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 Research Article 
Abstract 

Biomass is a renewable and sustainable source of energy with little greenhouse gas emissions. The higher Heating value (HHV) 
of biomass is a significant parameter that is used in characterising fuel quality, class and type for energy application systems. 
Experimental determination of HHV is expensive, takes time and not always available. This brings the need for mathematical 
models for HHV prediction.  In this research, proximate analysis and HHV of ten common biomass samples in Nigeria were 
determined.  The biomass considered included rice husk, rice straw, corn cob, woodchips, groundnut shell, desert date, coconut 
shell, palm kernel, millet straw and sugarcane bagasse. Eight linear and five non-linear correlations with good performance 
from the literature were employed for predicting the biomass’ HHV from proximate analysis data. The performance of the 
models was tested using statistical indicators. Model M1 and M7 were the best among all the tested models with average 
absolute error (AAE), average bias error (ABE), and root mean square error (RSME) of 3.8389%, 2.5002% and 0.8780 MJ/kg; 
and 3.8918%, 2.2301% and 0.8701 MJ/kg respectively. Other models also correlated relatively well with the experimental 
HHV with low error, though, some are good for specific biomass only. This research identifies the best models that have high 
accuracy and can be used for the prediction of the higher heating value of biomass samples from proximate analysis. 
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1. Introduction 
The potential for biomass to serve as a sustainable supply of 
energy has become a major research topic all over the world 
(Uzun et al., 2017). The combustion of biomass as fuel has 
many environmental and economic advantages. Because, it 
is a cheap, clean and renewable source of energy (Erol et al., 
2010). The design of new biomass energy 
combustion/conversion systems requires knowledge of the 
fundamental characteristics of the biomass. Proximate 
analysis reveals characteristics of biomass in terms of ash 
content (A), fixed carbon (FC), and volatile matter (VM) 
(Keybondorian et al., 2017). The higher heating value (HHV) 
of a fuel refers to the heat generated when a unit mass of fuel 
is completely burned, and it includes the latent heat of 
vaporization of water vapour generated when the fuel is 
burned. Fuel with a higher HHV has higher energy output 
(Xu and Jingqi, 2015). HHV is the most important parameter 
used to evaluate biomass fuel quality (Özyuğuran et al., 
2018). Higher heating value (calorific value) is 
experimentally determined using a bomb calorimeter. 
However, the experiment to measure HHV is time-
consuming, expensive and not always available (Majumder 
et al., 2008). The use of models for the prediction of HHV 

from biomass composition is a cost-effective and practical 
solution (Roy and Ray, 2020). In the models, HHV is the 
dependent parameter and the components of proximate 
analysis (fixed carbon, volatile matter and ash) are the 
independent parameters (Krishnan et al., 2019). Most of the 
recent models rely on regression analysis for the prediction 
of HHV (Samadi et al., 2019).  
There are so many models developed for predicting the HHV 
of biomass from proximate analysis (Krishnan et al., 2019; 
Roy and Ray, 2020).  Cordero et al. (2001) proposed a 
correlation for the estimation of HHV in terms of VM and 
FC content.  Demirbas (2003) proposed a correlation to 
calculate HHV in relation to its fixed carbon (FC), lignin 
(LC), and volatile material (VM). In another study, Sheng 
and Azevedo (2005) proposed a relation for the calculation 
of HHV in terms of only the ash content of biomass. Parik et 
al. (2005) developed a correlation for HHV determination 
from proximate analysis of 450 solid fuel samples, the 
equation demonstrated low error. Erol et al. (2010) proposed 
13 new formulae for estimating the calorific values of 20 
different biomass samples from their proximate analyses 
data. Yin (2011) proposed two linear correlations from 
ultimate and proximate analysis using Microsoft Excel, they 
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consider 44 biomass samples from agricultural by-products. 
Kwaghger et al. (2017) developed equations for estimating 
higher heating values of fuel woods using proximate and 
ultimate analysis. In similar studies, Özyuguran and Yaman, 
(2017) determined the proximate analysis of twenty-seven 
different biomass species of different categories. Eight 
equations were developed and tested for HHV prediction 
based on the proximate analysis. 
Qian et al. (2020) developed two empirical correlations 
based on proximate analysis and ultimate analysis for HHV 
prediction for ten different kinds of biochars. The 
correlations were developed by stepwise multiple linear 
regression and multiple non-linear regression methods. The 
correlations developed showed good performance in HHV 
prediction. Recently, Park et al. (2022) used 
thermogravimetric analysis to obtain proximate analysis data 
for the prediction of calorific value. Garcia et al. (2014) 
developed HHV empirical correlations with MATLAB from 
ultimate and proximate analysis of 100 Spanish biomass 
solid fuel samples. It was concluded that the equations are 
not universal for various biomass and sometimes make large 
deviations due to the complex chemical and physical 
properties of biomass. From the models studied, it is obvious 
that most of the models are specifically good at predicting 
certain biomass but not all categories. There is need to 
evaluate the models so that one will identify the best model 
that is robust and can be used to estimate higher heating value 
for various biomass categories. 
The objective of this study is to evaluate the best linear and 
non-linear models reported in the literature for predicting the 
HHV of biomass that are very common in Nigeria from the 
proximate analysis. Statistical indicators are used to evaluate 
the performance of such models in relation to experimental 
measurement. The statistical indicators used in this work 
include: average absolute error (AAE), average bias error 
(ABE), and root mean square error (RSME). Kieseler et al. 
(2013) stated that ABE and AAE are calculated for each 
correlation, they are used to arrive at conclusions from the 
comparative assessment of models. 
 

