Synthesis of Di -Acyl Triazene - N - Oxide

M. O. Edema*. and S. I. Onyeka

Chemistry Department, University of Benin, Benin City Nigeria. E- mail:oliremay@yahoo.com

ABSTRACT

Diacyl triazene – N – oxides were synthesized by reaction of p- nitroso, N,N-dimethyl aniline with some acyl hydrazines. The product yield varied from 56% - 80.8%. The conditions for optimum yields and spectral characteristics of the products are reported.

INTRODUCTION

Triazene - N- oxides reported so far are mainly of the type $R^1 - N = NH - NHR^{11}$ where R^1 and R^{11} are alkyl or aryl groups^{1,2}. Hoesch and Koppel³ however reported the synthesis of unsymmetrical disubstituted triazene - N - oxide from Naminophthalimide and nitrosobenzene via the formation of the phthalimidonitrene. Triazenes - N - oxides have been shown to form brightly coloured metal complexes and may therefore be used as complexing agents in metal ion analysis⁴. Some have also been reported to show antiinflammatory activity⁵.

This work is aimed at preparing diacyl triazene -N - oxides from p- nitroso-N,N-dimethylaniline with benzoyl hydrazine and six other substituted benzoyl hydrazines. The conditions for optimum yield were also determined.

EXPERIMENTALS

The p-nitroso-N,N-dimethylaniline (p-NDA) was prepared by the reaction of N,N-dimethyl aniline and nitrous acid ⁶ while the acyl hydrazines were prepared by the method reported by Chaco and Liver⁷. The acyl hydrazines prepared were:

- 1 Benzoyl hydrazine
- 2 o-methylbenzoyl hydrazine
- 3 m-methylbenzoyl hydrazine
- 4 p-chlorobenzoyl hydrazine
- 5 o-chlorobenzoyl hydrazine
- 6 p-aminobenzoyl hydrazine
- 7 isonocotinic acid hydrazide

Preparation of the Triazene - N - oxideTwo methods were used for the synthesis.

Method 1 Direct Reaction

0.015mol of the p-NDA was mixed with 2cm³ of concentrated HCl and dissolved in 80cm³ of distilled water. 0.01mol of the acyl hydrazine was dissolved in minimal distilled water and both solutions were kept in a preheated water bath at 30 - 50°C to equilibrate. Both solutions were then mixed and the pH adjusted with sodium ethanoate to between 2 and 5 and left for 6hours. The product was filtered, washed with cold distilled water, air-dried and weighed. The precipitate formed was purified by dissolving in tetrahydrofuran, filtered and re-precipitated with petroleum ether.

^{*} Author for correspondence

Method II Reaction via Nitrene

Lead tetraacetate was prepared by methods described by Vogel⁶. 0.01mol of the lead tetraacetate was dissolved in acetic acid and 0.10 mol of the acyl hydrazine was put into the acetic acid mixture, stirred and then poured into 130cm³ of water. 0.15 mol of the p-NDA was mixed with 3.5 cm³ of acetic acid and dissolved in distilled water. Both solutions were regulated to varing pH of 4 - 5 using sodium ethanoate and mixed. The mixture was kept in a regulated water bath for 6hours and then the product was filtered out, air dried and weighed.

The product was washed with cold distilled water and air-dried, then purified by dissolving in tetrahydrofuran, filtered and re-precipitated with petroleum ether. The melting point, UV and IR spectrum of the purified products were determined.

RESULTS AND DISCUSSION

.CH₃ p-NDA (CH₃)₂NPhNHOH Pb(OAc0)₄ CH₃ (CH₃) NPhNHOH CH₃

Table 1 shows the physical and spectral characteristics of the products.

The conditions for optimum yield for method I were pH 4-5, temperature 50°C; mole ratio 3:2 p-NDA : acyl hydrazine. For method II it was pH 5, temperature 40°C; mole ratio 3:2 p-NDA: acyl hydrazine. The products from methods I and II had the same melting point and spectral characteristics.

The triazene -N – oxides were found to be soluble in aqueous alkaline medium but insoluble in acidic medium. This may be due to abstraction of the N – oxygen by the base to form H₂O.

The para and meta substituted isomer were found to have higher yield than the ortho substituted isomers probably due to steric effect.

