and found them to 
be negative for COX‑2.[25] Denkert et  al., observed an 

overexpression of COX‑2 in PC  (44.7%) and prostate 
intraepithelial neoplasia (72.1%) samples when compared 
with benign prostatic tissue.[28] In the present study, we 
found overexpression of COX‑2 in PC (65.9%). We found 
more overexpression of COX‑2 in prostate intraepithelial 
neoplasia than in benign prostatic hyperplasia [Figure 2].

There are multiple mechanisms by which loss of bFGF could 
inhibit tumorigenesis. bFGF is a potent growth factor for 
both normal and neoplastic prostatic epithelial cells.[35]

Ropiquet et al., have studied the effects of bFGF expression 
under the control of a strong promoter on immortalized but 
nontumorigenic human prostatic epithelial cells.[36] Thus, 
bFGF signaling may potentially promote proliferation, 
survival, invasion, metastasis, and angiogenesis in prostate 
cancer, and loss of all these activities could inhibit cancer 
progression. bFGF released by epithelial cells could also 
act as autocrine and paracrine factors on endothelial and 
fibroblastic cells to promote angiogenesis or to stimulate 
secretion of other tumor‑promoting factors by these 
mesenchymal cells. At the same time, bFGF released by 
fibroblastic and endothelial cells could act as a paracrine 
factor on the epithelial cells or as an autocrine factor 
promoting angiogenesis. Such effects could occur either in 
the primary site or at sites of distant metastasis.[35,36]

AEG‑1 is abundantly expressed in about 44 to 47% of 
primary tumors and is significantly correlated with the 
clinical stage, tumor size, lymph node spread, distant 
metastasis, and poor survival.[37‑39] AEG‑1 is overexpressed 
in PC samples and cell lines compared with benign prostatic 
hyperplasia tissue samples and normal prostate epithelial 
cells.[40,41] AEG‑1 inhibition reduces cell viability and 
promotes apoptosis of PC cells, but not normal prostate 
epithelial cells.[41] Interestingly, decreased nuclear staining 
of AEG‑1 was associated with an increased Gleason 
grade and shorter survival of patients.[38] AEG‑1 may 
have a nuclear function in normal prostate tissue and is 
lost in tumorigenesis. AEG‑1 overexpression enhances 
anchorage‑independent growth, matrigel invasion, in vivo 
tumorigenicity, and angiogenesis through the enhancement 
of PI3K/Akt, MAPK, and Wnt/β‑catenin pathways.[42] 
In this case, AEG‑1 was stained cytoplasmic. We found 
overexpression of AEG‑1 in PC (66.6%).

In addition to studies suggesting a role for APC in prostate 
cancer, two studies have looked specifically at APC and the 
risk of prostate cancer. An increase in PC risk associated 
with APC was observed in a community‑based study of 
Ashkenazi Jews (Washington Ashkenazi Study), although 
the confidence limits were wide due to the small number 
of prostate cancers reported.[43] A second study using a 
case‑only design was not able to directly estimate the risk 
conferred by the mutation; however, APC was reported to 
modify the association between body mass index (BMI) 

Table  1:  (N:97)
APC AEG‑1 FGF MMP‑9 COX‑2

Spearman’s rho

APC

Correlation coefficient 1.000 0.019 −0.151 0.207 0.013

Sig. (2‑tailed) 0 0.853 0.144 0.043 0.901

AEG‑1

Correlation coefficient 0.019 1.000 0.295 0.131 0.120

Sig. (2‑tailed) 0.853 0 0.004 0.203 0.243

FGF

Correlation coefficient −0.151 0.295 1.000 −0.107 −0.0036

Sig. (2‑tailed) 0.144 0.004 0 0.307 0.731

MMP‑9

Correlation coefficient 0.207 0.131 −0.107 1.000 0.242

Sig. (2‑tailed) 0.043 0.203 0.307 0 0.017

COX‑2

Correlation coefficient 0.013 0.120 −0.036 0.242 1.000

Sig. (2‑tailed) 0.901 0.243 0.731 0.017 0

Age

Correlation coefficient −0.116 0.037 −0.013 −0.058 −0.068

Sig. (2‑tailed) 0.257 0.718 0.904 0.575 0.511

Volume

Correlation coefficient −0.0001 0.055 0.177 −0.128 0.006

Sig. (2‑tailed) 0.995 0.596 0.086 0.213 0.951

Score

Correlation coefficient −0.019 0.085 0.171 −0.122 −0.027

Sig. (2‑tailed) 0.855 0.406 0.097 0.237 0.796
MMP=Matrix metalloproteinase, APC=Adenomatous polyposis coli, 
AEG=Astrocyte elevated gene, FGF=Fibroblast growth factor, 
COX=Cyclooxygenases
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and PC risk.[44] The implications of this study are unclear, 
because it seems unlikely that APC was considered a priori 
as an effect modifier of BMI and risk of prostate cancer. 
However, Poynter et al., said that APC is unlikely to play 
a clinically meaningful role in susceptibility to prostate 
cancer.[44] In this study, a significant relationship was found 
between MMP‑9 and APC (r = 0.207 and P = 0.043). This 
result could be the relationship of tumor progression.

Whether MMP‑9 has pro‑tumorigenic or anti‑tumorigenic 
effects depend on the environment and stage in tumor 
progression. For example, in neuroblastoma and 
orthotopically injected human pancreatic cancer cells, 
loss of MMP‑9 results in decreased microvessel size and 
decreased vascularization. Deficiency of MMP‑9 led to 
an increased dependence on perivascular invasion and a 
reduction in vasculature‑independent invasion.[45,46] Several 
MMPs are overexpressed in PC progression, and androgen 
ablation or castration increases levels of MMPs.[45‑49] 
Moreover, a synthetic MMP inhibitor reduces expression of 
MMP‑9 in prostatic carcinoma cells and results in reduced 
lung metastases, but does not affect the tumor growth rate 
and decreases in tumor growth and metastases in a rat PC 
model.[50,51] The MMP‑9 deficient tumors developed similar 
survival, and both tumor and metastatic burdens compared 
with controls. Hence, the same MMP has quite different 
outcomes in different tumors.[52]

In this study, significant relationships were found between 
MMP‑9 and COX‑2, MMP‑9 and APC, and bFGF and 
AEG‑1. We found significant relationships between 
MMP‑9 and COX‑2 and between MMP‑9 and APC, but 
no significant relationship with prognostic parameters. 
This outcome is similar to others found in the literature.[53]

Conclusion

In this study, significant relationships were found between 
MMP‑9 and COX‑2, MMP‑9 and APC, and bFGF and 
AEG‑1. These relationships could be poor prognostic 
parameters and independent prognostic parameters of 
prostate adenocarcinomas. They may be important for 
understanding tumor progression and developing therapies.
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