2. Materials and Methods 
2.1 Sample collection and preparation 

In this study, ten different samples of biomass were collected. 
All of the biomass samples were collected from Bauchi state, 
which are readily available in Nigeria. The biomass 
considered in this research are:  rice husk (RH), rice straw 

(RS), corn cob (CC), woodchips (WC), groundnut shell (GS), 
desert date (DD), coconut shell (CS), palm kernel shell (PK), 
millet straw (MS) and sugarcane bagasse (SB). The 
biomasses were collected from the residues and/or by-
products of agricultural products. The biomass was kept in 
open trays and sun-dried.  The sun-dried samples were milled 
and then sieved to pass through a screen that has openings of 
250 μm grain size according to ASTM D2013-86 standard 
method. The milled and sieved samples were stored in air-
tight sample bottles to avoid further interaction with air. 

 

2.2 Proximate analysis and higher heating value 
determination 
The proximate analysis on dry basis involves the 
determination of volatile matter, ash, and fixed carbon 
contents of the samples. The proximate analysis was carried 
out according to ASTMD1762-84 (2007) standards. The 
higher heating value otherwise known as the calorific value 
of the sample species is the heat liberated when a unit 
quantity of the fuels (sample) is burned completely. The 
HHV was determined according to ASTM D5865/D5865M 
(2019) using bomb calorimeter model Parr 6100. 

 

2.3 Models for prediction of higher heating values 
Correlations for estimating HHV based on proximate 
analysis usually consider the content of ash (A), volatile 
matter (VM) and fixed carbon (FC) as the independent 
variables.  Correlations for the prediction of HHVs based on 
proximate analysis of biomass exist in many related 
literatures. In this research, thirteen models were considered, 
eight linear and five non-linear models. The models were 
selected from numerous ones based on their high 
performance as reported previously. The eight linear models 
used are the ones given by: Parikh et al.(2005); Kieseler et 
al. (2013); Sheng and Azevedo (2005); Soponpongpipat et 
al. (2015); Cordero et al. (2001); Yin (2011); Kwaghger et 
al. (2017); Özyuğuran and Yaman (2017). The five non-
linear models used are the ones given by: Qian et al. (2020); 
Garcia et al. (2014); Erol et al. (2010); Dashti et al. (2019) 
and Xing et al. (2019) (see Table 1). 
The predicted heating values are calculated by substituting 
the volatile matter (VM), ash (A), and fixed carbon (FC) 
contents obtained experimentally from the proximate 
analysis. This procedure was repeated for all the biomass 
samples using the correlations M1-M13 (Table 1) to obtain 
the predicted HHVs of each of the samples. The calculated 
higher heating values were then compared with the 
experimental heating values. 