Method I

The reaction scheme is

Method II

12

S.N	Hydrazine	Colour / M.pt	$UV \lambda_{max} (E_{max})$ (nm)	IR cm ⁻¹	Yield %
1	Benzoyl	Black solid	480 (2673)	3280	80.8
	0	186 - 187	400 (5180)	1600	00.0
		100 107	353 (11195)	1530	
			280 (6627)	1265	
2	o- methyl benzoyl	Black solid	480 (4470)	3420	58
	O nietnyi benzoyi	198 - 199	400 (8609)	1650	50
		170 - 177	392 (7285)	1600	
			353 (7847)	1570	
	CH ₃		265 (13411)	1250	
3	m- methyl benzoyl	Black solid	476 (1862)	3250	88.7
	o	189 - 190	340 (29795)	1660	00.7
		107 170	300 (10428)	1600	
			270 (12291)	1280	
	H ₃ C		220 (3728)	1250	
4	n ahlana hau =====1	Vallal-	、 <i>,</i>		70.0
4	p- chloro benzoyl	Yellowish	480 (6369)	3220	70.0
		brown solid	385 (7166)	1660	
		212 - 213	300 (5308)	1590	
			270 (6900)	1520	
			250 (6369)	1270	
	11 1 1	D	225 (5838)	2410	57.5
5	o- chloro benzoyl	Brown	480 (16631)	3410	57.5
		190 - 191	390 (20170)	1650	
			300 (17693)	1560	
	CI		270 (20878)	1250	
6	p-amino benzoyl	Black	434 (13155)	3360	82.13
		224 - 225	390 (8970)	1690	
			300 (12159)	1590	
			270 (13554)	1520	
				1285	
7	Isonicotinic acid	Black	473 (18523)	3320	36.5
	hydrazide	188 - 189	430 (22916)	1665	
			400 (22441)	1600	
			352 (26716)	1520	
			270 (35740)	1270	
			235 (36690)		
8	Phenyl hydrazine	Yellow	423 (29,000)	3430	
		liquid	273(5750)	3240	
				1600	
				1510,1240	
_					
9	Para- nitroso, N,N-	Green solid	425 (34,340)		
	dimethyl aniline	84 - 85	275 (22,827)		
	$O=N-\sqrt{N(CH_3)_2}$		225 (43,307)		

Table 1:Physical and spectral characteristics of products

The strong IR bands in the region $1650 - 1695 \text{ cm}^{-1}$ indicate a conjugated carbonyl system. Bands between $3220 - 3430 \text{ cm}^{-1}$ indicate H – bonded N – H group while the bands at $1240 - 1290 \text{ cm}^{-1}$ indicate the azoxy group $-\text{N} = \text{N}^{-8}$.

UV λ_{max} at 370nm seems characteristics of triazene - N - oxide when the acyl group is attached to N-1 or N-3. The UV spectrum of the triazene - N - Oxide of phenyl hydrazine (1, 3-diaryl) is similar to that of p-NDA (table 1, nos 7 & 8); with a slight bathochromic shift of the λ_{max} (423nm to 425nm, 273nm to 275nm) with accompanying marked increase in E_{max}. In the triazene -N-oxide from benzoyl, o- and m-methyl benzoyl, 0and pchlorobenzoyl, the λ_{max} at 423nm was absent rather, there was a band between 476nm to 480nm.

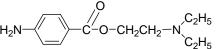
Mass spectra of the 3- benzoyl -1- (4'-N,N-dimethylaminophenyl) triazene -N-oxide gave peaks supportive of the structure:

 $284 - M^+$ (very small)

164 - Due to breakage at bond α to the azo bond. ($C_6H_5CON = N-N=OH^+$)

150 - $(CH_3)_2N - C_6H_4 - NO$

120 - Due to breakage at bond α to the azo bond $(CH_3)_2N - C_6H_4$


105 - base peak $C_6H_5C=O$ characteristic of carbonyl systems.

Degradation of the 3 - benzoyl -1- (4'-N,N-dimethylaminophenyl) triazene - N-oxide gave pure benzoic acid also confirming the presence of the benzoyl function.

CONCLUSION

This work has shown that 3-acyl triazene - N - oxide can be prepared by the Fisher and Wacker method (method 1) and by the Hoesch and Koppel method (method 1). The spectral analysis supports the assigned structure for the triazene – oxide.

It would be interesting to investigate the pharmacological properties of these triazene -N - oxides as Novocain, a derivative of p-aminobenzoic acid, is used in anesthetics.

The replacement of the $-O-CH_2CH_2N(CH_3)_2$ by the triazene unit may give different pharmacological activity to the compound.

ACKNOWLEDGEMENTS

I wish to thank Dr Tempesta of Analytical Service Centre Atlanta, USA for providing the mass spectrum and the University of Benin for providing the research grant for this work.

REFERENCES

- 1 Smith, R.H., Denlinger, C.L., Kupper, S.R. and Michejda, C.J.; J. Am. Chem. Soc. 106 (1984) 1056 – 1059.
- 2 Fisher, O. and Wacker,; L. Chem. Ber 22 (1889) 622.
- 3 Hoesch, L. and Koppel, B.; Helv. Chem Acta 64:3 (1981) 868.
- 4 Chatlangya, P.D., Bhander, C.S. and Songani, N.C.; J. Indian Chem. Soc. 54:10 (1977) 1001.
- 5 Miesel, J.L., (Lily H. Co editors); US Pub. Pat. Appl. B. (1976) 10 February.
- 6 Vogel, A.I.; A textbook of Practical Organic Chemistry 4th Edn. p 345, 677 Longman Group Ltd, London 1976.
- 7 Chaco, M.C. and Lyer, B.H.; J. Org. Chem. 25(1960) 186.
- 8 Nakanishi, K.; IR Absorption Spectroscopy. p 51 Holden day, San Francisco and Nankado Company Tokyo 1962.

Vol. 11, 2006

Received: 12/5/06 Accepted: 12/5/06