 
Table 1:   Predictive Higher Heating Value Models Based on Proximate Analysis 

Model No. Equation Reference 
M1 HHV = 0.3536FC + 0.1559VM – 0.0078(A)     Parikh et al. (2005) 
M2 HHV = 0.4108(FC) + 0.1934(VM) - 0.0211(A) Kieseler et al. (2013) 
M3 HHV = -3.0368 + 0.2218(VM) + 0.2601(FC) Sheng and Azevedo (2005) 
M4 HHV = 18.297- 0.4128A + 35.8/FC Soponpongpipat et al. (2015) 
M5 HHV = 35.43 - 0.1835VM - 0.3543(A) Cordero et al. (2001) 
M6 HHV = 0.1905VM + 0.2521FC                  Yin (2011) 
M7 HHV = 0.6042FC + 0.4083VM + 0.24424A + 0.4107M -25.204 Kwaghger et al. (2017) 
M8 HHV = -17.507 + 0.3985(VM) + 0.28755(FC) Özyuğuran & Yaman (2017) 

25 



 
 

Nigerian Journal of Engineering, Vol. 30, No. 2, August 2023 ISSN (print): 0794 – 4756, ISSN(online):2705-3954. 
 

 

 

M9 HHV = (30.3(FC)2 + 65.2(A)2 + 55.4(FC) - 48.5(A) + 9.591)/1000 Qian et al. (2020) 
M10 HHV = (1.83 X 10-4 - 3.98(A2) - 112.1(A))/1000 Garcia et al. (2014) 
M11 HHV = -5.9 + 0.836(FC) - 0.0116(FC)2 + 0.00209(VM)2 + 0.0325(A)2 Erol et al. (2010) 
M12 HHV = -0.0038 (-19.9812FC1.2259-1.0298 x 10-13VM8.0664 + 

0.1026A2.4231- 1.2065 x 107 (FCxA4.6653) + 0.0228 (FCxVMxA) - 
0.2511(VM/A)) - 0.0478(FC/VM) + 15.7199 

Dashti et al. (2019) 

M13 HHV = 19.050+0.124FC-0.021VM-0.167A-0.001FC2 + 0.000018VM2 

- 0.000055A2 
Xing et al. (2019) 

Footnote: HHV = Higher Heating Value (MJ/kg); FC = Fixed Carbon (%); VM = Volatile Matter (%); A = Ash (%). 
 
2.4 Evaluation of the models  

The predictive performance of the models was assessed in 
terms of statistical indicators. Correlation is said to be the 
best-fitted regression line, if the error of the estimation 
between the experimental and calculated tends to zero. In 
order to choose the most appropriate model, the average 
absolute error (AAE) (Equation 1), average bias error (ABE) 
(Equation 2) and root mean square error (RMSE) (Equation 
3) were evaluated to select the best correlation.  
The AAE quantified the proximity of the calculated HHV 
value to the experimental HHV value, with the lower AAE 
indicating a higher accuracy of the particular correlation; the 
positive ABE value meant that the average calculated value 
of HHV was higher than the measured one. The smaller 
absolute value of the ABE, the smaller the deviation of 
correlation (Qian et al., 2020). 

AAE = 1/n෍ ቚ
ுு௏௖௔௟௖௨௟௔௧௘ௗିுு௏௘௫௣௘௥௜௠௘௡௧௔௟
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೙
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                     (2)  

RMSE = ට1 𝑛ൗ ∑ ൫𝐻𝐻𝑉஼௔௟௖௨௟௔௧௘ௗ − 𝐻𝐻𝑉ா௫௣௘௥௜௠௘௡௧௔௟൯
ଶ௡

௜ୀଵ  (3) 

Where:  AAE is the Average absolute error, ABE is the 
Average bias error, and RMSE is Root mean square error 

 

3. Results and Discussion 
3.1 Experimental proximate analysis and HHV 
The proximate analysis and experimentally determined 
higher heating value results for the different biomass samples 
are given in Table 2. The biomass analysed included rice 
husk (RH), rice straw (RS), corn cob (CC), wood chips (WC), 
groundnut shell (GS), desert date kernel (DD), coconut shell 
(CS), palm kernel shell (PK), wheat straw (WS), and 
sugarcane bagasse (SB). The proximate analysis (dry basis) 
indicates the fixed carbon (FC), volatile matter (VM) and ash 
content (A) of the biomass.  
 

Table 2: Proximate Analysis and Experimental Higher 
Heating Values of Biomass Samples 

Biomass FC VM Ash HHV(Exp) 
Rice Husk 13.89 69.53 16.58 15.96 
Rice Straw 15.28 67.44 17.28 15.84 
Corn Cob  20.7 75.10 4.20 18.22 
Wood Chips 16.77 79.11 4.12 18.65 
Groundnut Shell 22.45 74.22 3.33 17.97 
Desert Date 18.09 78.94 2.97 18.25 

Coconut Shell 22.34 71.86 5.80 19.73 
Palm Kernel 19.85 73.87 6.28 18.52 
Wheat Straw 16.01 77.12 6.87 15.84 
Sugarcane 
Bagasse 

13.73 84.15 2.12 17.23 

 

The results of the proximate analysis showed variation due to 
the changes in composition and properties of the different 
biomass materials. The fixed carbon varied from 13.73% to 
22.45%, the volatile matter was in the range of 69.53% to 
84.15%, and ash content was in the range of 2.12% to 
17.28%. Groundnut shell and coconut shell contains 22.45 
and 22.34% fixed carbon, which was higher than all the other 
samples. It was reported previously that coconut shell has 
24.4 fixed carbon (Mamat et al., 2015). Wood chips showed 
good HHV due to high volatiles and low ash content. Rice 
straw and rice husk have ash content of 17.28 and 16.58, 
which are higher than other samples. It was reported in 
literature that rice husk contains about 16.3 % ash (Vaskalis 
et al., 2019). High ash content translates to the poor fuel 
quality while higher fixed carbon and volatiles is related to 
good quality of fuel (Özyuguran and Yaman, 2017). The 
higher heating values recorded were in the rage of 15.84 to 
19.73 MJ/kg (Table 2). The result obtained is similar to what 
was reported previously, where, twenty-seven biomass 
samples were studied and the heating value was between 
14.51 to 20.24 MJ/kg (Özyuguran and Yaman, 2017). In 
another study, the HHV of twenty samples was found to be 
between 15.41 to 19.52 MJ/kg (Erol et al. 2010). It was noted 
that samples with high ash content (rice husk and rice straw) 
gave the least higher heating value (Table 2). Usually 
Samples that have higher fixed carbon and lower ash content 
would reasonably give higher heating value 
(Ahmaruzzaman, 2008). 
 

3.2 Prediction of higher heating values 
The HHV value of a biomass sample is directly related to the 
fixed carbon, volatile matter and ash content of the biomass. 
Equations 1-13 given in Table 1 were used to predict the 
HHV of the biomass samples. All the equations contain at 
least one of the proximate analysis parameters (i.e FC, VM 
or A). Model M1-M8 are all linear, while model M9-M13, 
are non-linear. The experimental HHV obtained from 
calorimeter and the calculated (predicted) HHV results using 
linear models M1-M8 are plotted for all the biomass samples 
(Figure 1). The linear correlations showed some deviations 
with least AAE of 3.84% by M1 (Parik et al., 2005 model) 
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and highest of 23.52 % by M2 (Kieseler et al., 2013 model). 
Model M7 (Kwaghger et al., 2017) showed least ABE and 
RSME of 2.2301% and 0.8701 MJ/kg (Table 3).  The result 
was similar to what Kwaghger et al. (2017) obtained on HHV 
prediction of wood samples, Average Bias Error of 0.0365 to 
1.137% was obtained. The result obtained is close to that 
reported by Ahmaruzzaman (2008), where four HHV models 
were tested on chars from coke, plastics, biomass and coal 
samples, it was also found out that Parik et al., (2005) was 
the best model in HHV prediction from proximate analysis. 
The model showed average absolute error of 3.07 and 
average bias error of 0.41%. The experimental HHV and the 
predicted HHV results obtained from non-linear models M9-
M13 are plotted for all the biomass samples (Figure 2). 
 

 
Figure 1: Experimental and predicted higher heating value 
of biomass using linear models 
 

 
Figure 2: Experimental and Predicted Higher heating value 
of biomass using Non-linear models. 
 

The non- linear correlations showed error between the 
measured and calculated HHV, (AAE) of 4.52 % by M9 
(Qian et al., 2020 model) and M12 (Dashti et al., 2019 
model) while highest was 33.69% by model M10 (Gacia et 
al., 2014 model) (Table 3). Model M9 and M12 are closer to 
the experimental HHV (Figure 2), they also have the least 
error among the non-linear models (Table 3). Model M10 
deviated much from the experimental HHV (Figure 2). In a 
similar study, the AAE of the best non-linear models tested 
was found to be between 1.7097 and 3.5339% (Erol et al., 
2010). In another study, empirical linear and non-linear 
correlations by Xing et al. (2019) gave RSME of 2.327 to 
8.413 MJ/kg respectively. 
 

Table 3: Comparison of the HHV prediction models based on statistical indicators for Linear Models 
MODEL AAE (%) ABE (%) RMSE (MJ/kg) Reference 

Linear Models 
M1 3.8389 2.5002 0.878 Parik et al., 2005 
M2 23.522 23.522 4.2244 Kieseler et al. (2013) 
M3 5.2755 5.2755 1.2322 Sheng and Azevedo (2005) 
M4 8.4703 8.4703 1.6267 Soponpongpipat et al. (2015) 
M5 8.9953 8.9953 1.7501 Cordero et al, (2001) 
M6 7.4993 7.085 1.5025 Yin, 2011 
M7 3.8918 2.2301 0.8701 Kwaghger et al. (2017) 
M8 7.8358 -0.1596 0.8701 Özyuğuran and Yaman (2017) 

 

Table 4: Comparison of the HHV prediction models based on statistical indicators for Non-Linear Models 
MODEL AAE (%) ABE (%) RMSE (MJ/kg) Reference 

Non-linear models 
M9 4.5185 3.0082 0.9894 Qian et al. (2020) 
M10 33.6887 -8.4538 6.8184 Garcia et al. (2014) 
M11 13.4038 12.7176 3.3806 Erol et al. (2010) 
M12 4.5185 3.0082 0.9894 Dashti et al. (2019) 
M13 4.9308 4.0822 1.0546 Xing et al. 2019 

 

Some models are generally good for all samples while some 
are specifically good in the estimation of HHV of some 
particular biomass only. Model M2 (Kieseler et al., 2013) 
was far among the linear models in predicting accurate HHV 
for the biomass samples considered in this work (Figure 1 

and 3). Similar observation was reported by Qian et al., 
(2020), where Kieseler et al., (2013) was used to predict 
HHV of biochars. It was concluded that the correlation of 
Kieseler et al. (2013) was biased ABE of 11.99%, therefore, 
it cannot be applied to the calorific value prediction of the 
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biochar. Model M4 (Soponpongpipat et al. 2015) is 
specifically good in predicting HHV from proximate analysis 
for coconut shell (Figure 1 and 3) only. Model M6, (Yin, 
2011) is good in predicting HHV for palm kernel shell 
(Figure 3). Model M1 by Parik et al., 2005 and M7 by 
Kwaghger et al., 2017 were generally better HHV estimators 
for almost all biomass samples (Figure 1 and 3). From the 
evaluation of statistical indicators that compared the 
calculated and the experimental HHV, it is found that the 
linear correlations showed better performance compared 
with that of the non-linear correlations. It was reported 
previously that that the addition of non-linear terms did not 
improved HHV models significantly (Özyuğuran et al, 
2018). 
Experimental and Predicted higher heating value of biomass 
using Non-linear models were compared (Figure 2 and 4). 
The statistical performance indicators for the non-linear 
models for HHV prediction from proximate analysis is given 
in Table 3. Model M10, the Garcia et al., (2014) formula led 
to higher deviations for most of the biomass considered 
compared to the other non-linear models (Figure 2 and 4), 
though it predicted HHV for groundnut very well. Model 
M11 predicted other biomass very well except rice husk (RH) 
and rice straw (RS). The biomass had the highest ash content 
(Table 2), it could be that the model is good for biomass with 
low ash content only. Yin, (2011); Özyuguran and Yaman 
(2017) stated that for biomass with low calorific values (e.g. 
rice straw and rice husk), there is gap between the 
experimental and predicted values of HHV. Since some 
models are good to specific group of biomass, it was 
suggested that it will be reasonable to make biomass 
subclasses such as herbaceous samples, woody samples, 
agricultural residues, etc. and each subclass to be evaluated 
separately (Özyuguran and Yaman 2017). M9 (Qian et al., 
2020), M12 (Dashti et al., 2019) and M13 (Xing et al., 2019) 
were generally better non-linear HHV model estimators for 
almost all biomass samples (Figure 2 and 4).  
 

 
Figure 3: HHV Absolute difference for linear Models for 

different biomass samples. 
 

The absolute difference between the experimental and 
predicted higher heating values of the ten biomass samples is 
depicted in Figure 3, for linear equations and Figure 4, for 
the non-linear equations. Model M2 (Kieseler et al., 2013 
model) is far from the actual HHV for all the biomass. Some 
models are good in predicting specific biomass, but not all 
the samples. Model M4 is good in predicting HHV of 
coconut shell, the absolute difference is 0.31523%. The 
experimental and predicted HHV are very close, but it 
deviates for other samples (Figure 3). Model M5 (Cordero et 
al., 2001) fitted well for coconut shell only. Model M1 
(Parik, et al., 2005 model) and M7 (Kwaghger et al., 2017 
model) are better than other linear models with less absolute 
difference for most of the samples (Figure 3). 
 

 
Figure 4: HHV Absolute difference for non-linear models 

of different biomass samples. 
 

For the non-linear models, the absolute difference for Model 
M10 (Garcia et al. (2014) is much for most of the biomass 
samples except for groundnut shell and coconut shell (Figure 
4). Therefore, the model can only be used in HHV prediction 
for biomass with relatively higher HHV. M11 (Erol et al., 
2010) is good in HHV estimation for all biomass except rice 
husk and rice straw (Figure 4), which are the two samples 
with the highest ash content (Table 2). Therefore, the model 
is not very good in HHV prediction of samples with high ash 
content. M9 (Qian et al. 2020), M12 (Dashti et al. (2019) and 
M13 (Xing et al. 2019) have less absolute difference (Figure 
4) than other non-linear models for most of the biomass. 
Therefore, those models are the recommended non-linear 
models for HHV prediction from proximate analysis of 
biomass samples. 
 

4. Conclusions 
Evaluation of linear and non-linear empirical correlations for 
high heating value prediction of biomass samples from 
proximate analysis was carried out. The proximate analysis 
indicated that the biomass had different fixed carbon, volatile 
matter and ash content. The fixed carbon, volatile matter and 
ash content of the samples varied from 13.73% to 22.45%, 
69.53% to 84.15%, and 2.12% to 17.28% respectively. Rice 
husk and rice straw have the highest ash content of 16.58 and 
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17.28% respectively. Eight linear and five non-linear 
predictive models were used in HHV prediction of the ten 
biomass samples. Statistical indicators such AAE, ABE and 
RMSE were used to evaluate the performance of the HHV 
predictive models and compared with the experimental 
values. Some model showed good performance to only 
specific biomass. For the linear models, Model M1 (Parik, et 
al., 2005 model) with AAE, ABE, and RSME of 3.8389%, 
2.5002% and 0.8780 MJ/kg; and M7 (Kwaghger et al., 2017 
model) with AAE, ABE, and RSME of 3.8918%, 2.2301% 
and 0.8701 MJ/kg are better than other linear models. 
Considering the non-linear models, M9 (Qian et al., 2020 
Model), M12 (Dashti et al. 2019 model) and model M13 
(Xing et al. 2019 model) shows best performances with low 
AAE, ABE, and RSME. The non-linear models did not show 
superior performance than the linear HHV prediction 
models. The aforementioned models with better performance 
for the biomass samples considered in this work could be 
applied for HHV prediction for other different category of 
biomass. 
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